
A More Expressive Softgoal Conceptualization
for Quality Requirements Analysis

Ivan J. Jureta1, Stéphane Faulkner1, and Pierre-Yves Schobbens2

1 Information Management Research Unit (IMRU), University of Namur,
8 Rempart de la Vierge, B-5000 Namur, Belgium

iju@info.fundp.ac.be, stephane.faulkner@fundp.ac.be
2 Institut d’Informatique, University of Namur,

8 Rempart de la Vierge, B-5000 Namur, Belgium
pys@info.fundp.ac.be

Abstract. Initial software quality requirements tend to be imprecise,
subjective, idealistic, and context-specific. An extended characterization
of the common Softgoal concept is proposed for representing and reason-
ing about such requirements during the early stages of the requirements
engineering process. The types of information often implicitly contained
in a Softgoal instance are highlighted to allow richer requirements to be
obtained. On the basis of the revisited conceptual foundations, guide-
lines are suggested as to the techniques that need to be present in re-
quirements modeling approaches that aim to employ the given Softgoal
conceptualization.

1 Dealing with Software Quality Requirements

Ensuring the quality of software has become a major issue in software engineering
research and practice since the 1970s [5]. As increasingly complex software plays
a critical role in business, comprehensive and precise methods and tools are
needed to create software products and services that are safe, dependable, and
efficient [26].

Software quality is defined by the International Organization for Standard-
ization [12] as the totality of features and characteristics of a software product
that bear on its ability to satisfy stated or implied needs. Ensuring the quality
of software therefore amounts to making sure that software behavior is in line
with stated and implied needs.

It is widely acknowledged that quality needs to be taken into account early
in the software development process [8,30,19]. Quality requires specifying stated
and implied needs. Approaches focusing on ensuring quality during the devel-
opment process by guiding functional requirements specification decisions by
quality considerations, so that the latter justify the former, are termed process-
oriented. In contrast, product-oriented approaches (e.g., [11,13]) evaluate the
quality of already developed software products, and are particularly relevant
for, e.g., component selection [2].

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 281–295, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

282 I.J. Jureta, S. Faulkner, and P.-Y. Schobbens

Although a large body of work deals with quality assurance in a process-
oriented manner, a non-negligible part of it relies on the usual Softgoal concept
for the representation and reasoning about quality-related requirements. In doing
so, procedural aspects of methods for dealing with quality during requirements
engineering (RE) activities have been considerably developed, while conceptual
foundations have not evolved in a notable manner. In particular, a more extensive
view on the conceptualization and formalisms for representing and using quality
requirements while taking into account their multi-facetted nature has not been
proposed yet. We need to deal with requirements that are not only implicit, but
also subjective, context-specific, imprecise, and ordered by preference.

The work presented in this paper is a step towards a more profound under-
standing of requirements that are expressed usually in requirements goal di-
agrams (such as, e.g., i* [32]) as instances of the Softgoal concept. Overall,
instances of the original Softgoal concept are seen as frequently containing infor-
mation that is, not only subjective and context-specific (as assumed in the orig-
inal definition), but also imprecise and involving preferences of the stakeholder
who suggested the requirements modeled as the given softgoal. It is therefore
suggested that the Softgoal is a multi-facetted concept that requires specialized
techniques for dealing with its additional facets. This paper thus proves use-
ful both in terms of advancing the understanding of a key concept in the RE
modeling field, and in arguing that additional considerations need be taken into
account when a RE method or framework that employs the Softgoal concept is
being constructed and applied. Finally, the reader will undoubtedly notice that
the discussion below is independent of a particular RE framework, which sup-
ports our arguments regarding the applicability of this discussion to many (at
least goal-oriented) RE methods.

The paper is organized as follows. Part of the literature on the treatment of
quality requirements, applicable to the discussion in this paper is first overviewed.
The bulk of the paper, which discusses and revisits the original Softgoal conceptu-
alization is then presented. A set of general guidelines on the characteristics of RE
methods aiming to employ the suggested conceptualization are presented. Finally,
conclusions are summarized and directions for future work are identified.

2 Related Work

To facilitate the discussion of related work, Table 1 gives a classification of
process-oriented approaches. Formal approaches rely on formal notations such
as temporal or fuzzy logic to specify nonfunctional requirements in a precise way,
while semi-formal provide structured notations (unrelated to mathematical logic)
that are used mainly to organize information about nonfunctional requirements.
Qualitative approaches traditionally evaluate the degree of quality requirements
satisfaction using subjective qualitative characterizations. In contrast, quantita-
tive techniques focus on estimating the probability of failure of quality-related
goals [19], or use informal measures of the degree to which software proper-
ties contribute to specific qualities [1]. Decision on placing some approaches in

A More Expressive Softgoal Conceptualization 283

qualitative or quantitative category is based on the methods described in the
cited papers; e.g., adapting a qualitative approach to use quantitative methods
remains possible, but is not discussed in the literature.

Table 1. A classification of process-oriented approaches proposed in related work for
ensuring quality during the software development process

Qualitative Quantitative

Formal [18,20,31] [19,23]

Informal [8,22,27,17] [9,1]

The NFR framework [22,8] has been the first to propose the concept of Soft-
goal in the RE context (the original concept that is specialized for RE in NFR
has a longer history—e.g., [28]) and a process for dealing with nonfunctional
requirements. In NFR, Softgoals describe quality requirements in very abstract
terms. They are related with contribution links to support qualitative reason-
ing about the degree to which alternative software properties satisfy the desired
qualities. Their intuitiveness and ease of use have led to their integration in
goal-oriented RE (GORE) frameworks: i* [32], Tropos [6], GRL [21], and REF
[11]. However, the Softgoal concept remains informally defined and used. Many
GORE frameworks that have adopted NFR suffer from the same symptoms, as
few extend the NFR Softgoal conceptualization. [9] adds a probabilistic layer to
study the impact of requirements change on quality satisfaction. Others [1] use
multi-criteria decision techniques to select among alternative software architec-
tures.

Formal approaches have been proposed to provide systematic support when
semi-formal techniques are considered inadequate. Instead of Softgoals, [19] is
focused on software goals that are precise, but cannot be completely achieved by
the software (i.e., they are idealistic). Quality variables are associated with all
goals that can only be partially satisfied and objective functions are defined over
these variables to indicate ideal software behavior. Quality variables seem to be
metrics that measure performance of the behavior specified by the goal to which
the variables are associated. Based on a sample of software operation, probabil-
ities of satisfying a goal can be estimated—these probability values indicate the
degree to which the goal is satisfied. Imprecise requirements are treated with
fuzzy logic in [18,20,31,23]. While fuzzy logic may be an interesting approach
for formalizing imprecise requirements, it has been discussed mostly in isolation
from typical RE activities, although it is not obvious how such formalisms can
be integrated within existing, more extensive frameworks.

Discussion. Expressive formalisms such as fuzzy logic have unfortunately been
discussed somewhat separately from confirmed GORE methodologies and frame-
works, making the us of the techniques proposed in [18,20,31,23] impractical and
difficult. The informed reader will also note that fuzzy logic is merely one among

284 I.J. Jureta, S. Faulkner, and P.-Y. Schobbens

many approaches to imprecision. While quality requirements are indeed impre-
cise, they do have other characteristics that need to be accounted for during
representation and reasoning. Partial satisfaction, extensively discussed in [19]
is relevant, but is discussed with focus on precise goals. It should also be noted
that the NFR approach and other RE frameworks using the Softgoal concept
fail to address situations in which systematic and formal treatment is required,
even though the growing criticality of software increases the need for rigor.

The research presented in the remainder of this paper starts from a hypoth-
esis that the informally defined Softgoal concept, extensively used in NFR, can
be more valuable if its facets: subjectivity, context-specificity, idealism, impre-
ciseness, and preference are characterized explicitly. Such a characterization will
allow both a systematic treatment of the stated facets, and a closer integration
of the proposed Softgoal analysis approach and later RE activities, such as func-
tional goal specification. In this respect, the proposed conceptualization draw
on the extensive body of related work to provide a more integrative view on the
representation and manipulation of software quality information.

3 The Softgoal Concept Revisited

Softgoals provided by the stakeholders at the outset of the RE process, such
as “the software should be fast”, can be characterized as imprecise, subjective,
context-specific, and ideal. Imprecision stems essentially from the inability to
specify what “fast” mean, so that they could be measured. Subjectivity results
from the fact that two people can evaluate the same software as being fast to
a different extent. Context-specificity further entails that “fast”, or “usable”,
“maintainable”, “adaptable” (standard qualities of software [8]) will have a dif-
ferent meaning for each project. Finally, implicit preference information is hid-
den behind terms such as “fast software”: various measures can be taken, but
low values will be preferred. All of the above characteristics need to be taken
into account to deal systematically with quality requirements. To use the Soft-
goal concept to represent and reason about such requirements, it is necessary
to make its traditional definition more expressive and precise. The choice of the
Softgoal concept is based on the illustrated usefulness of the underlying goal con-
cept in RE activities, such as elicitation, elaboration, structuring, specification,
analysis, negotiation, documentation, and modification of requirements [29].

3.1 Functional and Nonfunctional Goals vs. Hardgoals and Softgoals

A goal can be broadly defined as a constraint on software behavior that is de-
sired by stakeholders involved in the software development project (e.g., [10]).
Among the many proposed goal taxonomies (for an overview, see [30]), two are
particularly relevant for quality requirements modeling. Functional goals have
been used to represent services that the software is expected to deliver (i.e.,
what the software does), whereas nonfunctional goals refer to quality require-
ments that the software needs to satisfy while delivering the services (i.e., how

A More Expressive Softgoal Conceptualization 285

the software provides services; e.g., securely, safely, rapidly, etc.). While it is
common to equate nonfunctional goals and softgoals (e.g., [22]), it is suggested
that softgoals belong to another taxonomy, in which they are opposed to hard-
goals [30]. Although softgoal satisfaction cannot be established in a clear-cut
sense [22], the satisfaction of a hardgoal is objective in that it can be established
using (formal) verification techniques [10]. Consequently, there are: (i) functional
hardgoals, which are objective goals about services that software needs to deliver
(e.g., “whenever an e-mail marked as important arrives, the user is informed with
a pop-up window and a sound”); (ii) nonfunctional hardgoals which describe ob-
jective criteria for how the services are to be delivered (e.g., “the user should be
informed about important e-mail arrival within 1sec”); (iii) functional softgoals
describe imprecisely stated software services (e.g., “the user should be informed
when an e-mail marked as important arrives”); and finally, (iv) nonfunctional
softgoals characterize imprecise statements for how a service is to be delivered
(e.g., “the user should be informed rapidly about the arrival of an e-mail marked
as important”). It is likely that statements about the needs that the software is
to satisfy will be closer to nonfunctional softgoals than to functional hardgoals
at the outset of the RE phase of software development. Notice that there is a
large gap in precision between nonfunctional softgoals and functional hardgoals
example: the former says nothing on how the user is to be informed, while the
latter gives a specific context (the e-mail reader software) and process (e-mail
arrives, pop-up is displayed, and a sound is played). Having clarified the informal
meaning of Softgoal in relation to goal types, we proceed to its characterization.

3.2 Characterizing Softgoals

The traditional view of softgoals [21] focuses essentially on the subjectivity facet:

“A softgoal is similar to a (hard) goal except that the criteria for whether
a softgoal is achieved are not clear-cut and a priori.”

A definition proposed in the REF framework [11] adds details:

“For a soft goal [...] it is up to the goal originator [i.e., the agent wishing
goal achievement], or to an agreement between the involved agents, to
decide when the goal is considered to have been achieved [...]. In com-
parison to hard goals, soft goals can be highly subjective and strictly
related to a particular context; they enable the analysts to highlight
quality issues (e.g., the concept of a ’fast computer’) from the outset,
making explicit the semantics assigned to them by the stakeholders.”

Softgoals therefore involve subjectivity because of a lack of objective achievement
criteria, and the responsibility for evaluating their achievement falls on stake-
holders. Notice that it is imprecise to say that quality considerations can mainly
be modeled with softgoals, since quality refers to software behavior that can
be both objectively and subjectively evaluated. However, there is more to qual-
ity requirements than the current softgoal conceptualization allows representing

286 I.J. Jureta, S. Faulkner, and P.-Y. Schobbens

and reasoning about. Consider a simple example of a quality requirement often
encountered in practice: “the software should be fast”. By examining the stated
and implied information contained in this statement, a notation can be proposed
to model the various softgoal facets.

Subjectivity. Since many stakeholders (i.e., parties being influenced by, or having
an influence on the development project) are likely to be involved in the RE
phase of software development, the specificity of each these parties’ views on the
software, the development process, and the environment in which the software
will operate needs to be accounted for. The usefulness of separating stakeholders’
concerns and the use of adapted, different notations is now widely accepted. Such
multi-perspective requirements require techniques for making individual views
consistent either by reconciling requirements specifications written in different
specification languages (e.g., [25]), or written different styles, terminology, etc.
(e.g., [14]). The resulting heterogeneous representations need to be integrated to
ensure consistency [29], coordination and composition [24].

We argue that subjectivity in softgoals can be accounted for in a relatively
straightforward manner by annotating the softgoal with an identifier of its stake-
holder and the suggestion time. Then each stakeholder can refine his requirement
(by answering, e.g.: “When is this software fast for you?”) independently.

Softgoal: E-Mail reader should be fast.
Added on: 08Nov2005
Stakeholder: Mr. J. Smith
Refined into: An e-mail reader is fast if it opens quickly and creates

new e-mail messages quickly.
If a similar softgoal is stated, our approach will see it as different:

Softgoal: E-Mail reader should be fast.
Added on: 08Nov2005
Stakeholder: Mr. J. Smith
Refined into: An e-mail reader is fast if it opens quickly and creates

new e-mail messages quickly.

Context-Specificity. At an abstract level, information about the context to which
the quality requirement refers can be specific to: the software, the software devel-
opment process, and the environment in which the software will operate (which
can be the hardware environment, the human environment, etc.). For example,
“development cost should be low” is a softgoal related to the software develop-
ment process, whereas “the throughput should be high on the production line”
is specific to the human environment in which the software will operate. The
combination of the software and environment compose the information system
(IS) [34]. To specify the context of a softgoal, an attribute applies to (with soft-
ware, environment, process as allowed values) is added to the softgoal template:

Softgoal: E-Mail reader should be fast.
Added on: 08Nov2005
Stakeholder: Mr. J. Smith
Refined into: An e-mail reader is fast if it opens quickly and creates

A More Expressive Softgoal Conceptualization 287

new e-mail messages quickly.
Applies To: Software

Idealism and Preferences. Quality requirements are often not clear-cut. It is thus
beneficial to measure the degree to which a quality requirement, modeled as a
softgoal, is satisfied. Metrics, called quality variables in [19], can be designed
based on refined requirements. Consider the earlier Mr. J. Smith’s Softgoal. It
can be refined into two Softgoals, each having a quality variable and an objective
function.

Softgoal: The E-Mail reader should open fast.
...
Preferences:

Objective Functions:
Name Def Type Modal Target Threshold Current

3SecOpen P(TimeToOpen < 3sec) Prob Max 80% 70% unknown

Quality Variables:
TimeToOpen: Duration
Sample space: distribution of old e-mails, size of old e-mails,...
Definition: time between the input of the request to open the software
and the moment the software functionalities can be used.

Softgoal: It should be possible to create new e-mail messages quickly.
...
Preferences:

Objective Functions:
Name Def Type Modal Target Threshold Current

2SecCreate E(TeToCrMail) < 2sec Durat Min 1Sec 2Sec unknown

Quality Variables:
TimeToCrMail: Duration
Sample space: number of options available when writing an e-mail,...
Definition: time between the input of the request to create a new e-mail
message and the moment its content can be written.

Quality variables are random variables whose distribution can be estimated us-
ing data collected by experimentation. Sample spaces can be, e.g., related to
similar functionality in existing software. The estimated probability distribution
functions are then used to estimate the probability of satisfying the softgoal to
some desired level and questions such as, e.g., “What is the probability for the
software to open in less than 2 seconds?” or “Under what time will the software
open in 90% of cases?” can be answered. Objective functions are associated with
quantifiable quality variables, and target levels of performance for each variable
are specified. A modal (i.e., max or min) is also added to indicate the preferred
direction. Because not all objective functions are stated in terms of probabili-
ties (i.e., there are objective functions defined over quality variables), the tables
used in [19] to specify objective functions are extended here with a type column,

288 I.J. Jureta, S. Faulkner, and P.-Y. Schobbens

to give an indication on the type of variable used in the objective function. In
addition, a threshold column is added to further distinguish acceptable from
unacceptable degree of softgoal satisfaction.

Quality variables combined with objective functions as in [19] allow the degree
of softgoal satisfaction to be measured in cases in which the degree of satisfaction
is not under stakeholders’ complete control (i.e., there is a probabilistic compo-
nent in the events affecting softgoal satisfaction). While this is often the case,
the RE phase will also involve preferences that can be perceived as deterministic.
Assume that a stakeholder provides the following view of a softgoal:

Softgoal: Software should not take too much hardware resources.
...
Stakeholder’s view: An e-mail reader will take little hardware resources if it does not

occupy memory when not running (i.e., it does not run “in the background”).

The stakeholder expresses preference in the quality requirement modeled with
the above softgoal. Traditional economics preferences conceptualization (e.g.,
[16]) can be used to make the preference information from the stakeholders’
view explicit. Implicitly, a statement of preference provides partial information
about alternatives that are to be ordered using preference relations. We use the
classical preference formalism to indicate strict, partial or indifference prefer-
ence. Using this simple formalism, we can write:

Softgoal: Software should not take too much hardware resources.
...
Preferences:

Choice Preferences:
(run software when requested)�(software runs in background)

Modeling preferences using objective functions can refine the preference formal-
ization given above. For example, “software should not take too much hardware
resources” indicates that the degree of hardware resources used by the software
would ideally be measured to determine the degree to which alternative software
structures would satisfy the softgoal. Consequently, the above partial softgoal
specification can be improved by adding a quality variable that can be used
to quantify the “too much” term. Notice that the choice between alternatives
specified in choice preferences influences the value of quality variables.

Imprecision. Without an accurate notion of the stated and implied needs, the
degree of quality satisfaction by software cannot be measured and software prop-
erties that could satisfy quality requirements cannot be determined. The use of
fuzzy logic has been suggested to formalize imprecise requirements to allow for
conflicts between them to be studied ([18,20,31,23]) unfortunately outside the
goal-oriented RE field. A key limitation of this approach (see, [19] for a discus-
sion) is that the degree of imprecise requirements satisfaction, measured through
a “satisfaction function” that maps software behavior to a degree (comprised be-
tween 0 and 1) to which it satisfies a fuzzy (in the sense of [33]) requirement
is measure-independent. There are no specific metrics involved, and it is not

A More Expressive Softgoal Conceptualization 289

obvious how the measurement could be made objective, as in [19]. It would
be beneficial if objective metrics and fuzzy logic notation can be combined to
express formally the information given in the softgoal template.

Imprecision is dealt with here in a procedural approach, consisting of progres-
sively increasing the precision of initially imprecise information contained in a
softgoal template. This is achieved through the application of a set of transforma-
tions that manipulate specialized formalisms defined to characterize the above
discussed facets of quality requirements modeled as softgoals. The formalisms
are necessary to assist stakeholders in representing and reasoning about quality
requirements in a systematic manner. A softgoal formalization, based on the
discussions above is as follows.

Formal Characterization of Softgoal. We make explicit the facets of softgoals
described above by modeling a softgoal S as a tuple:

S = 〈n, t, St, v, c, P 〉 (1)

where n is the softgoal identifier, t is the time of softgoal statement, St is
the set of stakeholders that agree on the softgoal, v is the view of the soft-
goal shared by members of St, c is the context of the softgoal where c ∈
software, process, environment), and P is the preference information associ-
ated with the softgoal, including utility. The utilities are evaluated over a set
of alternatives for softgoal operationalization (call this set B), each including a
combination of the software, environment, and development process. The soft-
goals are then aggregated to produce the global utility, corresponding to the top
softgoal of the project.

The preference information in a softgoal can be represented with a tuple P :

P : Obj × Mod × T × Thr × Curr × U (2)

where Obj is the objective function, Mod is the modality Min, Max of the ob-
jective function, T its target value, Thr its threshold value, Curr the quality
variable value of the existing alternative, U indicates whether the objective func-
tion can be considered as a local utility (see the classical utility theory [15]). The
definition of the objective will often make use of auxiliary quality variables. They
are defined by an expression, the metric function that (implicitly) depends on
the alternative b ∈ B. An objective function is thus a metric function with an
associated modality: mod(m(b)), where mod ∈ Mod. The modality indicates in
which direction the metric function will influence the global utility.

The notation defined above allows the requirements engineer to compare al-
ternatives by:

1. Defining an order among alternatives, as a first approximation.
2. State quality variables Qv to quantitatively compare alternative behaviors,

as in [19] but not limited to random variables.
3. Defining metric functions m(b) to associate alternatives bi to metric values.
4. Combining metric functions m(b) with modalities mod to construct objective

functions mod(m(b)) ∈ Obj which indicate preferred metric values T .

290 I.J. Jureta, S. Faulkner, and P.-Y. Schobbens

5. Refining metrics to local utilities, and aggregating them to obtain the global
utility. Tradeoffs between degrees of satisfaction can be evaluated using the
marginal rate of substitution (MRS), a concept taken from economics (e.g.,
[15]) which, in the terminology used here, indicates the maximal amount of
a metric value that a stakeholder is willing to sacrifice for a unit increase
in value of another metric. Techniques described in [31] can be reused here,
although with caveats noted earlier.

6. Using linguistic facilities as in fuzzy logic: a value above threshold will be
deemed acceptable, above target good.

The formalisms themselves do not eliminate imprecision, but point to informa-
tion to look for and a way to organize it in order to reduce imprecision.

Imprecision can further be reduced by using logic to formalize the informa-
tion about alternative behaviors contained in the softgoal. This allows closer
integration with later steps of software development.

3.3 Formally Specifying Softgoals

To this point, the traditional softgoal concept has been enriched with templates
that allow the expression of subjective, idealist, and context-specific facets of
quality requirements information. Imprecision has been indicated, and treated
with a simple formal model of the enriched softgoal concept. The model, while
summarizing softgoal information in a precise way, does not alleviate imprecision.
However, sources of imprecision have become clearer: the fuzzy set of behaviors
and time-dependency of preferences which is derived from the fuzziness of the set
of behaviors (i.e., preferences change because stakeholders learn about previously
unknown behaviors during the development process). Both can receive further
treatment: the former through formalization of behaviors, and the latter, through
the transformation activities, presented in Sect. 4.

While behavior can be represented in various ways, the goal concept, discussed
earlier, proves invaluable in the RE phase (e.g., [10,19,29]). It allows more free-
dom in the specifications, than, e.g., pre/post condition specification of state
transitions used in [18,20,31]. As precise representation of behavior is needed,
and since behavior represents what software or stakeholders do, functional goals
(see, [30]) are used as a concept to model behavior. To remain general, the choice
of formal acquisition language for functional goal specification is left to the re-
quirements engineer. It is suggested that temporal logic be used for expressivity
reasons. Softgoal formalization then consists of writing formal specification of
behaviors b ∈ B using the chosen acquisition language.

Return to the “software should not take too much hardware resources” soft-
goal in the previous subsection. Two behaviors appear in its choice preferences
attribute. Using the KAOS framework (where a goal is defined as a constraint
on behavior [10]), the two behaviors can be specified as KAOS goals (i.e., precise
functional goals):

Goal: Maintain [SoftwRunsInBackgr]
Definition: The e-mail reader runs constantly.
Formal Def: os : OperatSyst;mr : MailReader;os.status = on ⇒ mr.status = on

A More Expressive Softgoal Conceptualization 291

Goal: Achieve [RunSoftwWhenRequest]
Definition: When the os receives a request to start the mail reader, the mail reader

should start running.
Formal Def: os.status = on ∧ mr.status = off ∧ os.start = mr ⇒ mr.status = on

The above formalization is reflected in the softgoal template by adding a keyword
becomes after the imprecise preference relation and rewriting that information
using the identifiers for specified behaviors. The imprecise formulation is main-
tained for traceability reasons.

...
Preferences:

Choice Preferences:
(run software when requested)�(software runs in background)
becomes Achieve [RunSoftwWhenRequest] � Maintain [SoftwRunsInBackgr]

In the NFR framework [22,8] terminology, the above would be represented with
a softgoal, two goals, and a contribution link between each of the goals and the
softgoal. The preference relation can be translated into a positive and a nega-
tive contribution. However, NFR is less expressive, since metrics and most other
facets of the softgoal concept presented above are missing.

4 General Guidelines for RE Frameworks

On the basis of the revisited conceptual foundations, guidelines can be sug-
gested as to the transformations that can be applied to softgoals and that need
to be present in requirements modeling approaches that aim to employ the given
Softgoal conceptualization. Any such transformation activities need to be con-
structed so that they can deal with all of the four Softgoal facets identified
above. Ideally, the transformations would allow initially imprecise, subjective,
context-specific, and idealistic softgoals to be transformed into a consistent set
of hardgoals (e.g., similar to those of the KAOS acquisition language [10]). We ar-
gue that two classes of transformation activities are useful—one for dealing with
individual softgoals, and another for transforming several softgoals together.

Single-Softgoal Transformations are aimed at arriving, for each softgoal, at a
template in which the initially vague statement of need is made more precise,
subjectivity is made explicit, objective metrics are found, and alternative behav-
iors influencing the degree of softgoal satisfaction are informally identified:

– (T1) Build an initial softgoal template. To discover softgoals, the require-
ments engineer will ask questions about what and how the software and the
wider context should do, according to each stakeholder. The what and how
questions are likely to result in informal and imprecise statements of needs
that may be both related to behaviors (i.e., functional aspects) of the con-
text, and how the behaviors need to be exhibited (i.e., nonfunctional aspects;
e.g., rapidly, safely, securely, etc.). Consequently, the requirements engineer
will need to fill in softgoal templates in a rather sketchy manner at first. As
a result of T1, the template needs to contain information about the name of

292 I.J. Jureta, S. Faulkner, and P.-Y. Schobbens

the softgoal (n), statement time (t), stakeholder identifier (St), stakeholder’s
view (v), and the context relevant to the softgoal (c).

– (T2) Identify alternative behaviors that are likely to influence softgoal satis-
faction. The what and how questions will also lead stakeholders to indicate
alternative behaviors whose execution will satisfy to a varying degree the
softgoal. The set of identified alternative behaviors for a softgoal j (Bj) can
be enlarged by looking at similar existing contexts (and observing, e.g., lim-
itations, errors, etc.), seeking expert opinion on the specific problems, etc.

– (T3) De-idealize the softgoal. Stakeholders may express views which qualify
or quantify behaviors in ideal ways (e.g., development cost should be lower
than X—where X is simply impossible to achieve). De-idealization can be
realized by further discussing alternative target values and/or behaviors, or
by taking into account benchmarks, which would provide evidence on the
idealistic nature of stated needs.

– (T4-A) Construct objective measurements of softgoal satisfaction. The aim
is to find a set of quality variables (Qv), for the softgoal j. For each quality
variable qjk, there should be a metric function (mjr(bi)) to which a modal
modjr is associated to form an objective function (modjr(mjr(bi))). A target
value (tjr) should be defined for the objective function. Quality variables can
be derived from information contained in the stakeholders’ view (as in the
example in Sect. 3.2), in the parent softgoal (see transformation T7), and/or
can be based on company-/industry-specific benchmarks. Metric functions
can come from knowledge about the events generated by behaviors that are
to be measured, from company-/industry-specific standards, and/or behav-
ior categories (i.e., KAOS goal categories [19]). Benchmarks are an invaluable
source of target values.

– (T4-B) Establish preference relations over alternative behaviors. Based on
subjective indications of the stakeholder that has provided the information
for softgoal j, alternative behaviors found by application of T2 can be re-
lated with preference relations. Preferences can also be established based on
objective measurements, when, e.g., the current value for a metric is closer
to the target value for a behavior over some other behavior. Notice that
preference relations can be objectively constructed only when actual mea-
surements exist (based, e.g., on similar systems) so that current values of
quality variables under different behaviors can be observed.

The above transformations are likely to be given as a toolset to the requirements
engineer. The order of application will probably be T1 to T4 initially, but iter-
ations should not come as a surprise, especially when additional behaviors are
suggested by the stakeholder or due to preference variability over time.

Many-Softgoal Transformations are aimed at establishing relationships between
two or more softgoals, to indicate inter-softgoal contribution and refinement.
Contribution and refinement are based on widely accepted conceptualizations
of such relationships initially given in the NFR framework [22,8], while relying
here on a formal model for argumentation of contribution and refinement choices,
which itself employs the formal softgoal model proposed above.

A More Expressive Softgoal Conceptualization 293

– (T5) Negotiate to avoid conflict. Contribution between softgoals indicates
the degree to which a softgoal supports or obstructs the satisfaction of
another softgoal. Contribution is interesting mainly when negative, or con-
flicting contribution exists between softgoals. Conflict between softgoals may
appear in the form of inconsistencies resulting from different terminology
(due to subjectivity and imprecision), conflicting preferences, and/or dif-
ferent target values of objective functions. Because of imprecision, the re-
quirements engineer will not be able him/herself to resolve conflicts. Instead,
negotiation can be used to lead stakeholders to common understanding, con-
sensus, and closer terminology.

– (T6) Argument modeling decisions. Argumentation during negotiation can
be recorded using a logical model of argument (for an overview of the research
specific to logical models of argument, see [7]). Rigor in recording argumen-
tation during the early phases is relevant not only for traceability reasons,
but also because it confronts stakeholders to discuss quality requirements (al-
lowing the requirements engineer to potentially find more information about
preferences and alternative behaviors)..

– (T7) Merge softgoals. Negotiation will ideally lead stakeholders to a shared
terminology and an agreement on quality requirements that have been ini-
tially perceived differently. Merging two or more softgoals consists of select-
ing a subset of preference information available in all softgoals to merge,
while using a shared softgoal name, view, context, etc. Objective functions
from merged softgoals can be aggregated, provided that quality variables
they refer to be converted into compatible types.

– (T8) Refine a softgoal. A softgoal is refined if there are sub-softgoals whose
joint partial satisfaction is considered equivalent to partially satisfying the
refined softgoal. In practical terms, refinement can consist of, e.g., decom-
posing a softgoal according to some taxonomy (see, e.g., [3] for a privacy and
[22] for an accuracy and a performance requirements taxonomies) into sub-
softgoals, or making the softgoal more specific through each sub-softgoal.
For example, “software should be fast” can be refined into a set of softgoals,
e.g., “operation A should be fast”,..., “operation Z should be fast”.

The result of these transformations can be considered as completed when all of
the following conditions hold: (i) a set of behaviors is associated with each leaf
softgoal; (ii) there are no conflicting softgoals; (iii) all disagreements on softgoals
have been resolved through negotiation; (iv) the set of softgoals is considered
sufficiently complete by the stakeholders.

5 Conclusions and Future Work

The aim of the work presented in this paper is primarily a more profound under-
standing of the Softgoal concept that is commonly used to model requirements
in the early stages of requirements engineering. It has been argued that there
is more to the information commonly represented using Softgoal instances, than
currently established Softgoal definitions seem to indicate. In particular, four

294 I.J. Jureta, S. Faulkner, and P.-Y. Schobbens

facets of the Softgoal concept are identified—namely: imprecision, subjectivity,
context-specificity, and idealism (which involves implicit preference orderings of
the stakeholders who state the information represented using Softgoal instances).
A tentative formalism for this extended Softgoal conceptualization is suggested,
to summarize the information that we argue the requirements engineer can and
should attempt to extract from a Softgoal instance (or, in relation to it). It
is also illustrated how richer requirements can be obtained when the extended
conceptualization is taken into account.

Although a rather simple example has been employed to illustrate the facets
we consider relevant, we believe that a powerful insight comes from this paper: a
more elaborate treatment of imprecise, subjective, context-specific, and idealistic
requirements, usual at the outset of a RE project, can be realized if a commonly
used Softgoal concept is extended. Ultimately, this is likely to lead to richer
requirements specifications and more stakeholders who are satisfied with the
performance of the systems built for them.

Important directions for future work include extending the Softgoal concept
further, by possibly identifying additional facets. The formalism needs to be op-
erationalized within already common specification languages. Additional trans-
formation techniques, more effectively exploiting the extended conceptualization
remain to be explored.

References

1. Al-Naeem, T., Gorton, I., Ali Babar, M., Rabhi, F., Benatallah, B.: A Quality-
Driven Systematic Approach for Architecting Distributed Software Applications.
Proc. Int. Conf. Softw. Eng. (2005) 244–253.

2. Alves, C., French, X., Carvallo, J.P., Finkelstein, A.: Using Goals and Quality
Models to Support the Matching Analysis During COTS Selection. In French, X.,
Port, D.: Proc. Int. Conf. on COTS-Based Software System (2005) 146–156.

3. Anton, A., Earp, J., Reese, A.: Analyzing Website Privacy Requirements Using a
Privacy Goal Taxonomy. Proc. IEEE Int. Conf. Req. Eng. (2002) 23–31.

4. Avesani, P., Bazzanella, C., Perini, A., Susi, A.: Facing Scalability Issues in Re-
quirements Prioritization with Machine Learning Techniques. Proc. IEEE Int.
Conf. Req. Eng. (2005) 297–305.

5. Boehm, B.W., Brown, J.W., Kaspar, H., Lipow, M., MacLeod, G.J., Merritt, M.J.:
Characteristics of Software Quality. North-Holland, Amsterdam (1978).

6. Castro, J., Kolp, M., and Mylopoulos, J.: Towards requirements-driven information
systems engineering: the Tropos project. Info. Syst. 27, 6 (2002) 365–389.

7. Chesnevar, C.I., Maguitman, A.G., Loui R.P.: Logical Models of Argument. ACM
Comput. Surv. 32, 4 (2000) 337-383.

8. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Kluwer Publishing (2000).

9. Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhanskaya, E., Christina, S.:
Goal-Centric Traceability for Managing Non-Functional Requirements. Proc. Int.
Conf. Softw. Eng. (2005).

10. Dardenne, A., van Lamsweerde, A., Fickas S.: Goal-directed requirements acquisi-
tion. Sci. of Comput. Prog. 20 (1993) 3–50.

A More Expressive Softgoal Conceptualization 295

11. Donzelli, P.: A goal-driven and agent-based requirements engineering framework.
Req. Eng. 9 (2004) 16–39.

12. ISO: Int. Standard ISO 8402. Quality – Vocabulary. Int. Org. for Standardization,
Geneva (1986) (and later).

13. Issarny, V., Bidan, C., Saridakis, T.: Achieving Middleware Customization in a
Configuration-based Development Environment: Experience with the Aster Proto-
type. Proc. Int. Conf. Config. Distrib. Syst. (1998) 207–214

14. Jackson, D.: Structuring Z Specifications with Views. ACM Trans. Softw. Eng.
Method. 4, 4 (1995) 365–389.

15. Keeney, R.L., Raiffa, H.: Decisions with multiple objectives: preferences and value
tradeoffs. Wiley, New York (1976).

16. Kreps, D.: Notes on the Theory of Choice. Westview Press, Boulder (1988).
17. Landes, D., Studer, R.: The Treatment of Non-Functional Requirements in MIKE.

Proc. Europ. Softw. Eng. Conf. (1995).
18. Lee, J., Kuo, J-Y.: New Approach to Requirements Trade-Off Analysis for Complex

Systems. IEEE Trans. Knowl. Data Eng. 10, 4 (1998) 551–562.
19. Letier, E., van Lamsweerde, A.: Reasoning about Partial Goal Satisfaction for

Requirements and Design Engineering. Proc. ACM SIGSOFT Symp. Found. of
Softw. Eng. (2004) 53–62.

20. Liu, X.F., Yen, J.: An Analytic Framework for Specifying and Analyzing Imprecise
Requirements. Proc. Int. Conf. Softw. Eng. (1996) 60–69.

21. Liu, L., and Yu, E. Designing information systems in social context: a goal and
scenario modeling approach. Info. Syst. 29 (2004) 187–203.

22. Mylopoulos, J., Chung, L., Nixon, B.: Representing and Using Nonfunctional Re-
quirements: A Process-Oriented Approach. IEEE Trans. Softw. Eng. 18, 6 (1992).

23. Noppen, J., van der Broek, P., Aksit, M.: Dealing with Imprecise Quality Factors
in Software Design. Proc. Worksh. Softw. Qual., (2005) 1–6.

24. Nuseibeh, B., Finkelstein, A., Kramer, J.: Fine-Grain Process Modelling. Proc. Int.
Worksh. Softw. Spec. Des. (Dec.1993) 42–46.

25. Nuseibeh, B., Kramer, J., Finkelstein, A.: A Framework for Expressing the Re-
lationships Between Multiple Views in Requirements Specifications. IEEE Trans.
Softw. Eng. 20, 10 (1994) 760–773.

26. Osterweil, L.: Strategic Directions in Software Quality. ACM Comput. Surv. 28, 4
(1996) 738–750.

27. Rosa, N.S., Justo, G.R.R., Cunha, P.R.F.: A Framework for Building Non-
Functional Software Architectures. Proc. ACM Symp. Appl. Comput. (2001).

28. Simon, A. H.: The Sciences of the Artificial. 2nd Ed. MIT Press, 1981.
29. van Lamsweerde, A.: Divergent Views in Goal-Driven Requirements Engineering.

Proc. ACM SIGSOFT Worksh. Viewpoints Softw. Dev. (1996) 252–256.
30. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour.

Proc. IEEE Int. Conf. Req. Eng. (2001) 249–263.
31. Yen, J., Tiao, W.A.: A Systematic Tradeoff Analysis for Conflicting Imprecise

Requirements. Proc. IEEE Int. Conf. Req. Eng. (1997) 87–96.
32. Yu, E.: Modelling Strategic Relationships for Process Reengineering. Ph.D. Thesis,

Univ. of Toronto (1995).
33. Zadeh, L.A.: Fuzzy Sets. Information and Control 8 (1965) 338–353.
34. Zave, P., Jackson, M.: Four Dark Corners of Requirements Engineering. ACM

Trans. Softw. Eng. Meth. 6, 1 (1997) 1–30.

	Dealing with Software Quality Requirements
	Related Work
	The Softgoal Concept Revisited
	Functional and Nonfunctional Goals vs. Hardgoals and Softgoals
	Characterizing Softgoals
	Formally Specifying Softgoals

	General Guidelines for RE Frameworks
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

