
A comprehensive quality model for service-oriented
systems

Ivan J. Jureta Æ Caroline Herssens Æ Stéphane Faulkner

Published online: 10 September 2008
� Springer Science+Business Media, LLC 2008

Abstract In a service-oriented system, a quality (or Quality of Service) model is used (i)

by service requesters to specify the expected quality levels of service delivery; (ii) by service

providers to advertise quality levels that their services achieve; and (iii) by service com-

posers when selecting among alternative services those that are to participate in a service

composition. Expressive quality models are needed to let requesters specify quality

expectations, providers advertise service qualities, and composers finely compare alterna-

tive services. Having observed many similarities between various quality models proposed

in the literature, we review these and integrate them into a single quality model, called

QVDP. We highlight the need for integration of priority and dependency information within

any quality model for services and propose precise submodels for doing so. Our intention is

for the proposed model to serve as a reference point for further developments in quality

models for service-oriented systems. To this aim, we extend the part of the UML metamodel

specialized for Quality of Service with QVDP concepts unavailable in UML.

Keywords Service-oriented computing � Quality model � Preferences �
Priorities � UML

1 Introduction

Quality has been variously defined as value, conformance to specifications, conformance to

requirements, fitness for use, loss avoidance, or achieving and/or exceeding customer

I. J. Jureta (&) � S. Faulkner
Information Management Research Unit (IMRU), University of Namur,
8, rempart de la vierge, 5000 Namur, Belgium
e-mail: ivan.jureta@fundp.ac.be

S. Faulkner
e-mail: stephane.faulkner@fundp.ac.be

C. Herssens
Information Systems Research Unit, Université de Louvain, 1, Place des Doyens,
1348 Louvain-La-Neuve, Belgium
e-mail: herssens@isys.ucl.ac.be

123

Software Qual J (2009) 17:65–98
DOI 10.1007/s11219-008-9059-2

expectations (see, e.g., Reeves and Bednar 1994 for a business-oriented overview). Rea-

soned, structured, and systematic action taken to achieve desired quality—i.e., quality
management—has been an active area of enquiry in various fields, most notably business

(e.g., Feigenbaum 1951; Juran 1951; Deming 1982; Ishikawa 1985; Gravin 1988). In

relation to software engineering, the International Organization for Standardization (ISO

1986) and the IEEE (IEEE 1989) define software quality as the totality of features and

characteristics of a software product that bear on its ability to satisfy stated or implied

needs. Ensuring the quality of software has become a major issue in research and practice

since the 1970s (Boehm et al. 1978). As increasingly complex software plays a critical role

in business and other areas of life, it is clear that comprehensive and precise methods and

tools are needed to create and run software that is, among other, safe, dependable, and

efficient (Osterweil 1996). Service-oriented systems (e.g., Papazoglou and Georgakopoulos

2003; McIlraith and Martin 2003) intended for enabling the Semantic Web (Berners-Lee

et al. 2001; Shadbolt et al. 2006) are no exception.

Service-oriented systems are one relevant current response to the increasing complexity

of computing systems and the variability of their operating environments (e.g., Tennenhouse

2000; Kephart and Chess 2003; IBM 2005). A service is a self-describing and self-contained

modular application designed to execute a well-delimited task, and that can be described,

published, located, and invoked over a network (McIlraith and Martin 2003; Papazoglou and

Georgakopoulos 2003). Services are offered by service providers, i.e., organizations that

ensure service implementations, supply service descriptions, and provide related technical

and business support. A service-oriented system (SOS) incorporates service composers. A

service composer receives service requests from human users or other systems, then dis-

covers, selects, and coordinates the execution of services so as to fulfil a given service

request. SOS fit well the Semantic Web, i.e., a next-generation of the World Wide Web on

which services’ properties, capabilities, interfaces, effects, and qualities, and data exchan-

ged between services are described in an unambiguous, machine-understandable form.

Within efforts towards the realization of the Semantic Web, ontologies prove a particularly

relevant means for enabling the sharing, understanding, and automated processing of data

about, and exchanged between, heterogenous services available on the Web. It is now well

established that the aims of automated service discovery, access, composition, and man-

agement cannot be achieved without expressive ontologies (McIlraith et al. 2001; Horrocks

2002; Staab and Studer 2004; Battle et al. 2005).

An ontology is a specification of a conceptualization (Gruber 1993). Among the various

ontologies relevant for a SoS—including those for, e.g., interfaces, capabilities, and

behaviors of services—an ontology to describe quality attributes (such as, e.g., security,

safety, performance) and reason thereon is necessary. A quality (or Quality of Service, i.e.,

QoS) ontology is used (i) in service requests to specify expectations on quality levels to

achieve when fulfilling the request; (ii) by service providers to advertise quality levels that

their services can achieve; and (iii) by service composers to select among alternative

services, those that are to take part in fulfilling the service request. Limited expressivity of

a quality ontology (a) unnecessarily restricts the requester when defining expectations on

service delivery; (b) does not allow a service provider to give a rich description of how its

services perform; and (c) limit the set of criteria over which a service composer compares

alternative services when performing service composition.

Various SOS quality ontologies proposed in the literature integrate concepts and con-

structs intended for the representation of similar aspects of a system’s quality. For instance,

all admit the need for metrics, so that all include constructs for the definition of a metric’s

identifier, unit, observed and desired values, and so on. Such apparent similarities

66 Software Qual J (2009) 17:65–98

123

(reviewed in Sect. 4) led us to conclude that an effort is needed for their comparison and

integration within a comprehensive framework. Knowing that work on SOS quality

ontologies will further evolve, such a framework is intended to (i) integrate the previous

results within a comprehensive and consistent quality model from which the various prior

ontologies can be derived; (ii) assist in future work on SOS quality conceptualization by

facilitating the positioning of new modeling primitives w.r.t. available ones; and (iii) to

make it clear how various proposed ontologies overlap, and thus, what constructs are

agreed upon as necessary when modeling quality. The framework is therefore not an

ontology per se, but a model which integrates various relevant concepts and constructs for

conceptualizing quality in SOS, and which is instantiated when defining ontologies.

The proposed model has two salient characteristics. First, it does not itself define

particular qualities (such as, e.g., availability, reliability, safety, security, adaptability,

maintainability)—instead, it lets the modeler decide what sets of measures that can be

collected over the given SOS are aggregated (and how they are aggregated) to define such

qualities. In this respect, the model is not an attempt at settling the debates on what a

universal definition of, e.g., usability would be. Second, it integrates two submodels that

are novel w.r.t. available quality ontologies—namely, a submodel for specifying priority

between qualities, and a submodel for specifying the dependencies between qualities (i.e.,

how one quality varies when another one varies). Both submodels are particularly

important for managing tradeoffs at runtime: without the former, it is unclear what quality

to optimize when the optimization of some quality harms the degree of satisfaction of

another; without the latter, we do not have an explicit representation of how qualities

interact (i.e., we do not know how some variation of a quality affects the degree of

satisfaction of others).

The proposed quality model has been validated in two realistic application settings. We

have used part of the quality model elsewhere (Jureta et al. 2007a, b) to specify the quality

information in service requests, to characterize the quality of individual services, and to

define quality criteria used when comparing alternative services within a reinforcement

learning algorithm for automated service composition. Herein we present a case study

performed in cooperation with the European Space Agency (ESA). The case study illus-

trates how the proposed model has been used to represent quality information about a

service that ESA makes available to researchers. We describe the case study in detail

below (Sect. 2). The quality model is then presented and exemplified through the case

study (Sect. 3). Source quality models used to define the proposed model are then reviewed

(Sect. 4). Among the related efforts we discuss, we place particular attention on the part of

the Unified Modeling Language specialized for QoS (Object Management Group 2005).

We compare it in detail with our quality model, extend the UML QoS metamodel with

novel primitives, and show how the extended model is used within the case study (Sect. 5).

The paper closes with a discussion of the proposed model (Sect. 6), along with conclusions

and pointers for future work (Sect. 7).

2 Motivation and case study

2.1 Motivation

We have highlighted earlier that expressive quality models are necessary to engineer high-

quality systems. Our principal motive for the present work stems from our observation

(discussed in detail later on Sect. 4) that currently available quality models cannot be used

Software Qual J (2009) 17:65–98 67

123

to describe considerations clearly relevant when representing and reasoning about quality.

Namely, they are of limited use when preferences and priorities are to be written down in a

quality model. In other words, available models have difficulties expressing evidently

relevant quality information. For example, we need to express in a quality model that it is

preferred for the value of a quality metric to be in one given range than in another, whereby

satisfying this preference is less important than maintaining some values for overall

response time. In the said requirement, both preferences and priorities intervene. Moreover,

we may consider this requirement conditionally on the satisfaction of another require-

ment—we therefore require not only a quality model which allows preference and priority

orders to be expressed, but also conditional preferences and priorities. Such considerations

are beyond the expressivity of most available quality models, as we show later on (Sect. 4).

We cannot hope to engineer high quality systems if we cannot accommodate quality-

related requirements that come naturally to engineers and future users.

2.2 Case study

ESA program on Earth observation allows researchers to access and use infrastructure

operated and data collected by the agency. The infrastructure comprises a high perfor-

mance computing cluster, significant storage capacity, and services accessible through the

Web.1 The platform, called ‘‘ESA Grid Processing on-Demand’’ can be used to access data

collected by the Envisat ESA satellite, deployed to measure the atmosphere, ocean, land,

and ice over a five year period. It is also possible for researchers to execute their own

algorithms on the data.2

The case study focuses on the information provided by the MERIS instrument on the

Envisat ESA satellite. MERIS is a programmable, medium-spectral resolution, imaging

spectrometer operating in the solar reflective spectral range. MERIS is used in observing

ocean color and biology, vegetation and atmosphere and in particular clouds and precip-

itation. In relation to MERIS, web services are made available by the ESA for access to the

data the instrument sends and access and use of the associated computing resources.

We are interested in the remainder in the service called ‘‘MERIS MVGI Regional’’, which

provides vegetation indexes for a given region of the globe. A vegetation index measures the

amount of vegetation on the Earth’s surface. MERIS is a particularly relevant for the

acquisiton of such data for it increases precision over comparable instruments. The service

which accesses the MERIS data generates regional maps for specific time periods. A visual

example of what the service provides to the user is given in Fig. 2. Below, we briefly review

the functional requirements that the service satisfies. We then consider quality requirements.

2.2.1 Functional requirements

The service processes MERIS data and extracts the vegetation index. The processing can

be selected for any time range (with the start of the satellite mission as the earliest time

point); an option is available to delimit the region of the world of interest. The graphical

user interface used to access the service is shown in Fig. 1. Figure 2 illustrates the visu-

alization of the output obtained for the Senegal region. The following are the required

inputs of the service: Time range, Bouding box (to select a region of the globe), Dataset,
Publish site, and Projection type.

1 http://gpod.eo.esa.int.
2 http://eopi.esa.int/esa/esa?type=file&ts=1186489893497&table=aotarget&cmd=image&id=1260.

68 Software Qual J (2009) 17:65–98

123

http://gpod.eo.esa.int
http://eopi.esa.int/esa/esa?type=file&ts=1186489893497&table=aotarget&cmd=image&id=1260

2.2.2 Quality requirements

Due to the calculations executed by the service and its parallel use, expected delays and

availability are relevant quality considerations from the user’s perspective. To make this

information available to the users, quality considerations need to be expressed and

measured during the execution of the service. We focus on three such considerations,

Fig. 1 Graphical user interface of the ENVISAT/MERIS MGVI web service

Fig. 2 An illustration of the result provided by the ENVISAT/MERIS MGVI web service

Software Qual J (2009) 17:65–98 69

123

namely availability, reliability, and latency. For now we define them as follows. We then

return to each throughout the paper and illustrate how they are defined using the model

we propose.

• Availability indicates the duration when a component is available for quaries. Its value

in percent is obtained as follows (Ran 2003):

A ¼ upTime

upTimeþ downTime

Historical data on the service’s operation indicate that the values are higher than 94%.

• Reliability is a measure of confidence that the service is free from errors. Its value is

given in percent and calculated as follows:

R ¼ succeededAttempts

succeededAttempts þ failedAttempts

R historically remained above 82%.

• Latency measures the mean time taken by the platform to return the expected result.

The value is given in minutes.

L ¼
Pn

1 networkTimeþ selection=compositionTimeþ executionTime

n

where n is the total number of past executions. Latency should not exceed 6 hours by

day of the selected period but must be superior to 4 hours by day of the selected period.

(This range is certified for a service requestor having network bandwidth of a least

15 mbits/s.)

This basic specification is incomplete. Further explanations are needed. For example,

how different values are obtained is not described in the above informal specification.

A quality model will provide a checklist of relevant information and in this respect

assist the requestor and the provider in evaluating and managing the quality of the

service.

3 Quality model for service-oriented systems

We introduce the quality model which integrates all components of the ontologies com-

pared and reviewed in the subsequent part of the paper (Sect. 4). We call it the Quality-
Value-Dependency-Priority (QVDP) model. The instantiation of its modeling primitives is

illustrated using simple examples mainly for clarity of presentation.

Definition 1 The Quality-Value-Dependency-Priority (QVDP) model QVDP �
hQ;V;D;Pi consists of: the Quality characteristics submodel Q, the Quality Value

submodel V, the Quality Dependency submodel D, and the Quality Priority submodel P.

Overall, the QVDP intergates submodels for different purposes related by shared

modeling primitives. Q integrates the concepts of quality dimension q which is instantiated

to represent measurable properties of a given SOS and quality characteristic �q. A quality

dimension can also be an aggregate of other quality dimensions obtained by applying some

aggregation function. By grouping measurable q into �q, the modeler can define how more

abstract quality aspects of a system (e.g., safety, security, usability, maintainability, etc.)

70 Software Qual J (2009) 17:65–98

123

are conceptualized in a given SOS. A q is characterized using a set of attributes which

contains predefined, commonly used attributes and optional attributes to be defined as

needed by the modeler for a particular SOS or class of SOSs. V is instantiated when

specifying desired values (in service requests or when advertising services) for various

quality dimensions and/or quality dimension aggregates.

While it is established that a quality model should represent the information on

quality characteristics and their measurable quality dimensions, as in Q and V, this

information alone is of limited use in dealing with tradeoffs at runtime. Since it is

unlikely that various quality dimensions can all be satisfied to the desired extent

simultaneously in a given SOS, indications are required on: (i) how various quality

dimensions are interdependent, and (ii) what quality dimensions to optimize within a set

of interdependent and conflicting quality dimensions (this is of relevance when defining

service requests). A quality model is an apparent candidate for including modeling

primitives for providing these indications. To respond to (i), we complement Q and V
with the quality dependency submodel D, which is instantiated to represent that some

value of a quality dimension is accompanied by some value of another q. To address

(ii), we include the quality priority submodel P which is instantiated to define a (partial

or complete) priority ordering over the various quality dimensions. By extending the

basic quality modeling information considered in Q and V with that of D and P, we

enrich the quality information with information relevant for managing tradeoffs at

runtime in a SOS. This is a novelty of the QVDP.

Below, each submodel of QVDP is defined for a particular SOS. We thus speak of, e.g.,

a set of quality dimenions in a submodel instance since the instantiation of the submodel

for a given SOS will necessarily involve the definition of a non-empty set of quality

dimensions. We believe that this facilitates the understanding of what is obtained when

using the QVDP model.

3.1 Quality characteristics submodel (Q)

Definition 2 The Quality Characteristics submodel for a given SOS

Q � fq1; . . .; qng; fa1; . . .; amg; f qh i; f�q1; . . .; �qpg; f �q
� �

; f ðq;�qÞ
D E

consists of:

1. hfq1; . . .; qng; fa1; . . .; amg; f qi which contains a set fq1; . . .; qng of quality dimensions

defined for the given SOS, a set {a1,…,am} of aggregation functions, and a function

f q : Pðfq1; . . .; qngÞ � fa1; . . .; amg �! fq1; . . .; qng which maps a set of quality

dimensions onto a quality dimension obtained by applying the aggregation function a
on the set of quality dimensions. An aggregation procedure a specifies how to

aggregate a set of quality dimensions. (P denotes powerset.)

2. hf�q1; . . .; �qpg; f �qi which contains a set f�q1; . . .; �qpg of quality characteristics for the

given SOS, and a function f �q : Pðf�q1; . . .; �qpgÞ �! f�q1; . . .; �qpg which maps a sets of

quality characteristics onto a quality characteristic which is defined as a group of the

former.

3. A function f ðq;�qÞ : Pðfq1; . . .; qngÞ �! f�q1; . . .; �qpg which maps a set of quality

dimensions onto a quality characteristic. The quality characteristic is defined as the

given set of quality dimensions.

Software Qual J (2009) 17:65–98 71

123

Example 1 Among the quality characteristics of the MERIS MGVI Regional service,

we look into latency. Let Latency be an aggregate quality dimension obtained by

summing the time needed to communicate the service request over the network and to

receive the desired output (measured using NetworkTime), the time required for select

and compose the services needed to fulfil the request (Selection=CompositionTime), and

the time needed to execute the composition (ExecutionTime). Latency is part of the

Performance quality characteristic. The following diagram illustrates how these measures

fit into the terminology of the above Definition 2, and thus in the instance of Q for a

given SOS.

Definition 3 A Quality Dimension q is a collection of the following attributes and

attribute sets:

1. Name gives q a unique identifier. This identifier is the name of the quality dimension;

2. Description is a human-readable description of the quality dimension;

3. Purpose indicates why a given quality dimension is defined;

4. Type identifies the type of the quality dimension according to a taxonomy of variable

types;

5. Unit defines the unit of measurement for q;

6. Aggregate is given for a q that is an aggregate of other quality dimensions. This

attribute indicates the aggregation procedure and the quality dimensions aggregated to

obtain q;

7. MeasurementSource indicates what is measured and how on/in the SOS in order to

associate a value to the given quality dimension;

8. MeasurementTransformation defines the algorithm or formula used to transform the

data obtained by measurement into the value reported for q (e.g., average, moving

average, etc.);

9. fAdditionalAttribute1; . . .;AdditionalAttributeng is the set of n additional attributes

defined by the modeler.

A quality dimension can be seen as a metric used to quantify a quality characteristic

using a certain (transformed) measurement on a property or behavior of a given SOS.

Attributes are used to describe various characteristics of the metric.

Example 2 Latency for the MERIS service is a collection of the following quality

dimensions: NetworkTime, Selection=CompositionTime and ExecutionTime. Let the

dimension NetworkTime be an aggregate of SendTime and ReceiveTime, the former being

the time for the service request to arrive from the requester to the composer, while the latter

is the time for the composition execution output to be sent from the composer to the

requestor. The following can describe NetworkTime:

72 Software Qual J (2009) 17:65–98

123

Name NetworkTime

Description Average time (over 100 same requests) it takes to send and receive
information between a service requestor and a service composer w.r.t.
a given service request

Purpose Used as an indicator when deciding what quantity of network bandwidth
to demand from the bandwidth provider

Type Continuous/Ratio

Unit Millisecond (ms)

Aggregate NetworkTime ¼ f qðfSendTime;ReceiveTimeg;AggregateSumÞ
Measurement Source Measurement sources for SendTime: requestTime attribute value for a

ServiceRequest class instance and requestReceptionTime attribute
value for a Composer class instance. Measurement sources for
ReceiveTime: requestCompletionTime attribute value for a Composer

class instance and requestEndTime attribute value for a
ServiceRequest class instance

Measurement Transformation NetworkTime ¼ 1
100

P100
i¼1ðSendTimei þ ReceiveTimeiÞ

Above, MeasurementSource assumes that a service request is described, among other,

with a class called ServiceRequest which carries the attribute requestTime, and that its

value can be collected by, e.g., a monitoring service (or some other SOS component). This

value is then used, along with other values (as indicated in the MeasurementSource
attribute) to calculate SendTime and ReceiveTime. In other words, MeasurementSource
identifies where to find data to calculate quality dimension values.

We place no particular constraints on the structure of a quality characteristic. It is

merely a means to organize quality dimensions that are considered as somehow related by

the modeler.

Definition 4 A Quality Characteristic �q is a set of distinct (aggregate) quality

dimensions.

3.2 Quality value submodel (V)

V is instantiated to define how quality is to be measured on a given SOS. At runtime, it is

necessary to provide means for expressing desired values of the various quality dimen-

sions. This information is subsequently used by composers to discriminate among

alternative services when performing service composition—services that cannot achieve

desired values for a set of quality dimensions will not be selected to participate in a

composition. Simplistic models for expressing desired values over quality dimensions

involve the definition of a single desired value. This is inappropriate because interde-

pendencies between different behaviors of the given SOS are likely—it is thus necessary to

relate the achievement of a particular quality dimension value with conditions on the

system and/or its operating environment, and conditions that the achievement of some

quality dimension value entails in the system and/or its operating environment. Hence the

concepts of value precondition and value postcondition in the Quality Value submodel.

Uncertainty in system operation leads to the probabilistic characterization of value and

value pre/postcondition pairs.

Definition 5 The Quality Value submodel V for a given SOS is a set of p tuples, where

each tuple i = 1,…,p is of the form

Software Qual J (2009) 17:65–98 73

123

�

qi:Name;

�

vi;1; vPre;i;1; v
P
Pre;i;1; vPost;i;1; v

P
Post;i;1

D E
; . . .;

vi;n; vPre;i;n; v
P
Pre;i;n; vPost;i;n; v

P
Post;i;n

D E�

; vU
i;1; . . .; vU

i;m

n o�

where

1. qi:Name is the value of the attribute Name of the quality dimension qi.

2. vi;1; vPre;i;1; v
P
Pre;i;1; vPost;i;1; v

P
Post;i;1

D E
; . . .; vi;n; vPre;i;n; v

P
Pre;i;n; vPost;i;n; v

P
Post;i;n

D En o
is

the set of values for a given quality dimension qi, where each tuple associates a

particular value v with a value precondition vPre and the probability vP
Pre that the value

v will be achieved if the precondition holds, and a value postcondition vPost and the

probability vP
Post for the postcondition to hold if the given value of q is achieved.

3. v declares values for a given q. The values are declared using syntax and semantics

which differ depending on whether Type of q is continuous or discrete. If continuous,

the semantics is defined in terms of an interpretation ðC; �cI Þ, which uses the

continuous domain C defined by Type of q, and an interpretation function �cI which

associates with each v a vcI in C. If discrete, the domain of the interpretation is a set D

which includes all allowed discrete values as defined by the value of Type of q, and

the interpretation function �dI associates with each e a edI in D. Below, the syntax,

semantics, and syntax rules are given for the continuous and discrete case.

Type of q is continuous Type of q is discrete

Syntax Semantics Syntax Semantics

v vcI 2 C e edI 2 D

:v C n vcI :e D n edI

� vð Þ fv0cI j v0cI � vcI g E EdI � D;EdI ¼ fedI j 8e 2 Eg
: � vð Þ C n � vð ÞcI :E C n EdI

� vð Þ fv0cI j v0cI � vcI g Ei _ Ej EdI
i [EdI

j

: � vð Þ C n � vð ÞcI Ei ^ Ej EdI
i \ EdI

j

� vð Þ _ � vð Þ � vð ÞcI [� vð ÞcI

� vð Þ ^ � vð Þ � vð ÞcI \ � vð ÞcI

Syntax formation rules

kc ::¼ v j � vð Þ j � vð Þ kd ::¼ e j E
Kc ::¼ kc j :Kc j Kc

i _ Kc
j j Kc

i ^ Kc
j Kd ::¼ kd j :Kd j Kd

i _ Kd
j j Kd

i ^ Kd
j

v ::¼ Kc v ::¼ Kd

4. vPre gives an assertion which describes the precondition for the value(s) defined in v to

be achieved.

5. vP
Pre indicates the probability that a value in v will be achieved if the precondition vPre

holds.

6. vPost gives an assertion which describes the postcondition that holds after achieving a

value in v.

74 Software Qual J (2009) 17:65–98

123

7. vP
Post indicates the probability that the postcondition vPost holds if a value in v is

achieved.

8. vU
i;1; . . .; vU

i;m

n o
is the set of partial preference orderings vU � ð�Þ�

U
ð�Þ on values for a

given q1. �
U

defines a partial order (i.e., �
U

is a reflexive, transitive, and anti-symmetric

relation). Both (�) follow the syntax and semantics of either Kc or Kd (depending on

whether Type is continuous or discrete). Values specified on the left hand side of �
U

are

preferred at least as much as the values given on the right hand side of the preference

ordering relation. Strict ordering is defined in a strainghtforward manner (i.e.,

x	
U

y � x�
U

y ^ :ðy�
U

xÞ).

Example 3 The following provides the instantiation of the quality value submodel for one

value of NetworkTime, one of the dimension aggregated to define the Latency charac-

teristic. Preconditions and postconditions are normally written in a formal language (e.g.,

the Semantic Web Rule Language (SWRL), Horrocks et al. 2003). Below, natural lan-

guage and simple structured expressions are used to avoid introducing more formalism in

this paper. The probabilities are usually estimated and continually updated at runtime.

q.Name NetworkTime

v ð� 3500 msÞ ^ ð� 1500 msÞ
vPre ConnectionFailureProbability B 0.05

vP
Pre 70%

vPost Change of network bandwidth unnecessary

vP
Post 90%

vU ð� 3500 msÞ ^ ð� 1500 msÞð Þ	
U
ð[3500 msÞ

3.3 Quality dependency submodel (D)

The quality dependency submodel is instantiated to express interdependencies between

values of distinct quality dimensions. As noted earlier, the dependency submodel is of

particular relevance for managing tradeoffs: it is the quality dependency model that makes

explicit the possible tradeoffs, and summarizes how values of quality dimensions are

related so that the outcome of tradeoffs can be anticipated.

Definition 6 The Quality Dependency submodel D � fdg for a given SOS is a set of

dependency relations for pairs of distinct quality dimensions. Each dependency relation is

written using the following formation rule:

d ::¼ qi:Name �!Kk jKl
qj:Name

� �

@ð/;PÞ j qi:Name !Kk jKl
qj:Name

� �

@ð/;PÞ

j qi:Name !f qj:Name
	

@ð/;PÞ

where

• qi:Name is the value of the Name attribute of qi and qj:Name is the value of the Name
attribute of some other quality dimension qi.

Software Qual J (2009) 17:65–98 75

123

• Syntax and semantics of Kk follow that of Kc if the quality dimension qi is of

continuous type; if not, then the syntax and semantics of Kd are followed. Same applies

for Kl and qj.

• The dependency is directed if Kk and Kl are related with ‘‘�! ’’, so that it if the value

Kk of qi is achieved, the value specified in Kl will be achieved for qj at the probability

P. ‘‘ ! ’’ indicates that the dependency is directed both ways: if either of the quality

dimensions reaches its given value K, the other will also have its value in its given K, at

the probability P.

• When the relationship between the values of two quality dimensions can be described

with a function, f gives that functional relationship.

• As the dependency may only be relevant when particular conditions hold, a condition /
can be added to indicate when the interaction applies (otherwise, / remains empty).

The condition is written as an assertion in the language used to write value precondition

and value postcondition.

• P is a value that designates the probability for the dependency to be actually observed.

It is usually estimated at runtime.

Example 4 The motivating example makes appear that the availability of the service is

calculated with the help of the dimension DownTime. Similarly, the reliability depends on

FailedAttempts. It seems clear that the number of failed attempts will be influenced by the

down time of the system. The probability to observe this particular dependency of values

is 0.8:

DownTime �!ðincreasesÞjðincreasesÞ
FailedAttempts

� �

@ð0:8Þ

3.4 Quality priority submodel (P)

In addition to D, P is another novelty of the proposed QVDP model. When a pair of quality

dimensions is such that the values of both cannot be simultaneously optimized when, e.g.,

seeking appropriate service compositions, priority must be known over the pair in order to

know which of the two to optimize at the expense of the other. The quality priority

submodel is instantiated in order to make explicit the priority order between pairs of

quality dimensions. Clearly, and as highlighted earlier, the priority submodel combines

with the dependency submodel when managing tradeoffs: the latter indicates what pairs of

quality dimensions are involved in tradeoffs, while the former indicates what to decide

when tradeoff is to be performed between quality dimensions.

Definition 7 The Quality Priority submodel

P � fhpq
1 ;/1i; . . .; hpq

n ;/nig; fhp
�q
1 ;/1i; . . .; hp�q

m;/mig
� �

for a given SOS contains a set of (conditioned) priority orders for pairs of distinct quality

dimensions, and a set of (conditioned) priority orders for pairs of quality characteristics.

For quality dimensions, each priority order is pq � qi:Name�
P

qj:Name, where qi:Name is

different from qj:Name. The given priority order indicates that optimizing qi is important

at least as much as optimizing qj. For each quality characteristic, the priority is given as

p�q � �qi�
P

�qj. �
P

is a partial order; strict priority is defined as usual (i.e.,

76 Software Qual J (2009) 17:65–98

123

x	
P

y � x�
P

y ^ :ðy�
P

xÞ). A priority order is conditioned if the optional / is specified. If /
holds, the given priority order applied. / is written as an assertion in the language used to

write value precondition and value postcondition.

Example 5 A requester of a service providing information such that those provided by the

MERIS MGVI Regional web service can instantiate the quality priority submodel to

indicate in a service request that it is strictly more important to him to optimize reliability

than latency, i.e., p
�q
i ¼ Reliability	

P
Latency. This priority reflecting the fact that due to the

long execution time expected for extracting the result, the requestor prefers to insure

himself that the service will properly achieve and wait longer than the opposite. At the

level of quality dimensions, the same request can indicate, e.g., that it is strictly more

important to optimize the network time than to optimize the selection and composition

time (i.e., the requester is interested in having the request transmitted rapidly, even if

this entails longer time to find the appropriate services and their composition):

pq
k ¼ NetworkTime	

P
Selection=CompositionTime.

4 Comparison with prior quality models

Table 1 summarizes the comparison. It indicates concepts and constructs of prior quality

ontologies and models that correspond to those of QVDP. The table highlights the novelty

of including submodels and constructs for representing preference, dependency, and pri-

ority among quality dimensions and characteristics.

Only some of the many approaches capable to describe service quality are considered

here. Other approaches include: QuA (Staehli et al. 2003), QML (Frolund and Koistinen

1998), WSOL (Tosic et al. 2002), UniFrame (Brahnmath et al. 2002), CORBA Trading

Object Service (Object Management Group 1997), QuO (Loyall et al. 1998), SLAng

(Skene et al. 2004). They are not overviewed here for two reasons: first, previous com-

parisons (e.g., Skene et al. 2004) indicate that the fragments of their models specialized for

service QoS description are subsets of the set of concepts and constructs present in the

approaches considered herein; second, the aim here is only to identify key concepts and

constructs manipulated when specifying a service’s QoS, so that we do not discuss how

each of the concepts adapts to a particular implementation framework—therefore, we do

not consider in this section the results focused on adopting and adapting the reviewed

approaches to particular implementation technologies and frameworks.

In Table 1, ‘‘H’’ indicates that the given concept or construct can be expressed in the

relevant quality model, but the name of concept or construct for doing so cannot be

identified in the cited work. ‘‘9’’ indicates that the given QVDP concept or construct has

no corresponding concept or construct in the relevant quality model.

4.1 Q-WSDL

D’Ambrogio proposes Q-WSDL (D’Ambrogio 2006), a Quality of Service3 (QoS)

extension to WSDL (Christensen et al. 2001) which includes a set of QoS characteristics

3 According to the relevant ISO standard (International Organization for Standardization 1998), QoS refers
to characteristics that contribute to the overall quality of a service as perceived by the consumer of the
service. A QoS characteristic is a quantifiable aspect of QoS which is defined independently of the means by
which it is represented, managed, or controlled.

Software Qual J (2009) 17:65–98 77

123

T
a

b
le

1
C

o
m

p
ar

is
o

n
o

f
Q

V
D

P
w

it
h

a
se

le
ct

io
n

o
f

p
ri

o
r

q
u
al

it
y

m
o
d
el

s

Q
V

D
P

Q
-W

S
D

L
W

S
L

A
D

A
M

L
-Q

o
S

M
ax

im
il

ie
n

an
d

S
in

g
h

Z
en

g
an

d
co

ll
ea

g
u

es

Q
Q

o
S

p
ro

fi
le

S
er

v
ic

e
L

ev
el

A
g

re
em

en
t

Q
o

S
P

ro
fi

le
H

Q
u

al
it

y
v

ec
to

r

q
Q

o
S

d
im

en
si

o
n

M
et

ri
c

M
et

ri
c

Q
u

al
it

y
Q

u
al

it
y

cr
it

er
io

n

N
am

e
n

am
e

n
am

e
m

et
ri

cN
am

e
H

H

D
es

cr
ip

ti
o

n
d

efi
n
it

io
n

H
H

H
H

P
u

rp
o

se
9

9
9

9
H

T
y

p
e

ty
p

e
ty

p
e

H
H

H

U
n

it
u

n
it

u
n

it
H

H
H

A
g

g
re

g
at

e
9

H
H

H
H

M
ea

su
re

m
en

t
S

o
u

rc
e

so
u

rc
e

F
u

n
ct

io
n

o
r

M
ea

su
re

m
en

t
D

ir
ec

ti
v

e
H

H
H

M
ea

su
re

m
en

t
T

ra
n

sf
o

rm
at

io
n

9
H

F
u

n
ct

io
n

A
g

g
re

g
at

eQ
u

al
it

y
H

A
d

d
it

io
n

al
A

tt
ri

b
u

te
9

9
9

Q
A

tt
ri

b
u
te

9

a
9

F
u

n
ct

io
n

o
r

M
ea

su
re

m
en

t
D

ir
ec

ti
v

e
H

H
H

fq
9

H
H

H
H

� q
Q

o
S

ch
ar

ac
te

ri
st

ic
an

d
Q

o
S

ca
te

g
o

ry
Q

o
S

P
ro

p
er

ty
9

9
9

f� q
9

9
9

9
9

fð
q
;� q
Þ

H
H

9
9

9

V
9

S
er

v
ic

e
L

ev
el

O
b

je
ct

iv
es

o
r

A
ct

io
n

G
u

ar
an

te
es

Q
o

S
P

re
co

n
d

it
io

n
,

Q
o
S

E
ff

ec
t,

Q
o

S
co

n
st

ra
in

ts

Q
o

S
P

o
li

cy
9

v
v

al
u
e

H
H

Q
V

al
u

e
ty

p
ic

al
H

v
P
re

9
H

H
9

9

v
P P
re

9
9

9
9

9

v
P
o
st

9
H

H
9

9

v
P P
o
st

9
9

9
9

9

78 Software Qual J (2009) 17:65–98

123

T
a

b
le

1
co

n
ti

n
u

ed

Q
V

D
P

Q
-W

S
D

L
W

S
L

A
D

A
M

L
-Q

o
S

M
ax

im
il

ie
n

an
d

S
in

g
h

Z
en

g
an

d
co

ll
ea

g
u

es

v
U

d
ir

ec
ti

o
n

H
9

9
H

D
9

9
9

Q
R

el
at

io
n

sh
ip

H

d
9

9
9

V
al

u
eI

m
p

ac
t,

V
al

u
eD

ir
ec

ti
o

n
H

P
9

9
9

9
H

p
q

9
9

9
9

H

/
(f

o
r

p
q
)

9
9

9
9

9

p
� q

9
9

9
9

H

/
(f

o
r

p
� q
)

9
9

9
9

9

Software Qual J (2009) 17:65–98 79

123

accepted in a UML extension for specifying QoS (Object Management Group 2005). In

Q-WSDL, a service’s QoS is described through QoS characteristics (e.g., Availability),

each quantified through QoS dimensions (e.g., UpTime). A QoS dimension is described

with a value, unit of the value, source of measurement (e.g., measured, assumed, predicted,

etc.), and optionally, a type of statistical value (e.g., mean, variance, etc.) and an order

relation to compare values (i.e., to answer which values are preferred). QoS categories

bring together QoS characteristics related to a common subject—e.g., reliability and

availability are grouped in the dependability category.

Q-WSDL highlights the need to specify preferences over quality values, yet remains

limited in doing so compared to QVDP. Namely, Q-WSDL allows specifying the desired

direction for the value of the quality dimension, but cannot deal with value preconditions

and value postconditions, or uncertainty thereof (i.e., through probabilities). Q-WSDL is

not extensible, in that it has no apparent mechanism for introducing additional attributes to

finely describe a quality dimension. In contrast to all other models noted in Table 1,

Q-WSDL omits aggregation of quality characteristics. Note that lack of means to represent

dependency and priority information in Q-WSDL entails that any directives on tradeoffs

need to be specified outside the quality model. Additional representation formalism

(unspecified in case of Q-WSDL) is thus necessary, and further effort is consequently

required for ensuring consistency between the information in the quality model and the

tradeoff formalism. Such problems are avoided in QVDP.

4.2 WSLA

While focusing on the contracting between the service provider and requester, the Web

Service Level Agreement language (Keller and Ludwig 2003) integrates similar kind of

information as the Q-WSDL when describing quality characteristics. The Web Service

Level Agreement (WSLA) language (Keller and Ludwig 2003) focuses on the contracting

between the service provider and requester. It is used to specify quality of service within a

Service Level Agreement (SLA). A quality dimension is expressed by a SLA parameter

and described with a name, type, unit, definition and purpose. The value of a parameter is

quantified by a metric, whereby a metric can be an aggregate of other metrics. If

aggregate, it is given by a function or a measurement directive; a function uses other

metrics as operands while a measurement directive specifies how an individual metric is

retrieved from the source. For example, a function can be such that the value of the metric

used to calculate the Availability characteristic can be obtained by dividing the value of

UpTime by the value of the sum of UpTime and DownTime. Typical examples of mea-

surement directives are the uniform resource identifier of a hosted computer program, a

protocol message, or the command for invoking scripts of compiled programs. The notion

of value specification is similar to the concept of obligation which define guarantees and

constraints on SLA parameters. These obligations cover the service level objectives that

represent promises with respect to the state of SLA parameters and the action guarantees

that are promises of a signatory party to perform an action. Value preconditions and

postconditions in QVDP enable can be used to express such constraints-related informa-

tion. A service level objective expresses a commitment to maintain a particular state of the

service in a given period, e.g., the SLA parameter TimeNeededToTransferData must be

lower than 100 ms if the SLA parameter NetworkTime is less than 30 ms. An action

guarantee expresses a commitment to perform a particular activity if a given precondition

is met; e.g., sending an event to one or more signatory party and supporting parties,

80 Software Qual J (2009) 17:65–98

123

opening a problem report, performing the payment of a penalty, or of a premium, and

so on.

While close to QVDP in terms of specifying quality dimensions and quality characteris-

tics, and describing values thereof, WSLA is similar to Q-WSDL in not providing indications

on how to deal with tradeoffs. This is an important limitation, since a contract between a

provider and a requester can involve situations in which tradeoffs need to be managed. For

instance, adding dependency information would allow the provider to check whether some

requested levels of quality dimensions can be realized: knowing their interdependency, the

provider might highlight that the requested levels are unrealistic, or that more desirable levels

can be achieved. Adding priority indications can lead to more extensive contracts, in which

contingencies can be managed in a finer way: e.g., if the provider indicates that in some

situation particular levels of some metrics cannot be achieved together, the requester might

indicate which of the metrics is to be optimized in place of others when such a situation

occurs. Both dependency and priority information thus appear relevant when contracting

between the provider and the requester, but are absent from the WSLA.

4.3 DAML-QoS

Zhou et al. (2004) extend DAML-S with a means for describing QoS in a generic manner.

Apart from the usual definition of concepts for metrics, metric types, and metric aggre-

gation, their DAML-QoS ontology introduces the possibility for defining QoS

characteristics whose value at the service’s input is different from its value at output (e.g., in

a converter, input and output bit rates differ). Since QVDP is not directly associated to a

particular model of the service-oriented system, relating service inputs and outputs to

different values can be accomplished by instantiating the quality value submodel, and

defining a function to map specific values to inputs or outputs of a given service. Also, the

service may only be capable of achieving some specific quality level if some external

quality level is satisfied (e.g., for two interacting services, a minimal throughput rate at the

first service might be needed if the second service is to ensure some desired throughput

rate), so that a condition on QoS characteristics can be defined (as a QoSPrecondition).

Similarly, the level of quality achieved over the service’s various QoS characteristics may

change the effects of the service—the effect of QoS can be defined as QoSEffect in DAML-

QoS. Both of these are supported with value preconditions and postconditions in QVDP.

While DAML-Qos is innovative in terms of value preconditions and value postcondi-

tons when compared to other prior quality models, DAML-QoS cannot deal with

preferences over values, dependencies, and priorities. It thus suffers from the same limi-

tations as Q-WSDL and WSLA when contrasted to QVDP: we see no explicit means in

DAML-QoS to address tradeoffs at runtime.

4.4 Maximilien and Singh

Maximilien and Singh (2004) describe service QoS through an ontology which abstracts

from particular QoS characteristics: each QoS characteristic is called a quality, is asso-

ciated to a typed variable, indications on how it is measured, and its relationships to other

qualities (in terms of strength and direction). Namely, QMeasurement quantifies a quality

while AggregateQuality combines several Qmeasurements into aggregate metrics.

QRelationships indicate related qualities in a manner that shows through their values. A

quality related to another has a valueimpact (weak, mild and strong) and a valuedirection

Software Qual J (2009) 17:65–98 81

123

(opposite or parallel). A QRelationship is similar to a dependency specification, though the

latter allows more precise information to be given on relationahips between metrics. The

QoSPolicy specification indicates a level of commitment of the provider to the advertised

policy (bestEffort, guaranteed, notSpecified or noGuarantee). As QoSPolicy aims at add

constraints on the value, so that it is equivalent to the value specification.

An important characteristic of Maximilien and Singh’s approach is the integration of

information on relationships between qualities using the notions of value impact and value

direction. Their approach qualifies value impact as either weak, mild, or strong, while

value direction is described as either opposite or parallel. QVDP thus covers their

dependency representation, adds the possibility to indicate conditions for interdependen-

cies and uncertainty thereon, and allows more detail in describing interactions. Again, as

Q-WSDL, WSLA, and the DAML-QoS, Maximilien and Singh’s model has no means to

deal with priority.

4.5 Zeng and colleagues

Zeng et al. (2003) use an ad-hoc informal quality model in which they represent price,

execution duration, reputation, reliability and availability to guide service composition at

runtime. A quality of service is expressed by means of a quality vector. The vector is com-

posed of quality criteria that we define with quality dimensions. Each of the criteria is

described similarly to our quality dimension, that is, by a name, a unit, a type, a short definition

and an (optional) expression defining how to perform the measurement. The desired values are

given with modalities which depend on the quality’s purpose; e.g., execution price is mini-

mised whereas reliability is maximized. The idea is the same in the preference fragment of our

quality value submodel where an order relation is given between possible values. Zeng and

colleagues represent priority by associating weights to each of the criteria used in the

aggregation function which is optimized when performing service composition.

Zeng and colleagues’ approach is closest to QVDP in terms of dependency and priority

representation, although it is comparatively limited when dealing with value descriptions.

Both interdependency and priority representations in Zeng and colleagues’ proposal remain

implicit from the specific set of quality criteria they use during composition. In this respect,

theirs is not a quality model per se, but a particular case of an implicit quality model. In this

sense, they do not discuss a quality model, but only specific quality dimensions and their

application in service composition. In addition, QVDP differs in the detail it allows—e.g.,

we can specify conditions for priority orderings to apply while this is not considered by

Zeng and colleagues.

5 QVDP and QoS in UML

Among the related efforts, the UML Profile for Modeling Quality of Service and Fault

Tolerance Characteristics and Mechanisms (Object Management Group 2005) stands out in

its coverage of various concepts and constructs for conceptualizing quality and its status of

standard. Therein, a metamodel is proposed as an extension to the UML metamodel to

support the definition of QoS properties for systems of which other aspects are modeled

with UML. In this section, we review that metamodel, compare it to QVDP, and extend the

UML QoS metamodel with concepts and constructs available in QVDP and unavailable

there. Finally, we propose a case study using the UML QoS Framework and our extensions

derived form the service presented in Sect. 2.

82 Software Qual J (2009) 17:65–98

123

5.1 Elements of the metamodel

The UML QoS Framework metamodel includes different submetamodels describing the

QoS extension for UML. The QoSCharacteristics package contains the elements required

to define QoSCharacteristics and QoSDimensions. The QoSConstraints package comprises

the modeling elements used to describe QoSContracts and QoSConstraints. The last

package, QoSLevels covers components specifying QoSModes and QoSTransitions. We

review these packages below:

• QoSCharacteristics package

– QoSCharacteristic A QoSCharacteristic is a description for some quality consid-

eration, such as, e.g., latency, availability, reliability, capability. A characteristic is

quantified by means of specific parameters and methods. These concepts are

provided by the metaclass QoSParameter. Extensions and specializations of such

elements are available with the sub-parent self-relation. A characteristic has the

ability to be derived into various other characteristics as suggested by the

templates-derivations self-relation. The attribute isInvariant indicates if the value of

the characteristic can be dynamically updated.

– QoSDimension A QoSDimension specifies a measure that quantifies a QoSCharac-

teristic. The attribute direction defines the direction (increasing, decreasing) in which

it is desired that the value of the QoSDimension moves. Unit and statistiqualQualifier
attributes specify, respectively, the unit for the value dimension and the type of the

statistical qualifier; e.g., maximum value, minimum value, range, mean, frequency,

distribution, etc.

– QoSCategory QoSCategories are used to group QoSCharacteristics related to the

same abstract quality consideration or topic, such as, e.g., performance or security.

While performance may group, e.g., latency and trouhgput, security might bring

together, e.g., reliabiality and availability. QoSCategories are therefore not

quantifiable themselves, but rely on the quantification of their components.

– QoSValue QoSValues are instantiations of QoSDimensions that define specific values

for dimensions depending on the value definitions given in QoSDimensionSlots.

– QoSDimensionSlot A QoSDimensionSlot represents the value of QoSValue. It can

be either a primitive QoSDmension or a referenced value of another QoSValue.

– QoSContext While constraints usually combine functional and non-functional

considerations about the system, QoSContext is used to describe the context in

which quality expression are involved. A context includes several QoSCharacter-

istics and model elements. A single QoSCharacteristic defines the QoSContext for

expressions whose references are only to this QoSCharacteristic. The attribute

isQoSObservation defines that a QoSContext represents an environment of quality

observation. The quality observation records the values of characteristics included

in the relation BasedOn. This way, constraints including more than one quality

characteristic can be represented. The main aim of constraints is to limit the set of

allowed values of characteristics.

• QoSConstraints package

– QoSConstraint The aim of QoSConstraints is to restrict values of QoSCharacter-

istics. Constraints describe limitations on characteristics of modeling elements

identified by application requirements and architectural decisions. Constraints rely

Software Qual J (2009) 17:65–98 83

123

on contexts which establishes the QoS characteristics and functional element that

can be involved in the constraints. To limit allowed values, constraints put

maximum and minimum values to characteristics as well as dependencies between

characteristics. These quality constraints can be seen from provider’s and client’s

point of view leading to approaches named ‘‘constraints provided’’ and ‘‘constraints

offered’’. The attribute qualification refers to the nature of the constraint, with the

following possible values: guaranteed, best-effort, treshold-best-effort,
compulsory-best-effort, and none. Each constraint is associated to at least one

QoSContext which references values related to the constraint.

– QoSRequired Required QoSConstraints can be defined either by the provider either

by the client. When the requirements are defined by the client, the provider must

support the required quality that fulfill the client’s required constraints. This

constraint limits the set of values the client accepts for the given characteristic. The

required constraints can also be defined by the provider, in this case, the client must

achieve some required level of quality to obtain the quality that the provider offers.

– QoSOffered The set of QoSOffered by a client or a provider defines its interface—

that is, it advertises the qualities for which the offered component is designed.

Evidently then, quality is not guaranteed for characteristics that do not appear in

QoSOffered.

– QoSContract QoSContract is assembles client and provider constraints. In general,

client required QoS need to be subsets of provider offered QoS and similarly,

provider required QoS need to be subsets of client provided QoS. If no matching is

possible between offered and provided constraints, the contract needs to be

negotiated between parties involved.

– QoSCompoundConstraint A QoSCompoundConstraint is a set of constraints that

together represent a constraint for one model element. Another purpose of

compound constraints is to allow the representation of a global constraint composed

of a set of subconstraints. This way, we can define a precedence relation between

subconstraints, to represent, e.g., how to decompose a latency constraint in a set of

subconstraints.

• QoSLevels package

– QoSLevel Depending of available infrastructure and particular algorithms, a service

can be executed to several working modes; each working mode provides different

qualities for the same services. A QoSLevel is intended to represent a mode of QoS

that a service can support, so that a QoSLevel is associated to each of these working

modes.

– QoSTransition A QoSTransition specifies an allowed transition between

QoSLevels.

– QoSCompoundLevel A QoSCompoundLevel includes all QoSLevels involved in

the quality behavior of a service.

5.2 Comparison of the QVDP and the UML QoS Framework metamodel

Table 2 summarizes the comparison. In both models, QoS characteristics are quantified by

dimensions which own unit, type and name. In the UML QoS Framework metamodel,

Description and Purpose do not appear in the class describing dimensions. UML provides

a way to define a parent characteristic from sub-characteristics but does not allow the

84 Software Qual J (2009) 17:65–98

123

composition of a dimension from other dimensions. This way, no aggregate function is

provided by the QoSDimension metaclass. The QoSParameter metaclass defines how a

characteristic is composed from dimensions. The measurement transformation concept

appears in UML but possibilities are limited; the statistical qualifier only compute values

with a modality (maxvalue, minvalue, mean, and similar). The source of measurement is

represented by the QoSDimensionSlot metaclass in the UML QoS Framework metamodel.

Valid values are limited by means of QoSConstraints elements; provider’s required con-

straints allow to highlight preconditions while provider’s offered constraints can define

postconditions. The probability associated to these conditions can be given using QoS-

Level. Even if levels do not define directly probabilities, they take into account available

resources to determine if constraints can be respected. The attribute direction indicates

preference relations over values for a same dimension. We can write dependencies as

constraints over values of different dimensions. UML QoS does not provide any elements

enabling to point up priorities among dimensions or characteristics.

Table 2 Comparison of the
QVDP and the UML QoS
Framework metamodel

QVDP UML QoS

Q QoSContext

q QoSDimension

Name H

Description 9

Purpose 9

Type H

Unit unit

Aggregate 9

Measurement Source QoSDimensionSlot

Measurement Transformation statisticalQualifier

a 9

f q 9

�q QoSCharacteristic and QoSCategory

f �q Sub-parent relationship

f ðq;�qÞ QoSParameter

V 9

v QoSConstraint

vPre Provider QoSRequired

vP
Pre H (QoSLevel)

vPost QoSOffered

vP
Post H (QoSLevel)

vU direction

D H

d QoSConstraint

P 9

pq 9

/ (for pq) 9

p�q 9

/ (for p�q) 9

Software Qual J (2009) 17:65–98 85

123

We see that the UML QoS Framework metamodel can be usefully extended with

concepts and constructs from the QVDP. The extension is outlined below.

5.3 Extending the UML QoS Framework metamodel

Figure 3 shows the submodels of the extended UML QoS Framework metamodel. Con-

straints are defined over characteristics and levels and priorities are specifications of

constraints. QoSCharacteristics, QoSConstraints and QoSLevels were defined in the ori-

ginal metamodel while QoSPriorities and QoSPreferences are added submodels allowing

to introduce, respectively, the concepts of priorities and preferences. Besides these sub-

models, various extensions have been added to the model in order to express all elements

available in QVDP. Figures 3 and 4 summarize the extended UML QoS Framework

metamodel. Changes and extensions are given below.

• Priorities submodel As the UML QoS Framework metamodel does not account for

priorities over quality elements, the submodel presented here is an extension

introducing extra classes to specify priorities over characteristics and over dimensions.

– QoSPriority The main class of this submodel is used to express rules that define

priorities over characteristics or dimensions. These rules determine the order at

which characteristics or dimensions are considered for optimization when services

are being selected. A rule defines an order relation between elements. Different

methods can be used in order to rank characteristics or dimensions; simple

precedence relation can be established or weighted functions over elements can be

used to account for some criteria.

– QoSDimPriority and QoSCharactPriority These classes are specializations of

QoSPriority defining specific elements for priorities over, respectively, character-

istics and dimensions.

Fig. 3 Submodels of extended UML QoS Framework metamodel. Extensions are in bold

86 Software Qual J (2009) 17:65–98

123

– QoSPriorityCondition Conditions on priorities are constraints specifying when

priorities hold. We use this element to specify, e.g., the priority that holds only if

some value over a quality dimension is achieved.

• QoSPreferenceSubmodel We use the QoSPreferenceSubmodel to write preferences

over values. In the original UML QoS Framework metamodel, preferences are defined

by means of an attribute that indicates the preferred value direction (i.e., increase or

decrease). The introduction of the QoSPreference submodel makes the framework

considerably more expressive; e.g., set of values can be preferred over others under

some specific conditions.

– QoSPreference The purpose of QoSPreference class is to sort values of dimensions.

The sorting is established by rules determining a precedence order between values.

Rules can delimit precedence over disjoint sets of value and not only following a

modality as previously proposed with the direction attribute.

– QoSPreferenceCondition The QoSPreferenceCondition class is a specialization of

the QoSConstraint class. It indicates conditions for the preference on values to hold.

• Aggregate and TransformationFunction In the original UML QoS Framework

metamodel, the value calculation is specified in the attribute statisticalQualifier of the

QoSDimension class. That approach allows us only to define the modality under which

the value of a dimension can be calculated on a set value. In QVDP, it is possible to

define a dimension from other dimensions, so that the value calculation has to be

more expressive. We augment expressivity by replacing statisticalQualifier with

two attributes: Aggregate which defines from which other dimensions the value is

Fig. 4 UML QoS Metamodel with proposed extensions

Software Qual J (2009) 17:65–98 87

123

calculated and TransformationFunction which provides the formula to compute the

value of the dimension.

• Compose–composed relationship In QVDP it is possible to compose a dimension

from other dimensions as for characteristics. This possibility is expressed in the

metamodel thanks to the compose–composed by self-relationship of QoSDimension

class.

• QoSPostCondition As no element in the original UML QoS Framework metamodel

allows us to specify the postcondition expressed in QVDP, this possibility is added

under the form of a class which is a specialization of the QoSConstraint class.

5.4 Case study

As suggested by the OMG, the UML metamodel can be used by service requestors and

providers to define their respective requests and capabilities about QoS. We propose in this

case study some examples of utilization of the UML QoS Metamodel to express such

information. We refer to the service ENVISAT/MERIS MGVI Regional introduced in the

Sect. 2 to illustrate how to use the metamodel and its submodels to organize QoS

advertising specification.

The first submodel, the QoS Characteristic submodel, is illustrated in Fig. 5. It illus-

trates the characteristic latency and the dimensions used to compute its value. The

calculation of one of these dimensions, Network Time is more developed with association

of dimensions used to compose its own value and its transformation function. The Per-

formance Category groups all characteristics related to the service performance. The

modeling constructs initially introduced in the UML QoS Framework Metamodel do not

allow the quantification of a QoS Dimension by another QoS Dimensions. However, in the

context of the ENVISAT/MERIS MGVI Regional service, the latency is a critical point.

Specifying how its different parts are computed permits to the user or the provider to

specify its preferences at different levels and so give an upper limit to the ReceiveTime,

which is used to compose the NetworkTime.

<< QoS Dimension >> : NetworkTime
Unit: ms
Aggregate: {SendTime, ReceiveTime},
AggregateSum
Transformation Function:

<< QoS Characteristic >> : Latency

<< QoS Dimension >> : ReceiveTime
Unit: ms

<< QoS Dimension >>: ExecutionTime
Unit: min

<< QoS Dimension >> : CompositionTime
Unit: ms

<< QoS Dimension >> : SendTime
Unit: ms

Composed by

Composed by

Typed by

Typed by

Typed by

<< QoS Category >> : Performance

Grouped In

100

1

1

100 i i
i

SendTime ReceiveTime
=

+∑

Fig. 5 UML QoS Characteristics submodel

88 Software Qual J (2009) 17:65–98

123

The second submodel, the QoS Constraint submodel, is presented in Fig. 6. It exposes

the context and its related constraints. Among those, one constraint illustrates the depen-

dency existing between the down time and the total number of failed attempts. One is used

to specify the precondition necessary to an acceptable value of network time and another

the induced postcondition. The specification of such constraints, made by the service

provider, in the context of our MERIS service, are used to inform the service user of

particular requirements and observations about service behavior. The specification of the

QoS Dependency related to the DownTime and the number of FailedAttempts is useful for

the user of the service because it enables the anticipation of quality degradations.

The constraint submodel is also used to indicate the service provider capabilities of

QoS. These capabilities are described with the help of QoS Offered, a specialization of

QoS Constraint. The Fig. 7 highlights the capabilities of the MERIS MGVI Regional

Service for the availability characteristic. To advertise its capabilities about quality

properties, the service provider has to specify them. In the context or our case study, these

specifications are simply the observations made on the system that are expressed with the

help of the QoS Offered metaclass.

The QoS Priorities submodel is expressed in Fig. 8 and concerns a priority fixed

between the latency and the availability. Services as the MERIS MGVI Regional have an

important latency, mainly due to the huge execution time of their requests. This way, as the

latency is important, it is not a relevant characteristic to choose among alternatives and

other characteristics as availability are more relevant to discriminate among available

services. Such a specification is written by the user of the ENVISAT/MERIS MGVI

Regional service that wishes express which quality properties to favor to others.

<< QoS Context >>

Contexts

<< QoS Required >> : Required for NetworkTime
Qualification : guaranteed
ConnectionFailureProbability = 0,05

Contexts

<< QoS Constraint >> : Dependency
Qualification : best-effort
DownTime increases FailedAttempts increase

<< QoSPostCondition >> : Postcondition of NetworkTime
Qualification : guaranteed
Change of network bandwidth unneecessary

Contexts

Contexts

<< QoS Characteristic >> : Latency

Fig. 6 UML QoS Constraints submodel

Fig. 7 UML QoS Offered
constraints

Software Qual J (2009) 17:65–98 89

123

An example of expression abilities of the QoS Preferences submodel is proposed in

Fig. 9. It illustrates how to specify favored values for the network time dimension. This

specification of desired values for NetworkTime is written by the service user to make

appear its expectations. The service user makes a similar specification for every QoS

property.

The UML QoS Framework permits to service providers and users to express simply

their advertisings and their requests. With our added extensions, it covers a large range of

construct modeling and possibilities. Their complete description enables their powerful

utilization in selection or composition approaches. Indeed, quality characteristics account

for selection criteria in selection problems while they appear as local or global constraints

in composition issues. UML specifications of quality requirements (or offers for providers)

Fig. 8 UML QoS Priorities
submodel

Fig. 9 UML QoS Preferences
submodel

90 Software Qual J (2009) 17:65–98

123

need to be translated in a language such that Q-WSDL in order to be sent and used by

services selectors or composers. The model of QoS needs or offers should be established

with the help of an appropriate tool allowing to construct the UML model and to translate

this into an exchangeable language between interested parts. Any tool that uses our QoS

model will allow users to define their expectations, requirements and advertisements. A

tool that incorporates all of our proposed modeling constructs can easily be used to state

quality properties of the service. Moreover, a such tool can also involve coherence rules to

check the consistency of a model, with transitivity of priorities or propagation of depen-

dencies at different levels of specification.

6 Discussion

We have observed at the outset of the paper that quality has been variously defined. While

quality is undoubtedly a polysemous concept, using it in software engineering requires

agreement, even if local to a system or application domain, as to what is understood by

quality management and quality assurance during the engineering, operation, and main-

tenance of software, and therefore service-oriented systems. Quality modeling is in this

respect one of key activities. A quality model in this perspective has several purposes.

Prominent among these are (i) to highlight the information to account for when repre-

senting and reasoning about quality, (ii) to indicate how quality is measured so as to assist

in the assessment of a given software system, (iii) and to structure the information about

users’ and software engineers’ quality requirements. The quality model proposed in this

paper has been designed with the said three purposes in mind. It focuses on service-

oriented systems whose salient characteristic is dynamicity during operation, whereby

dynamicity herein amounts primarily to the uncertainty about the levels of quality that the

system achieves during operation. The uncertainty arises from the fact that the pool of

available services varies over time. This may be desirable w.r.t. quality when new, more

appropriate services appear in the pool of available services, but can also be undesirable

when some relevant services become unavailable resulting in inconsistent quality levels.

6.1 Experience

Service orientation is intended to enable large scale systems. Many competing services are

therefore available to perform the same tasks. In such a setting, the service composer aims

to select the set of services that optimally satisfies the quality considerations laid out in the

request, and this relative to alternative sets of services that can perform the same tasks. Our

quality model has been applied primarily to the problem of web service selection. In an

SOS, web service requesters specify tasks that need to be executed and the quality levels to

meet, whereas service providers advertise their services’ capabilities and the quality levels

they can reach. Service selectors then match to the relevant tasks, the candidate services

that can perform these tasks to the most desirable quality levels. One of the key problems

in QoS-aware service selection lies in managing tradeoffs among QoS expectations at

runtime, that is, situations in which service requesters specify quality levels that cannot be

simultaneously met. We have used the quality model presented in this paper within a wider

service selection framework (Herssens et al. 2008a), in order to be able to deal with QoS

tradeoffs. That framework consists of: (i) rich QoS models obtained by instantiating the

model in the present paper, used by service requesters when expressing QoS expectations

Software Qual J (2009) 17:65–98 91

123

and service providers when describing services’ QoS; and (ii) a multi-criteria decision

making technique that uses the models for service selection. The additional expressivity of

the quality model presented in the present paper proved a significant advantage in dealing

with QoS tradeoffs. Indeed, the multi-criteria method that was used requires the identifi-

cation of preferences over QoS values and priorities over QoS criteria, whereby a criterion

equates with a quality dimension. The conceptual bases laid out in the present paper proved

immediately useful in constructing a web service selection framework that can deal with

QoS tradeoffs.

The service selection framework (Herssens et al. 2008a) mentioned above uses a spe-

cific multi-criteria decision making method to rank alternative services. In our other work

(Herssens et al. 2008b), we have also used our quality model to develop a generic addon to

various service selection approaches so as to make these approaches aware of service

requesters’ priorities over quality dimensions and/or characteristics. Instead of developing

a particular service selection procedure which accommodates priorities between QoS

considerations, we provided an extension compatible with (i.e., that can be used with)

available selection approaches. Our approach is based on the premise that SOS operate in a

setting in which QoS levels vary and are observed at runtime. The approach is based on a

specific class of multi-criteria decision making techniques, called the outranking methods.

The approach enables the definition of a global priority constraint to be used as an ordinary

constraint in a service selection algorithm. We do not ask for a specific class of service

selection algorithms; any algorithm which proceeds to select the optimal services and

accounts for QoS considerations can be used in conjunction with the present proposal. This

is for instance the case with the reinforcement learning algorithm we suggested elsewhere

(Jureta et al. 2007a, b). The global priority constraint is relevant because: (i) it allows

priorities to be accounted for during service selection in algorithms that originally cannot

accommodate priorities; (ii) it can be integrated with various available service selection

algorithms, and regardless of their specific optimization functions; (iii) it enables automatic

optimization of user preferences by the service composer. It is our quality model that

provides the conceptual foundations for the definition of the global priority constraint, and

thereby the extension of service selection algorithms to accommodate richer specification

of quality-related requirements.

This quality model has primarily been applied to service-oriented systems, and we

presented it in that context in the present paper. In this respect, we cannot advance claims

on its applicability to other kinds of systems. We can however, identify arguments in

support for its wider relevance. First, preferences and priorities expressed by the stake-

holders (e.g., a system’s users, owners, and so on) are not a kind of information specific to

service-orientation. We have argued elsewhere (Jureta et al. 2008) that preferences and

priorities are expressed by the system’s stakeholders and should be accounted over the

course of the requirements engineering phase in the software development process.

Requirements engineering deals with the elicitation, analysis, and specification of stake-

holders’ functional and quality requirements. Decision on the computing paradigm to adopt

(e.g., service-orientation or agent-orientation, or a combination, or otherwise) arises in part

from the requirements that the stakeholders express. It follows that our quality model may

be used, at least as a starting point in the definition of quality models for kinds of systems

other than service-oriented ones. Second, we have used our model to extend the UML QoS

Framework, which is not specific to service-oriented systems. Below, we consider the

lessons learned from the use of our quality model in the context of service-oriented

systems.

92 Software Qual J (2009) 17:65–98

123

6.2 User evaluation

The quality model and the service selection approaches that arose from and use the model

have been used in cooperation with the European Space Agency, and the MERIS project.

While this does not provide enough empirical data on to reach definite conclusions on the

ease of use of the present quality model, some preliminary observations are available.

It was to be expected that a more expressive quality model requires more effort in use.

This is the case with our quality model. The additional effort equated to: (i) additional

training of the modeling participants that is necessary to understand the new modeling

primitives and their use; (ii) effort involved in acquiring and analysing the information to

carry over to the instances of the modeling primitives; (iii) effort involved in using the

instances of our quality model in decision-making during the engineering of a service-

oriented system. The effort involved in (i) and (ii) are topics for research in requirements

engineering, while (iii) is a concern for research in service selection. In practice, we have

encountered difficulties in relation to both issues (i) and (ii). In a separate discussion

(Jureta et al. 2008), we show that information about preferences and priorities is not

properly accounted for in ontologies for requirements engineering. The direct consequence

of this is that there is limited research on the elicitation and analysis of preferences and

priorities in requirements engineering, and thereby little systematic guidance on these

tasks. In addressing issue (iii), we have used multi-criteria decision making techniques

developed mainly in management science. Our experiences with the use of these tech-

niques are reported elsewhere (Herssens et al. 2008a, b). Overall, multi-criteria decision

making techniques allowed us to automate some of the tasks involved in using the

instances of our quality model to rank services, while accounting for preferences and

priorities of the service requesters. In addition, these techniques incorporate features that

allowed us to address issues (i) and (ii) to some extent. For example, and as explained

elsewhere (Herssens et al. 2008a, b), the methods we chose can cope with partial speci-

fications of preferences and priorities, thus limiting the amount of information to elicit

before instantiating our quality model. This is critical, for it reduces the efforts of both

kinds (i) and (ii) mentioned above.

A separate and difficult issue concerns dealing with change of quality dimensions or

characteristics, and/or preferences and priorities at runtime. It still remains unclear how

precisely such changes affect even the engineering of functional requirements, which

appear easier to pin down than quality requirements. Some changes can be managed. We

have performed and presented elsewhere (Jureta et al. 2007c) our investigations on the

impact changes in functional and quality requirements on the requirements engineering

process for SOS. We showed therein that keeping track of changes is an issue that can only

be properly dealt via appropriate tool support, although we did conclude that no easy to use

solution is available at present.

6.3 Strengths

Our model’s principal strength is its additional expressivity in comparison to related

quality models for SOS. This additional expressivity raised relevant questions in relation to

the problems of web service selection. Namely, we have shown elsewhere (Herssens et al.

2008a, b) that the use of our quality model enables us to capture more detailed information

from the service requesters—in particular, their preferences and priorities. This additional

information proves invaluable when dealing with QoS tradeoffs during service selection.

Software Qual J (2009) 17:65–98 93

123

Namely, when QoS levels requested by the users cannot be simultaneously reached,

preferences and priorities obtained by instantiating our quality model allow us to perform

tradeoffs in accordance with the requirements of the service requesters.

6.4 Weaknesses

We have observed in practice, within the context of the MERIS project, that additional

effort was required for the acquisition, analysis, and specification of preferences and

priorities. We have presented elsewhere (Herssens et al. 2008a, b) our first investigations

on how this additional effort can be reduced within a broader framework for service

selection in SOS. Our quality model does not feature primitives that are tailored to

managing change in quality dimensions and characteristics, and/or preferences and

priorities.

6.5 Future work

Work with more expressive models requires additional resources. Striking a balance

between expressivity and efficiency is a difficult question, with answers undoubtedly

confined to domain-specific experience. Experience in the use of the model points out that

additional effort involved in specifying preferences and priorities is relevant for it provides

guidance for service selection and composition in the face of uncertainty about which

services are available at any moment. Automating the elicitation of preferences and pri-

orities is a particularly relevant direction of future effort, especially as research and

practice moves towards automated service selection and composition in which preferences

and priorities can be revised and new elicited at runtime, then fed to automated service

composers. Combining Brafman and colleagues’ results (Brafman et al. 2006) with the

present quality model is of current interest.

Definition of quality dimensions and characteristics also requires guidance. Require-

ments engineering frameworks, such as, e.g., Tropos (Castro et al. 2002), can be used to

obtain initial functional and quality goals of the service requesters. Metric definition

needed for the writing of quality dimensions and quality characteristics has been treated for

instance by Basili and Rombach (1988) whose Goal-Question-Metric approach can be

deployed to obtain quality dimensions and characteristics in a systematic manner. The use

of our quality model within these frameworks is a topic of ongoing work.

We do not address in this paper the issue of model compatibility, that is, the situation in

which users and provider define the same quality property with different names or mea-

surement transformation. One appropriate approach towards ensuring the compatibility of

models amounts to annotate then with semantic information, then proceed to semantic

matching – the reader may be interested in the approach suggested by Zeng and colleagues

(Zeng et al. 2007), where service requests are translated by accounting for semantic

information that is available. Such a process could be applied to quality specifications

produced in our approach in order to avoid compatibility issues.

Another relevant consideration for future effort is the provision of more precise

semantics for the various submodels and the subsequent more rigorous definition of the

relationships between the proposed submodels. Achieving this aim requires formal

semantics which can be obtained in two ways. One is to locate the model within a specific

application domain, and therefore have domain-specific semantics. Another way is to

attempt to provide a general formal semantics for the notion of quality dimension and build

94 Software Qual J (2009) 17:65–98

123

from there. In both cases the effort is currently only preliminary. Careful choices among

alternative semantics and their potential extensions is needed, and must therefore be rel-

egated to a separate future treatment.

Further use of the suggested quality model will allow us to collect additional data from

its users. At present, such data is limited. Future users need to be surveyed, so as to obtain

their evaluation and indications on their experience with the model. Obtaining such data is

critical, for it will allow more appropriate guidance to the identification and prioritization

of the various directions for future work.

7 Conclusions

Expressive quality models are needed to let requesters specify quality expectations, pro-

viders advertise service qualities, and composers finely compare alternative services.

Having observed many similarities between various quality models proposed in the liter-

ature, we reviewed these and integrated them into a single quality model for service-

oriented systems. We advance current research by integrating precise submodels for

dependency and priority information closely with concepts and constructs already estab-

lished as relevant when performing quality modeling.

The proposed quality model, the QVDP, integrates concepts and constructs for exten-

sive representations of quality information. A simple, yet realistic example illustrated the

relevance of instantiating the various proposed concepts and constructs when performing

quality modeling. We highlighted the need for integration of dependency and priority

information within any quality model for services. We pointed out how lack of dependency

and priority information limits the value of various prior quality models. As a solution, we

proposed precise submodels for representing dependencies and priorities between quality

dimensions and between quality characteristics. The comparison of QVDP with prior

quality models indicated that extending a particular quality model with dependency and

priority submodels is possible. It also highlighted that an expressive and practical quality

model ought to closely integrate concepts and constructs for all of the quality information

already established as relevant in related research, with the concepts and constructs of the

dependency and priority submodels. To achieve such close integration between the various

relevant concepts and constructs, we proposed QVDP as an integrative model instead of

extending an existing quality model with the dependency and priority submodels. Our

intention is for the proposed QVDP model to serve as a reference point for further

developments in quality models for service-oriented systems.

While we have used simple examples to illustrate the use of QVDP, parts of the model

have been employed and tested elsewhere (Jureta et al. 2007a, b). There, we QVDP to

specify quality expectations in service requests and defining criteria to guide the learning

of optimal service compositions. Our proposed extension of the UML metamodel for QoS

(Object Management Group 2005) further facilitates the use of novel concepts and con-

structs present within QVDP in actual applications. Our current efforts focus on giving

formal semantics to parts of the model so that some automated reasoning can be performed

and enable verification of quality expectations expressed in service requests, along with the

assessment and prediction of system quality.

Acknowledgments We are grateful to Emmanuel Mathot of the European Space Agency, who provided
precise information about the GPOD project and assisted our efforts in describing quality information of
services related to the GPOD project. The first author acknowledges funding from the Belgian ICM/CIM
Doctoral Fellowship Program.

Software Qual J (2009) 17:65–98 95

123

References

Basili, V. R., & Rombach, H. D. (1988). The TAME project: Towards improvement-oriented software
environments. IEEE Transactions on Software Engineering, 14(6), 758–773.

Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R., et al. (2005). Semantic web services
framework (swsf).

Berners-Lee, T., Hendler, J., & Lassila, O. (2001, May). The semantic web. Scientific American.
Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M., Macleod, G. J., & Merrit, M. J. (1978). Characteristics

of software quality. North-Holland.
Brafman, R. I., Domshlak, C., & Shimony, S. E. (2006). On graphical modeling of preference and

importance. Journal of Artificial Intelligence Research, 25, 389–424.
Brahnmath, G., Raje, R. R., Olson, A., Auguston, M., Bryant, B. R., & Burt, C. C. (2002). A quality of

service catalogue for software components. In Proceedings of the Southeastern Software Engineering
Conference.

Castro, J., Kolp, M., & Mylopoulos, J. (2002). Towards requirements-driven information systems engi-
neering: the Tropos project. Information Systems, 27(6).

Christensen, E., Curbera, F., Meredith, G., & Weerawarana, S. (2001). Web services description language
(wsdl 1.1).

International Business Machines (IBM) Corporation. (2005). Service-oriented architecture. IBM Systems
Journal, 44(4).

D’Ambrogio, A. (2006). A model-driven wsdl extension for describing the qos of web services. In Pro-
ceedings of the International Conference on Web Services (ICWS’06).

Deming, W. E. (1982). Quality, productivity, and competitive position. Massachusets Institute of Tech-
nology, Center for Advanced Engineering Study.

Feigenbaum, A. V. (1951). Quality control: Principles, practice, and administration. McGraw-Hill.
Frolund, S., & Koistinen, J. (1998). Qml: A language for quality of service specification. Technical report.

Palo Alto, CA: HP Laboratories.
Gravin, D. A. (1988). Managing quality: The strategic and competitive edge. Free Press.
Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge Acquisition,

5(2), 199–220.
Herssens, C., Jureta, I. J., & Faulkner, S. (2008a). Capturing and using QoS relationships to improve service

selection. In Proceedings of the International Conference on Advanced Information Systems Engi-
neering (CAiSE’08).

Herssens, C., Jureta, I. J., & Faulkner, S. (2008b). Dealing with quality tradeoffs during service selection. In
Proceedings of the IEEE International Conference on Autonomic Computing (ICAC’08).

Horrocks, I. (2002). DAML+OIL: A description logic for the semantic web. IEEE Data Engineering
Bulletin, 25(1), 4–9.

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., & Dean, M. (2003). Swrl: A semantic
web rule language combining owl and ruleml.

IEEE. (1989). Software engineering standards. IEEE.
International Organization for Standardization. (1986). ISO 8402 Quality management and quality assur-

ance—Vocabulary. International Organization for Standardization.
International Organization for Standardization. (1998). Cd15935 information technology: Open distributed

processing—reference model—quality of service.
Ishikawa, K. (1985). What is total quality control? The Japanese way. Prentice Hall.
Juran, J. M. (1951). Quality control handbook. McGraw-Hill.
Jureta, I. J., Faulkner, S., Achbany, Y., & Saerens, M. (2007a). Dynamic task allocation wihin an open

service-oriented mas architecture. In Proceedings of the 6th International Joint Conference on
Autonomous Agents and Multi-Agents Systems (AAMAS’07).

Jureta, I. J., Faulkner, S., Achbany, Y., & Saerens, M. (2007b). Dynamic web service composition within a
service-oriented architecture. In Proceedings of the International Conference on Web Services
(ICWS’07).

Jureta, I. J., Faulkner, S., & Thiran, P. (2007c). Dynamic requirements specification for adaptable and open
service-oriented systems. In Proceedings of the International Conference on Service-Oriented Com-
puting (ICSOC’07).

Jureta, I. J., Mylopoulos, J., & Faulkner, S. (2008). Revisiting the core ontology and problem in require-
ments engineering. In Proceedings of the International Conference on Requirements Engineering
(RE’08).

Keller, A., & Ludwig, H. (2003). The wsla framework: Specifying and monitoring service level agreements
for web services. Journal of Network Systems Management, 11(1).

96 Software Qual J (2009) 17:65–98

123

Kephart, J. O., & Chess, D. M. (2003). The vision of autonomic computing. IEEE Computer, 36(1), 41–50.
Loyall, J. P., Schantz, R. E., Zinky, J. A., & Bakken, D. E. (1998) Specifying and measuring quality of

service in distributed object systems. In Proceedings of the International Symposium on Object-
Oriented Real-Time Distributed Computing.

Maximilien, E. M., & Singh, M. P. (2004). Toward autonomic services trust and selection. In Proceedings of
the International Conference on Service-Oriented Computing (ICSOC’04).

McIlraith, S. A., & Martin, D. L. (2003). Bringing semantics to web services. IEEE Intelligent Systems,
18(1), 90–93.

McIlraith, S. A., Son, T. C., & Zeng, H. (2001). Semantic web services. IEEE Intelligent Systems, 16(2), 46–
53.

Object Management Group. (1997). The corba trading services.
Object Management Group. (2005, May). Uml profile for modeling qos and fault tolerance characteristics

and mechanisms specification, v1.0.
Osterweil, L. (1996). Strategic directions in software quality. ACM Computing Surveys, 28(4), 738–750.
Papazoglou, M. P., & Georgakopoulos, D. (2003). Service-oriented computing. Communications of the

ACM, 46(10), 24–28.
Ran, S., (2003). A model for web services discovery with QoS. ACM SIGecom Exchanges, 4(1), 1–10.
Reeves, C. A., & Bednar, D. A. (1994). Defining quality: Alternatives and implications. The Academy of

Management Review, Special Issue: Total Quality, 19(3), 419–445.
Shadbolt, N., Berners-Lee, T., & Wendy, H. (2006). The semantic web revisited. IEEE Intelligent Systems,

21(3), 96–101.
Skene, J., Lamanna, D. D., & Emmerich, W. (2004). Precise service level agreements. In Proceedings of the

International Conference on Software Engineering (ICSE’04).
Staab, S., & Studer, R. (Eds.). (2004). Handbook on ontologies. international handbooks on information

systems. Springer.
Staehli, R., Eliassen, F., Aagedal, J. O., & Blair, G. (2003). Quality of service semantics for component-

based systems. In Proceedings of the International Conference on Reflective and Adaptive Middleware
Systems.

Tennenhouse, D. (2000). Proactive computing. Communications of the ACM, 43(5), 43–50.
Tosic, V., Esfandiari, B., Pagurek, B., & Patel, K. (2002). On requirements for ontologies in management of

web services. In Proceedings of the International Workshop on Web Services, e-Business, and the
Semantic Web (WES’02).

Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J. & Sheng, Q. Z. (2003). Quality driven web services
composition. In Proceedings of the International World Wide Web Conference (WWW’03).

Zeng, L., Lei, H., & Chang, H. (2007). Monitoring the QoS of web services. In Proceedings of the
International Conference on Service Oriented Computing (ICSOC’07).

Zhou, C., Chia, L.-T., & Lee, B.-S. (2004). Daml-qos ontology for web services. In Proceedings of the
International Conference on Web Services (ICWS’04).

Author Biographies

Ivan J. Jureta has, after graduating, summa cum laude, received the
Master in Management and Master of International Management,
respectively, at the Université de Louvain, Belgium, and the London
School of Economics, both in 2005. He is currently completing his
Ph.D. thesis at the University of Namur, Belgium, under Prof. Sté-
phane Faulkner’s supervision. His thesis focuses on quality
management of adaptable and open service-oriented systems enabling
the Semantic Web.

Software Qual J (2009) 17:65–98 97

123

Caroline Herssens received a Master Degree in Computer Science in
2005 at the Université de Louvain. In 2006, she graduated a Master in
Business and Administration from the University of Louvain, with a
supply chain management orientation. She is currently a teaching and
research assistant and has started a Ph.D. thesis at the information
systems research unit at Université de Louvain. Her research interests
comprise service-oriented computing, conceptual modeling and
information systems engineering.

Stéphane Faulkner is an Associate Professor in Technologies and
Information Systems at the University of Namur (FUNDP) and an
Invited Professor at the Louvain School of Management of the Uni-
versité de Louvain (UCL). His current research interests revolve
around requirements engineering and the development of modeling
notations, systematic methods and tool support for the development of
multi-agent systems, database and information systems.

98 Software Qual J (2009) 17:65–98

123

	A comprehensive quality model for service-oriented systems
	Abstract
	Introduction
	Motivation and case study
	Motivation
	Case study
	Functional requirements
	Quality requirements

	Quality model for service-oriented systems
	Quality characteristics submodel (Q)
	Quality value submodel (V)
	Quality dependency submodel (D)
	Quality priority submodel (P)

	Comparison with prior quality models
	Q-WSDL
	WSLA
	DAML-QoS
	Maximilien and Singh
	Zeng and colleagues

	QVDP and QoS in UML
	Elements of the metamodel
	Comparison of the QVDP and the UML QoS Framework metamodel
	Extending the UML QoS Framework metamodel
	Case study

	Discussion
	Experience
	User evaluation
	Strengths
	Weaknesses
	Future work

	Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

