
Contents lists available at SciVerse ScienceDirect
Information Systems

Information Systems] (]]]])]]]–]]]
0306-43
http://d

☆ This
paper [1

n Corr
E-m

borgida
jm@disi

Pleas
Syste
journal homepage: www.elsevier.com/locate/infosys
Agile requirements engineering via
paraconsistent reasoning$

Neil A. Ernst a,n, Alexander Borgida b, Ivan J. Jureta c, John Mylopoulos d

a Department of Computer Science, University of British Columbia, Canada
b Department of Computer Science, Rutgers University, United States
c Fonds de la Recherche Scientifique – FNRS & Department of Business Administration, University of Namur, Belgium
d Dipartimento di Ingegneria e Scienza dell'Informazione, University of Trento, Italy
a r t i c l e i n f o

Keywords:
Paraconsistency
Agile methods
Software requirements
Requirements evolution
79/$ - see front matter & 2013 Elsevier Ltd.
x.doi.org/10.1016/j.is.2013.05.008

is an expanded and updated version of a
].
esponding author.
ail addresses: neil@neilernst.net, nernst@cs.u
@cs.rutgers.edu (A. Borgida), ivan.jureta@fun
.unitn.it (J. Mylopoulos).

e cite this article as: N.A. Ernst, et
ms (2013), http://dx.doi.org/10.1016
a b s t r a c t

Innovative companies need an agile approach towards product and service requirements,
to rapidly respond to and exploit changing conditions. The agile approach to requirements
must nonetheless be systematic, especially with respect to accommodating legal and non-
functional requirements. This paper examines how to support lightweight, agile require-
ments processes which can still be systematically modeled, analyzed and changed. We
propose a framework, RE-KOMBINE, which is based on a propositional language for
requirements modeling called Techne. We define operations on Techne models which
tolerate the presence of inconsistencies. This paraconsistent reasoning is vital for
supporting delayed commitment to particular design solutions. We evaluate these
operations with an industry case study using two well-known formal analysis tools. Our
evaluations show that the proposed framework scales to industry-sized requirements
model, while still retaining (via propositional logic) the informality that is so useful during
early requirements analysis.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

It is increasingly uncommon for software systems to be
fully specified before implementation begins. This is because
uncertainty about the right requirements is inescapable.
Furthermore, it is highly desirable to avoid premature
commitment by being able to change/revise requirements
throughout the development lifecycle. Being flexible in this
fashion is a source of competitive advantage for a business;
for example, by delivering the correct product before com-
petitors. The notion that one should engage inwhat has been
called “big design up front” as part of the design activity is no
All rights reserved.

n earlier conference

bc.ca (N.A. Ernst),
dp.ac.be (I.J. Jureta),

al., Agile requirement
/j.is.2013.05.008i
longer defensible [2], since inevitably early plans must be
abandoned, or at best revised. A variety of studies and
experience reports (most recently [3]) have shown that
requirements changes are very expensive to accommodate
and constitute the most frequent cause of project failures.

There is a shift, instead, to methods of software develop-
ment which avoid premature commitment to decisions. The
central tenet of these methods, including most Agile meth-
odologies, is that requirements are discussed iteratively.
These requirements are often manifested as very brief user
stories, which serve as conversation starters with business
representatives. A major concern with such lightweight
requirements “engineering” is that non-functional require-
ments, such as security, are often neglected since system
functionality is the focus [4].

While this lightweight approach to Requirements Engi-
neering (RE) has become popular in many segments of
industry, the IEEE standard for software requirements [5]
uses words like “correct” and “unambiguous” to describe its
s engineering via paraconsistent reasoning, Information

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008
mailto:nernst@cs.ubc.ca
mailto:ivan.jureta@fundp.ac.be
mailto:jm@disi.unitn.it
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008

N.A. Ernst / Information Systems] (]]]])]]]–]]]2
recommended practice for RE. Thus, many previous
approaches to the problem of system specification have
methodological constraints insisting that conflicts and
obstacles be resolved before solutions are identified. It is
rarely, if ever, possible to achieve these criteria. We argue
that the above shift demands a much more flexible
approach to requirements modeling and analysis.

In this paper we introduce a framework, RE-KOMBINE,
which supports this shift to flexibility. The framework
represents possibly contradictory requirements as assertions
about the current state of the requirements model, allowing
us to reason paraconsistently about requirements problems.
In paraconsistent reasoning local inconsistencies are not
propagated globally, “polluting” all inferences, as in standard
logic. This paraconsistent reasoning accommodates flexible,
agile decision-making. The chief advantage of our approach
is that it permits derivation of useful knowledge about
problems of interest in the moment, while postponing
decisions about currently inconsistent states of the problem
until a decision must be made.

Example 1. To illustrate the usefulness of deferring con-
flict resolution, consider the requirements fragment in
Fig. 1. The figure represents part of the business require-
ments (“use mobile terminals”) together with the imposed
requirements from an applicable security standard (PCI-
DSS, which we discuss fully in Section 4.1). The red,
X-headed relation between requirements twep and d4:1:1
represents a conflict. In this case, the conflict is between
the business-motivated use of the Wireless Encryption
Protocol (WEP) and the security problems with WEP.
Domain assumptions (in square boxes) are taken to be
asserted truths (in contrast to goals, which are desired, or
tasks, which are proposed parts of implementations).
Existing approaches to requirements analysis either (i)
insist that the conflict be resolved before proceeding with
further reasoning (e.g., KAOS [6]) or (ii) represent the
conflict as trade-offs for higher-level goals (e.g., [7]).
Assuming that we have an existing WEP solution in

place, it also must satisfy the PCI-DSS. The conflict in this
model emerges as a logical inconsistency. Because our
framework is paraconsistent, its reasoning can isolate and
Fig. 1. Fragment of the requirements model from the payment card case (Section
reader is referred to the web version of this article.)

Please cite this article as: N.A. Ernst, et al., Agile requirement
Systems (2013), http://dx.doi.org/10.1016/j.is.2013.05.008i
work around the conflict for the time being, by informing
the requirements engineer of conclusions that can be
satisfied regardless. This is useful if, for example, the need
for compliance is not immediate, and time and money can
be better spent elsewhere. We also flag the conflict for the
requirements engineer, who later has the choice of pro-
ceeding with one of the conflicting choices, or insisting
that the model be revised (e.g., remove our WEP equip-
ment). In the example, the final system might instead
make use of Bluetooth for wireless transmission. □

In practice, then, the approach for a requirements
engineer is as follows (italicized text indicates steps not
addressed in this paper).
1.
4.1)

s e
Elicit requirements from stakeholders.

2.
 Create requirements model using RE-KOMBINE, writ-

ten in the T1 language. The model will include goals,
domain assumptions, existing and possible tasks, and
the structure of the problem space.
3.
 Query RE-KOMBINE for possible solutions, if any, to
this model.
(a) If RE-KOMBINE indicates that a solution exists,

understand whether this is a controversial or
uncontroversial solution (i.e., whether paraconsis-
tent reasoning was necessary). If needed, choose
one of the options in the conflict through further
interaction with the stakeholders. If it is necessary
to remove the conflict after choosing one option,
then remove one or all other options in the conflict,
which will remove the conflict. The decision to do
so is indicated by assessment of the cost of revision,
using, e.g., real options theory [8].

(b) If no solutions exists, repeat elicitation.
. (For

ngin
4.
 Implement specification indicated by answer to queries on
RE-KOMBINE.
5.
 Update the requirements model when and where the
existing problem changes, e.g., if new requirements are
discovered or new domain assumptions constrain the
solutions.
Here is an example showing how this might work.
interpretation of the references to color in this figure legend, the

eering via paraconsistent reasoning, Information

http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008

Fig. 2. The hypothetical Lucene scenario, showing conflict between storage format and internationalization.

N.A. Ernst / Information Systems] (]]]])]]]–]]] 3
Example 2. Lucene1 is a popular text retrieval library. One
recent feature, tracked as LUCENE-1458,2 is the addition of
a flexible indexing approach to storing text. The require-
ments might be represented as shown in Fig. 2.
Note the conflict between the implemented text-storage

approach tutf8, supporting gbytes, and the need for tutf16 for
Unicode support guni, which says that if we want both
flexible indexing (gflex) and need internationalization sup-
port (gi18n) we have an inconsistent model. At this point
we would like to signal the requirements engineer of this
inconsistency, leaving it to him/her to resolve the problem.
This might mean changing the design, dropping support
for internationalization, or deferring the decision until the
development of the rest of the feature was completed (e.g.,
satisfying gpost). □

What actually happened in this scenario was that the
need for internationalization (a non-functional require-
ment) was never explicitly connected to the change in
storage format for the new feature, and only a few days
prior to release was the conflict understood. This example
shows the inter-twining of the two motivations for our
work: (1) the importance of requirements, because the
portability/internationalization non-functional require-
ment did not seem to be an important factor in the ad
hoc requirements approach of Lucene's developers; (2) the
usefulness of delayed commitment in resolving funda-
mental contradictions in design approaches, such as the
Unicode issue. For Lucene, in particular, the ability to
develop experimentally is important, and we would not
want to insist on Unicode support until the rest of the
feature's design was properly understood.

In [9], we introduced the notion of a Requirements
Engineering Knowledge Base/Theory REKB for maintaining
a requirements model. In this paper, we build on the
1 http://lucene.apache.org
2 https://issues.apache.org/jira/browse/LUCENE-1458

Please cite this article as: N.A. Ernst, et al., Agile requirement
Systems (2013), http://dx.doi.org/10.1016/j.is.2013.05.008i
notion of an REKB to focus on the case where problems are
changing and possibly inconsistent (i.e., contain contra-
dictory assertions). We adopt a design science research
methodology (as explained in [10]), focusing on the
problem investigation and solution validation aspects,
and leaving evaluation of the solution to future work.
Our research questions are
RQ1
s eng
What formal mechanisms are necessary to support
reasoning with inconsistent requirements models?
RQ2
 Is there a scalable algorithm for automating analyses
of such models?
To answer these questions, this paper makes the follow-
ing contributions:
�
 motivates the problem by identifying the importance of
accommodating variability by supporting paraconsis-
tency in software development, and modifying the way
in which the requirements are queried;
�
 proposes a framework, RE-KOMBINE, for finding solu-
tion specifications to possibly inconsistent, goal-
oriented requirements problems, including:
○ language T1, in Section 3.1;
○ consequence relation over T1 formulas ;
○ formally specifying operators querying/modifying

REKB using T1 and , in Section 3.3;
○ implementing these operators on top of existing

technologies;
i

�

explicitly introduces paraconsistent reasoning into a
prototype tool (Section 3.4);
�
 evaluates the framework and its scalability with a
retrospective industrial case study (Section 4).
This paper is an updated and expanded version of an
earlier conference paper [1]. The most important extensions
over [1] are: (1) a detailed discussion of paraconsistent
neering via paraconsistent reasoning, Information

http://lucene.apache.org
https://issues.apache.org/jira/browse/LUCENE-1458
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008

N.A. Ernst / Information Systems] (]]]])]]]–]]]4
consequence () to explain several semantic choices; (2) a
formal introduction of the Techne language T1 used in the
earlier paper; (3) a formal definition of the candidate
solution concept; (4) a greatly expanded set of paraconsis-
tent operators to include those creating REKB and those
finding conflicts.

Notation: We use the following conventions in our
paper, indexed or primed as necessary.
�

P
S

Capital Roman letters (A, B, C, …) represent typed sets.

�
 Capital Greek letters (Π, Δ, Θ) represent arbitrary sets

of formulas.

�
 Small Greek letters (ϕ, ψ , δ, …) represent arbitrary

formulas.

�
 Small Roman letters represent specific atoms (e.g., a1,

a2, b3).
�
 ⊥ reads False.

2. Paraconsistency and agile requirements evolution

2.1. Inconsistency and Conflict

The ability to represent conflicts between requirements
is an essential part of any requirements modeling lan-
guage. In formal logic, a theory T is said to be inconsistent
if one can derive False=⊥, from T . Classical logic trivializes
in the sense that anything can be derived from an incon-
sistent T (ex falso quodlibet). This makes inconsistent
REKB based purely on classical logic useless for solving
requirements problems

There are several ways to interpret the presence of a
conflict relation between requirements ϕ and ψ . The
conflict might mean that neither requirement can be
satisfied. Logically this might be recorded as ϕ-⊥ and
ψ-⊥. The conflict could also mean that at most one, but
not both can be satisfied, recorded as ϕ∧ψ-⊥. Finally, it
could be more drastic, and suggest that the entire model
must be resolved to remove the conflict. Part of searching
for solutions to requirements problems is to find ways to
ensure at most one of ϕ or ψ , where ϕ and ψ are in conflict,
is satisfied.

In the Requirements Engineering (RE) research com-
munity, the term “conflict” has typically been used to
denote social disagreement over the nature of the system
requirements. Robinson et al. [11] define it as “require-
ments held by two or more stakeholders that cause an
inconsistency”. The term “inconsistency” denotes the
technical, formal existence of a “broken rule” [12].
Zowghi and Gervasi [13] show that “consistency” is
directly related to requirements “completeness”: a more
complete requirements document is often less consistent
(since more competing requirements are introduced).

In this paper, the conflict relation is formally between
two or more requirements, and not between stakeholders.
Any conflicts between stakeholders, such as a disagree-
ment over terminology, are the purview of other techni-
ques (e.g., negotiation and model merging). A potential
conflict is the presence in a requirements engineering
knowledge base REKB of rules of the form ϕ∧ψ-⊥, while
lease cite this article as: N.A. Ernst, et al., Agile requirement
ystems (2013), http://dx.doi.org/10.1016/j.is.2013.05.008i
inconsistency is the assertion/choice of literals/atoms that
force REKB to classically entail ⊥. Ultimately, we not only
want to permit conflict (and possibly inconsistency) to be
present; we also want to specify what we ought to do
when inconsistency is detected.

Classical propositional logic and first-order logic cannot
tolerate inconsistency, in the sense that no useful reason-
ing can be done in its presence; yet, in the RE domain,
tolerating inconsistency is important. Nuseibeh et al. [14]
give a few important reasons:
1.
s e
to facilitate distributed collaborative working;

2.
 to prevent premature commitment to design decisions;

3.
 to ensure that all stakeholder views are taken into

account;

4.
 to focus attention on problem areas (of the specification).

Perhaps the most useful reason for the case of evolving
requirements problems is the second one. Avoiding pre-
mature commitment, in the sense of Thimbleby [15],
means to wait until the “last responsible moment” to
make decisions regarding the system. Not only does this
apply to deciding how to satisfy our goals, but also in the
choice of those goals themselves. Tolerating inconsistency
therefore allows us to continue to make progress on design
(and even implementation) while fire-walling the conflict-
ing parts of the system. Section 4.1 will show how this
becomes crucial in our case study.

In our case, part of tolerating inconsistency in the REKB in-
volves paraconsistent reasoning. A paraconsistent logic, broadly,
is one which does not trivialize in the presence of incon-
sistency. Section 3.3 will show how we define operators on
the knowledge base that continue to give meaningful answers
even when inconsistency is present.

We start from Zave and Jackson's “solution to the require-
ments problem” framework [16]: given requirements R, and
domain assumptions D, find specification S, satisfying D∪S⊢R
under the condition that D∪S is consistent. This is the
classical logical consequence relation, ⊢. Implicit in this
formulation is that one can distinguish formulas/atoms
representing requirements from ones representing specifica-
tions, and that D contains formulas that somehow connect
these.

We modify this to deal with goal-oriented specifica-
tions (of the kind illustrated in Figs. 1 and 2), and add some
details as follows: we are given disjoint sets of (1) goals G,
(2) tasks T, and (3) domain assumptions D, together with a
set R of (4a) refinements that indicate how goals and
possibly tasks may be achieved, and (4b) conflicts between
elements of T∪G∪D; plus a subset desired(G) of desired
goals; we must find specifications S that are minimal
subsets of T such that

D;R; S⊢desiredðGÞ ð1Þ
and D∪R∪S is classically consistent.

Example 3 (Example 1 revisited). We can review the
difficulty with consistency in Example 1, by formalizing
the requirements problem: R¼ ftdione-gmob; twep-gmob;

dimpl-t wep; d4:1:1-g4:1; g4:1-gencrypt ; twep∧d4:1:1-⊥g, D¼
fd4:1:1; dimplg. Note that dimpl appears in D, reflecting the
ngineering via paraconsistent reasoning, Information

http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008

N.A. Ernst / Information Systems] (]]]])]]]–]]] 5
fact that this business had already implemented a WEP
WiFi solution.
If one now desires to find a minimal subset S of the task

specifications T ¼ ftwep; tdioneg available in R which achieves
goals desiredðGÞ ¼ fgmob; gencryptg, there is no classical solu-
tion to D∪R∪S⊢desiredðGÞ, in the style of Zave and Jackson,
since D∪R is inconsistent.
To deal with possible inconsistencies, we replace ⊢ by ,

which is a special paraconsistent consequence relation.3

The remainder of this section is dedicated to exploring
what is “passed through” in order to reason appropri-
ately on inconsistent requirements problems.
For example, if we use a that looks for maximal

subsets of its theory then solution S2 ¼ ftdioneg can satisfy
D∪R∪S G, because dimpl is omitted from D. In this example,
the new solution specification says “implementing Blue-
tooth avoids the conflict with the PCI-DSS of the original
approach”.
In contrast, note that if one wanted only to find a

solution for the less ambitious set of goals G′¼ fgmobg,
there is a perfectly reasonable solution S′¼ ftdioneg. One
might want to classify solutions that rely in an essential
way on paraconsistent reasoning as “controversial”, and
call other solutions “uncontroversial”. In this example
there are only controversial solutions to the goals
fgmob; gencryptg, because the WEP insecurity is in conflict
while our network requires WEP. □

2.2. Possible logics for paraconsistency

Example 2 illustrates how paraconsistency can be a
fairly natural concept in solving the requirements pro-
blem. We survey here a number of possible approaches
to defining for dealing with paraconsistency in require-
ments. Some of these have been proposed by other
researchers, while others are among the choices we favor.
2.2.1. Maximal consistent subsets
A favorite approach in artificial intelligence and data-

base research for reasoning from an inconsistent theory Δ,
dating back at least to the work in logic of Rescher and
Manor [17], is to consider the set of maximally consistent
subsets of Δ:

MCðΔÞ ¼ fSjSDΔ; S⊬⊥;∄S′ such that S′DΔ; S′⊬⊥; S⊂S′g

Two approaches to defining an from this are
credulous:
3 Not all p

Please cite
Systems (2
Δ φ iff there exists Π∈MCðΔÞ such that Π⊢φ;

skeptical:
 Δ φ iff for all Π∈MCðΔÞ one has Π⊢φ.
While in other areas the skeptical approach makes more
sense, in RE the credulous approach is preferable since we
are interested in exploring possible alternative solutions.

There is however an aspect of the above approach
which is undesirable from the point of view of Require-
ments Engineering: In any specific situations we are
looking for a consistent set of tasks and goals which solve
araconsistent logics will do!

this article as: N.A. Ernst, et al., Agile requirement
013), http://dx.doi.org/10.1016/j.is.2013.05.008i
the requirements problem. If we allow implications to be
excluded, then we might miss inconsistencies between
these atoms. In other words, in finding maximally
consistent subsets one can avoid implications such as
α-⊥, which represent direct conflicts, or ones of the form
β-γ, which help reveal inconsistencies. Since the set of all
such implications (ImplicationsðΔÞ) in a Horn-logic theory
corresponding to a requirements problem is consistent in
any case, we impose the additional requirement that MC
choose only Π that contain ImplicationsðΔÞ.
2.2.2. Minimal repairs
A different approach to deal with inconsistency is to

consider potential repairs that restore consistency to Δ, and
then reason in these consistent theories. Such repairs
involve formulas that are removed from or added to Δ. It
makes sense to consider repairs that make as small a
change as possible and keep as many of the old formulas
as possible, thereby minimizing rework. Following Fagin
et al. [18], we say that a repair theory T1 of Δ is a smaller
change than T2 if T1 restores consistency to Δ, and either T1
has fewer deletions than T2

4 or T1 has the same deletions
as T2 but fewer insertions than T2. Furthermore, we
also want this to be a minimal change, in that there is
no theory T ′ that also repairs Δ with a smaller change
than T1.

In this approach formulas in ImplicationsðΔÞ are treated
as “integrity constraints”, which persist. (This idea was
suggested by [18] as a semantics for database updates.) It
has been shown [19] that the set of all such minimal
repairs is homomorphic toMCðΔÞ, so we arrive at the same
solution as in the previous subsection. The above approach
is clearly syntax-dependent in the sense that it depends on
how the formulas in the theory Δ are expressed. For
example, the formula p∧q in Δ would have to be removed
as a single unit, as opposed to having the choice of
removing either p or q in case Δ contained fp; qg instead
of ðp∧qÞ. To avoid syntax-dependence, researchers, includ-
ing Lembo et al. [19], usually consider dealing instead with
the logical closure Δn of the theory. Of course, if Δ is
inconsistent then its logical closure is the set of all
formulas, and is of no interest. Instead, one considers the
set lclðΔÞ of logical consequences of consistent subsets of
Δ, once again insisting on including all ImplicationsðΔÞ in
such subsets.

In the case of our language T1 (see below), correspond-
ing to propositional Horn theories, there are no conjunc-
tions being asserted in Δ, only atoms, and so the only
additions in lclðΔÞ are intermediate goals that can be
derived by Horn rules. For example, the use of this
approach would allow one to start from inconsistent
Δ¼ fa; b; a∧b-⊥; a-c; b-d; c∧d-gg, and use a consistent
subset of its logical closure such as fc; d; a∧b-
⊥; a-c; b-d; c∧d-gg to achieve G. This solution is unde-
sirable from the point of view of Requirements Engineer-
ing, since c and d are subgoals, not tasks. Therefore this
approach does not yield a new for our purposes.
4 That is, T−T1⊂T−T2.

s engineering via paraconsistent reasoning, Information

http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008

N.A. Ernst / Information Systems] (]]]])]]]–]]]6
2.2.3. Multi-valued logics
An alternative approach to deal with inconsistency is to

resort to a logic with non-standard truth values. An
example of this is Belnap's 4-valued logic [20], where an
atom can be assigned one of the truth values fTF; T ; F;∅g.
These are thought of as corresponding to subsets of
standard fTrue; Falseg, and make sense in a situation where
one accumulates evidence towards both the truth and
falsity of a formula. Thus TF corresponds to conflicting
evidence, while ∅ corresponds to no evidence. In this logic
there is no inconsistency per se, since even if one has
fa;b; a-:b; b-:ag,5 the effect is that both a and b receive
truth value TF, but no arbitrary formulas can be derived
with truth value T, as in a standard logic.

To arrive at a consequence relation, 4, based on this
idea, we follow a solution also used by Sebastiani et al. [7]:
create a new theory where for every atom such as a there
are two atoms EvidenceFor_a and EvidenceAgainst_a;
these will be assigned standard truth values, so that both
being True corresponds to truth value TF assigned to a,
while both being False corresponds to ∅. An implication
like a-:b is then replaced by EvidenceFora-

EvidenceAgainstb and EvidenceAgainsta-EvidenceForb.
Definite clauses such as a∧b-c are translated into a
series of implications: EvidenceFora∧EvidenceForb-
EvidenceForc, EvidenceAgainsta-EvidenceAgainstc, and
EvidenceAgainstb-EvidenceAgainstc. Finally, the assertion
of a in a theory then corresponds to asserting
EvidenceFora. If one calls the resulting theory
transformðΔÞ, then note that all Horn clauses are definite
and no negation appears, so that the theory is always
consistent.

One can then search for minimal (abductive) sets of
tasks S such that fEvidenceFort jt∈Sg classically entail
EvidenceForg, where g is a desired goal. Of course, S
together with the implications might also entail
EvidenceAgainstg. So, in this sense, contradictions are still
present, but they do not “infect” reasoning about all other
goals. One can therefore consider defining consequence
relation 4 such that Δ 4φ iff transformðΔÞ⊢EvidenceForφ
where transformðΔÞ is the above-sketched mapping of the
Horn theory Δ into rules and atoms involving evidence for
and against the atoms.

We remark that Sebastiani et al. have extended this for
the in goal model, which includes the so-called “soft-goals”
and “contribution links”, with the addition of
intermediate-strength truth values WeakEvidenceFor and
WeakEvidenceAgainst. This allows support for non-
functional requirements introduced in [21].

2.2.4. Default rules
Zowghi and Offen [22] and Ghose [23] both use default

logic as part of their approach to requirements modeling
and evolution. Zowghi and Offen approach things from a
verification perspective. Their central concern is to ensure
that the requirements specification is complete and con-
sistent following change. To evolve a specification, Zowghi
and Offen define a partial order over the requirements in
5 The two implications are equivalent to a∧b-⊥.

Please cite this article as: N.A. Ernst, et al., Agile requirement
Systems (2013), http://dx.doi.org/10.1016/j.is.2013.05.008i
order to select the requirements that should be removed
to maintain consistency. Like us, Ghose is concerned with
avoiding premature commitment. However, Ghose insists
on obtaining from an oracle the possible critical states of
system behavior, which he calls trajectories. With this
predictive oracle, the solutions to the requirements pro-
blem captured in his language can then be optimized. The
oracle is capturing significant contextual variation in the
assumptions.

In both these works, default rules are used to “complete
in a consistent manner” potentially incomplete require-
ments. However, there is no discussion on how to take an
inconsistent theory Δ and replace (some) formulas by
default rules in Reiter's default logic, say, in order to get
only consistent extensions. If we make all non-implica-
tions in Δ be defaults, then the result is equivalent to that
discussed in Section 2.2.1—finding maximal consistent
subsets. And if in fact we made only elements of D be
default, we could ask for minimal subsets of tasks that
solve the requirements problem, as desired.

We point out that their approach is intended to work for
general First Order Theories, while our work is intended for
the much more restricted case of Horn propositional the-
ories. Finally, it is important to note that both papers focus
on the logic of evolution, which can be quite complicated
since arbitrary formulas can be retracted.

2.2.5. Labeled quasi-classical logic
Besnard and Hunter's quasi-classical logic (QCL here-

after) [24] has a paraconsistent consequence relation
defined over a subset of proof rules from classical logic,
without ex falso quodlibet. QCL accepts standard definitions
of connectives and associated equivalences from classical
logic, so that the form of the premises does not affect the
conclusion in a proof. To enable the tracking of formulas in
deductions, and thereby inform the resolution of incon-
sistencies during RE and more generally in software
specification, Hunter and Nuseibeh [25] added labels
(as in Gabbay's labeled deductive systems [26]) on for-
mulas of QCL, and let the labels move through proof rules
of QCL. The result is Labeled QCL, which Hunter and
Nuseibeh used to permit the resolution of inconsistency
during specification development. This work prefigures
ours in using a paraconsistent logic for continuing to
reason in the presence of inconsistency, although different
inferences are drawn using the consequence relation in
Labeled QCL.

3. RE-KOMBINE

We now define a framework, RE-KOMBINE, for managing
the inconsistency in requirements problems. We do so by
viewing the requirements as a Requirements Engineering
Theory (REKB)—a set of requirements formulas, which is
manipulated by several operators, including ones allowing
us to check what can be deduced from it by logical inference.
We will use a paraconsistent inference relation . We
discussed in Section 2.2 a number of candidates for which
we have considered, and now proceed with it as a parameter
of our modeling language and our operator definitions. Our
framework consists of:
s engineering via paraconsistent reasoning, Information

http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008

N.A. Ernst / Information Systems] (]]]])]]]–]]] 7
�

P
S

a language, T1,

�
 various operators on REKB specified logically, and

�
 a tool implementing these operators.
We evaluate this framework in Section 4.

3.1. Requirements modeling language T1

Recall that our REKB needs to model the requirements
problem stated in the Introduction. To model this require-
ments problem, we use a variant of the Techne [27,9]
requirements modeling language, called Techne 1 (T1).
The reason why we call it T1 is that it is the smallest
sublanguage of the original Techne, which still allows us to
model a requirements problem analogous to Zave and
Jackson's.

In T1, we have the following concepts and relations:
�
 Goals (G), replace Zave and Jackson's Requirements, and
refer to desirable conditions and behaviors of the
system-to-be and/or its environment.
�
 Domain assumptions (D) refer to conditions assumed to
hold in the system-to-be itself or its environment, and
which the system-to-be will not be able to change
through its operation.
�
 Tasks (T) replace Zave and Jackson's Specification (S),
and refer to what we can do to realize goals.
�
 Refinements and conflicts, which we call Implications
(and denote Impl) hereafter, capture the refinement and
conflict relations among the terms in the preceding
three sets, using the language T1.

The requirements problem statement starts from the
above, and a set of desired goals desired(G), and seeks a
minimal subset of tasks S such that S∪D∪Impl desiredðGÞ.

The language T1 is specified by the following grammar,
whose start symbol is wff:

prop ::¼ pjqjrjsj… ð2Þ

sortedProp ::¼ propGjpropDjpropT ð3Þ

rule ::¼ ⋀
n

i ¼ 1
sortedPropi-sortedPropj ⋀

n

i ¼ 1
sortedPropi-⊥

ð4Þ

wff ::¼ sortedPropjrule ð5Þ
A T1 REKB Δ is a finite subset of the language T1.
The following extends the sorting of atomic proposi-

tions to a “type system” that covers all wffs and reflects
the ontology of Goals, Domain assumptions, Tasks, and
Implications:

Type ::¼GjDjTjRefinement implication

jRealization implicationjConflict implication ð6Þ
The followings are the typing rules for wffs using the

standard notation of programming languages, where the
colon “:” refers to the typing judgement, so that ψ : τ is
interpreted as “expression ψ has type τ.”

pG : G pD : D pT : T
lease cite this article as: N.A. Ernst, et al., Agile requirement
ystems (2013), http://dx.doi.org/10.1016/j.is.2013.05.008i
ϕ1 : X1;…;ϕn : Xn

⋀n−1
i ¼ 1ϕi-ϕn : Refinement implication

∃j; 1≤j≤ðn−1Þ; Xj ¼G

ϕ1 : X1;…;ϕn : Xn

⋀n−1
i ¼ 1ϕi-ϕn : Realization implication

∀j; 1≤j≤ðn−1Þ; Xj∈fT;Dg

ϕ1 : X1;…;ϕn : Xn

⋀n
i ¼ 1ϕi-⊥ : Conflict implication

∀j; 1≤j≤n; Xj∈fG;T;Dg

The informal reading of the implication types is as
follows:
�

s e
Refinement implication is needed in order to capture
the refinement relation, where a goal or task or domain
assumption is refined by two or more other goals, tasks,
or domain assumption instances. At least one of the
refining instances has to be a goal. This is because,
whenwe refine, we are moving across levels of abstrac-
tion, from less detailed, to more detailed information,
but we still have not reached the point where we
bottom out on tasks and domain assumptions only.
�
 Realization implication is used when we have knowl-
edge of what to do, and under which assumptions, in
order to operationalize a goal, task, or domain assump-
tion. When we have a realization relation to a goal, this
means that we are relating that goal to a way to satisfy
it, via tasks and domain assumptions. A convenient way
to think about realizations is that they tell us how the
possible designs of the system-to-be might satisfy the
goals. We do not, however, require that all realizations
target goals, since tasks can be abstract enough to
require adding detail on how to realize them. Realiza-
tion can also target a domain assumption, as some
tasks might be required in order to maintain a domain
assumption.
�
 Conflict implication is used to specify the conflict
relation, between any propositions which cannot be
satisfied together.

The above reflects the ideas in our work on the
Techne language: requirements problems are structured,
representing notions ranging from high-level require-
ments (sell more products) to low-level tasks (use Moneris
payment terminals). Hence the refinement implication.
A key part of solving requirements problems is to find
ways to refine requirements so they are eventually
reduced into tasks, and to record conflicts between
requirements.

3.2. What we can and cannot say using T1

We discuss in this section how relations in existing
requirements modeling languages can be defined in T1.
Our aim is to illustrate the versatility of the language,
despite its simplicity. We start by introducing the minimal
consistent inference (MCI) relation.

Definition 1. Suppose ImplðΔÞ returns all implications in
Δ. A proposition q in a T1 REKB Δ will be said to be in the
MCI relation to propositions fp1;…;pngDΔ, n≥1 if and
only if:
ngineering via paraconsistent reasoning, Information

http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008

N.A. Ernst / Information Systems] (]]]])]]]–]]]8
1.
assu
dec

P
S

ðp1∧⋯∧pn-qÞ∈ ImplðΔÞ;

2.
 ∄Π:Π ⊂ fp1;…; png and Π∪ImplðΔÞ q;

3.
 ∄γ:γ ∈ ImplðΔÞ; fγg ∪ f⋀n

i ¼ 1pig ⊢ ⊥.
The first condition requires that there be an implication
between the propositions. The second, minimality condition
requires that there be no subset of the premises from which
the consequence can be deduced via . The third condition
requires that the premises be consistent in one step.

We use MCI to define the concept of argument in T1. An
argument puts together the premises and the conclusion
which stand in an MCI relation.

Definition 2. The pair ðΠ; qÞ is an argument in a require-
ments theory Δ if and only if:
1.
 ΠDΔ,

2.
 q is in the MCI relation to all propositions in Π\ImplðΔÞ.

By restricting the types in premises and the conclusion
of arguments, we can define a taxonomy of relations, and
thereby illustrate that T1 can capture oft-cited relations in
requirements modeling languages.

MCI is the root of the relations taxonomy, and is
specialized onto the Refinement, Realization, and Conflict
relation. Each of these is defined by restricting the types
allowed in the premises and the conclusion, according to
the type system introduced above.

It is then straightforward to observe the following:
�
 The goal refinement relation from Darimont and van
Lamsweerde [28] can be defined in T1 as a specialization
of the Refinement relation. Namely, Goal Refinement in
T1 is the Refinement relation, in which all premises and
the conclusion are of type Goal. Recall that Darimont and
van Lamsweerde defined goal refinement as the relation
between a goal being refined and subgoals which refine
it, the latter having to satisfy three conditions: (i) be
sufficient to deduce the refined goal, (ii) be minimal, and
(iii) be consistent. All three conditions are satisfied here,
since Goal Refinement is a specialization of Refinement,
which is in turn a specialization of MCI.
�
 Yu and Mylopoulos [29] introduced task decomposition
in in (i-star). It is similar to goal refinement, with two
differences: (i) the requirement being refined/decom-
posed must be a task and (ii) it can be refined by any
combination of goals and tasks.6 Task Decomposition
can be defined in T1 as a specialization of the Realiza-
tion relation, in which all premises and the conclusion
are all of type Task.
�
 The goal operationalization relation in KAOS [30] is
similar to the means-ends relation in in. The idea of
both is that tasks should be executed in order to satisfy
goals. Operationalization in KAOS stands between goals
6 There is no concept in in [29] which corresponds to Domain
mption, so it is not allowed here to have Domain assumptions in a
omposition of a task.

lease cite this article as: N.A. Ernst, et al., Agile requirement
ystems (2013), http://dx.doi.org/10.1016/j.is.2013.05.008i
and constraints, whereby a constraint is operational, in
the sense that it is formulated in terms of objects and
actions available to the agents in/of the system. Means-
ends rather emphasizes the role of goals as reasons
why tasks are executed, i.e., a task exists in a require-
ments database because it is a means to a goal. The
Goal Operationalization relation, which captures the
idea of both goal operationalization and means-ends, is
a specialization of the Realization relation, in which all
premises are tasks or domain assumptions, and the
conclusion is a goal.

To see the kinds of conflict we can capture using our
Conflict relation, we first need the concept of Alternative.

Definition 3. Given ΠDΔ, Φ⊂Π is an alternative in Π if
and only if:
1.
s e
there is an argument ðΠ;⊥Þ;

2.
 Φ⊬⊥;

3.
 ∀Ψ :ΨDΠ if Ψ⊬⊥ then Φ⊄Ψ ; i.e., Φ is a maximally

consistent subset of Π;

4.
 Φ does not include only implications and/or domain

assumptions. In other words, Φ includes at least one
goal and/or task.

The set of all alternatives in Π is denoted AltðΠÞ.
Using the Alternative concept, we specialize the Con-

flict relation as follows:
�
 Type-A Conflict relation is the Conflict relation between
premises in the argument ðΠ;⊥Þ if and only if there are
at least two alternatives in Π, i.e., jAltðΠÞj≥2.
�
 Type-B Conflict relation is the Conflict relation between
premises in the argument ðΠ;⊥Þ if and only if
jAltðΠÞj ¼ 1. Informally, a Type-B conflict involves
domain assumptions which are blocking the satisfac-
tion of goals or the execution of tasks. If instances in Π
are in Type-B Conflict, then we have BlockðΠÞ ¼def
Π−AltðΠÞ, and we call BlockðΠÞ the set of blockers.
�
 Type-C Conflict relation is the Conflict relation between
premises in the argument ðΠ;⊥Þ if and only if jAltðΠÞj ¼
0. Type-C Conflict involves a minimally inconsistent set
which includes only Domain assumptions.

Example 4. Recall our running example using WEP and
the PCI-DSS (Example 1). Given the specialization of the
Conflict relation above, a Type-B conflict exists between
d4:1:1 and twep. There is no Type-A conflict since there are
no alternatives to tdione, and no Type-C conflicts. □

We can also relate Conflict in T1 with notions of conflict
in other requirements modeling languages.

In KAOS, the Conflict relation is also a minimally incon-
sistent set of requirements. Obstruction and Divergence
are two relations, also in KAOS, which involve domain
assumptions that block, in the sense discussed above, the
satisfaction of a goal or the execution of a task.

Table 1 summarizes the translation of conflict relations
identified in Robinson et al.'s survey [11] into T1. Conflicts
ngineering via paraconsistent reasoning, Information

http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008

Table 1
Translation to T1 of the conflict relation types in Robinson et al.'s survey [11].

Relation in the survey Corresponding relation in T1

Process-level deviation: Deviation of the actual process of
developing the system from the predefined process

Either a Type-B conflict, in which the blocker is a domain assumption stating the
deviation between the planned and actual development process, or a Type-C
conflict where one of the domain assumptions states that deviation

Instance-level deviation: An instance of an implemented
class violates a requirement

A Type-B conflict, which has one blocking domain assumption. That domain
assumption names the instance responsible for the violation, and the alternative in
the Type-B is the requirement violated by that instance

Terminology clash (also Structure clash): A member of the
semantic domain is being referred to using more than
one symbol/expression

None of the conflict relations captures terminology clashes. The terminology clash
is an error in the use of a requirements modeling language

Designation clash: A symbol/expression refers to two or
more different members of the semantic domain

As for the terminology clash, a designation clash is an error in the use of the
formalism, and cannot be captured in the formalism

Conflict: A set of requirements is logically inconsistent Conflict relation
Divergence (also Obstruction): A set of requirements is
logically inconsistent when a certain sequence of events
can occur

A Type-B conflict, where the blocked requirements are an alternative and the
blocker is a domain assumption describing the problematic sequence of events

Competition: A kind of divergence where particular
instances of a requirement can cause a divergence

A Type-B conflict, which has one blocking domain assumption. That domain
assumption names the instance responsible for the violation, and the alternative in
the Type-B is the requirement violated by that instance

N.A. Ernst / Information Systems] (]]]])]]]–]]] 9
listed in that table cannot obtain in T1 definitions that are as
convenient as, e.g., Type-A, Type-B, or Type-C Conflict rela-
tions. In a propositional formalism such as T1, there is no
elegant way to formally talk about instances of classes, and
their deviations: a proposition stating the deviation of an
instance will be different from a proposition stating normal
behavior of other instances, but there is no relation which
would say that the two propositions talk about instances of
the same class.
3.3. Operators for (paraconsistent) REKB

Having defined our language, we now turn to an opera-
tional definition of how to solve requirements problems. RE-
KOMBINE is defined in a functional style, specifying update
and query operators on the REKB, which are a modified version
of those first presented by Ernst et al. [9]. We describe the
operators in the style of Javadoc by naming the parameters
and their types (using ℘ðSÞ to represent the set of all subsets
of S), as well as the assumptions and effects of the operators.
Operators are transactional, leaving things untouched if an
exception occurs. For simplicity we omit in the definitions the
implicit parameter specifying which REKB is being considered;
of course, this could be added if one wanted to work on
multiple theories at the same time.

First, we need an operator to introduce new propositional
symbols (for goals, tasks, and domain assumptions, i.e., those
TYPEs from T1, introduced in Section 3.1), without asserting
them.

Operation 1. Declare-Atomic
@param atomName : String
@param sort : fG; T ;Dg
@effect Add typed atom to the symbol table of the REKB.
@throws an exception if the name is already used.
7 We do not show the retraction operator, for brevity. However, one
retracts only asserted formulas, not their implications, and so it is
uncontroversial.
Use the following operator to assert a formula as being
part of the requirements:
Please cite this article as: N.A. Ernst, et al., Agile requirement
Systems (2013), http://dx.doi.org/10.1016/j.is.2013.05.008i
Operation 2. Assert-Formula

@param wff: Formula
@effect Adds wff to the theory REKB.
@returns Boolean (False iff the resulting theory is classically
inconsistent).
@throws An exception is thrown if the wff is not well-formed or has
undeclared atoms.

Before proceeding to solve inconsistent requirements,
the user might want to discover the causes of the incon-
sistency. For this purpose the following operator should be
used:

Operation 3. Find-Reasons-For-Inconsistency
@returns ℘ð℘ðwffÞÞ where each element S of the set returned is a
minimal subset of REKB from which False can be classically derived:
S⊢⊥.

Note that if the REKB is consistent, then this operator
returns the empty set. Using this operator when an incon-
sistency is first signaled allows the user to find which
formulas cause inconsistency, and possibly repair things by
retracting some formulas and then possibly adding them
back corrected.7 Of course, the user may choose to keep the
REKB inconsistent, as we have argued.

The core operator that solves requirement problems is
next.

Operation 4. Paraconsist-Min-Goal-Achievement

@param desiredG : ℘ðGOALSÞ
@return TaskSets : ℘ð℘ðTASKSÞÞ consisting of all sets S of tasks such

that rekb∪S desiredðGÞ, and no subset of S has this property.

@throws exception if desiredG∪ImplicationsðrekbÞ⊢⊥.
s engineering via paraconsistent reasoning, Information

http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008

N.A. Ernst / Information Systems] (]]]])]]]–]]]10
The exception above occurs in the case when the goals
are conflicting in and of themselves: in Horn REKB, Implica-
tions(REKB) is always consistent, so if the addition of
wanted goals causes inconsistency then the goals must
conflict.

The Paraconsist-Min-Goal-Achievement operation sup-
ports what has been called “backward reasoning” in the RE
literature [7]. Backward reasoning sets some high-level
goals as desiderata, and determines a minimal set of tasks
that can accomplish those goals. In this sense Paraconsist-

Min-Goal-Achievement is an abductive search. Abduction
normally works from consistent theories, since one is not
interested in explanations of how g can be derived if one
assumes q and :q. We rely on the appropriate choice of
to provide a reasonable solution to abduction in the
presence of inconsistency. Note that the minimality of S
in the above specification also prevents from choosing S
that have conflicting tasks.

Note that this operator also supports paraconsistency
by allowing only a subset of the final goals to be passed in
as an argument, as opposed to adding to the REKB all top
level goals from the beginning. In this way, the require-
ments engineer can see what consistent solutions exist for
parts of the problem, and resolve inconsistency issues
incrementally.
Example 5. Consider again the requirements problem
defined in Example 1 as R¼ ftdione-gmob; twep-gmob;

dimpl-twep; d4:1:1-g4:1; g4:1- gencrypt ; twep∧d4:1:1-⊥g, D¼
fd4:1:1; dimplg. If we then let desiredG¼ fgmob; gencryptg, the
problem is classically inconsistent, meaning all and any
answers can be derived, since the subset fdimpl; d4:1:1;
twep∧d4:1:1-⊥g is inconsistent. However, given an appro-
priate paraconsistent , the operation Paraconsist-Min-

Goal-Achievement can identify an answer S1 ¼ ftdione;
d4:1:1g. This supports our desire to continue to reason
despite a conflict. □

When the REKB is inconsistent, paraconsistent reasoners
usually ignore certain formulas (or their consequences), in
order to avoid ex falso quodlibet. Such solutions may be
somewhat unintuitive and bear examination by the
requirements engineer. However, some goals can be
achieved without involving any “questionable” formulas
—i.e., it is as if the REKB is consistent as far as the goals
concerned. We would like such cases to be distinguished,
much like the concept of FREE formulas in Hunter and
Nuseibeh's LQCL approach [31]. Example 1 Revisited illu-
strated the problem, and called for solutions to be marked
as (un)controversial. Our approach to this is to find a way
of marking formulas that are “relevant” to the deduction of
sets S above, and then distinguishing formulas that are
controversial. In this way the decision to exclude contro-
versial formulas is left to a requirements engineer.
Definition 4. A formula φ will be said to be relevant to the
solution S of D∪R∪S G if ðD∪R∪SÞ−fφg⊬G.
A formula φ will be said to be controversial to the solution

S of D∪R∪S G if it belongs to one of the elements of Find-
Reasons-For-Inconsistency(D∪R∪S).
Please cite this article as: N.A. Ernst, et al., Agile requirement
Systems (2013), http://dx.doi.org/10.1016/j.is.2013.05.008i
Note that if we were dealing with a particular paraconsis-
tent logic, such as Relevance Logic [32], these issues would be
addressed directly in its axiomatization. However, we are
using an abstract at this point, so our definition needs to be
more general, and hence potentially less accurate.

We provide support for finding such information via
the next operator.

Operation 5. Examine-Solution

@param desiredG : ℘ðGOALSÞ
@param Soln : ℘ðTASKSÞ
@assumes Soln is one of the solutions to the requirements problem
for desiredG
@return Explanations : ℘ð℘ð〈Wff; f“controversial”; “ ”g〉ÞÞ consisting of
all minimal sets of formulas S in REKB∪Soln used to derive desiredG,
with controversial formulas marked. (We need sets of sets since there
may be multiple explanations.)

Note that if we reformulate Example 2 in a more
natural way to be a specification where all nodes are goals,
eliminating assumptions, there is no formal inconsistency
per se in its translation to logic. There is also no solution,
because not all goals have been refined to tasks and
domain assumptions. However there is no possible solution
to achieving all top level goals, no matter how one tries to
complete the requirements problem by adding refine-
ments and realizations of existing leaf goals. Obviously,
requirements engineers would like to know this informa-
tion as early as possible. The following operator can
provide it:

Operation 6. Exist-Solution
@param desiredG : ℘ðGOALSÞ
@return Boolean—True, iff there is a set G0⊂G consisting of only
unrefined goals (leafs in diagrams like Figs. 1 and 2) such that

D∪Implications(REKB)∪G0∪T desiredG

@throws exception if desiredðGÞ∪ImplicationsðrekbÞ is inconsistent.

A more helpful variant of this operator would return “the
reasons” for False answers—minimal sets of formulas that
cause the absence of solution. We leave this problem to
future work.

In the requirements problem, we are interested in optim-
ality with respect to the stakeholders communicating the
requirements for the new system. In that context, the
stakeholder may not be content with a subset-minimal
implementation that satisfies the requirements mandated
(as returned by Paraconsist-Min-Goal-Achievement). Rather,
he or she is interested in implementations which also satisfy
other, less important goals. Furthermore, while still subset-
minimal with respect to tasks, we add the constraint that the
set of goals achieved is maximized. This answers the ques-
tion, “If I wish to accomplish the following extra goals, in
addition to certain mandatory requirements, what are the
minimal sets of tasks I must perform?”

Operation 7. Paraconsist-Get-Candidate-Solutions

@param desiredG : ℘ðGOALSÞ
@param wishedG : ℘ðGOALSÞ
@return set of pairs 〈solnT; satG〉, where solnT is a set of tasks, and

satG is a set of goals such that (1) rekb∪solnT satG; (2)

satG¼desiredG (the required goals) ∪ wishedG0 (a subset of the
s engineering via paraconsistent reasoning, Information

http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008

N.A. Ernst / Information Systems] (]]]])]]]–]]] 11
wished-for goals wishedG), such that satG∪Implications(REKB) is
consistent; (3) satG is maximal with respect to the above properties;
(4) solnT is subset-minimal to achieve the above.
@throws an exception if desiredG is inconsistent with Implications
(REKB).

3.4. Tool-supported RE-KOMBINE

3.4.1. Implementation based on ATMS
We have implemented the RE-KOMBINE framework

and operators, where MC , as discussed in Section 2.2.1,
is used for , by using an Assumption-based Truth Main-
tenance System (ATMS) [33], because an ATMS naturally
supports our simple definition of well-formed formulae,
abduction and paraconsistent reasoning.

In an ATMS, the REKB is represented as a set of nodes,
corresponding to the atoms, with Horn clauses linking them
to form a graph. Horn-rules α-⊥, indicating conflicts,
connect the antecedent nodes to a special node called
CONTRADICTION (originally called “NOGOOD” in [33]). The
ATMS implementation then associates with each node a set
of possible environments in which that node is interpreted as
true (originally marked by :IN). Environments are sets of
assumptions which ultimately justify that node (i.e., from
which that node can be derived from assumptions via
definite Horn-rules called justifications). The label for some
node n will take one of the three values:
�

P
S

if there is no justification for n, the environments are
said to be empty: 〈n : fg〉;
�
 if the node is always :IN, i.e., it is an assumption (in our
case, a task), then the label has an empty environment:
〈n : ffgg〉;
�
 in all other cases, the node is labeled with all environ-
ments, or sets of assumptions, from which it can be
derived :IN, e.g., 〈n : ffa;bg; fc; d; egg〉. Most importantly,
as added conditions, (i) these sets are minimal—no nodes
can be removed from such a context without losing the
full justification; and (ii) the sets are consistent, in the
sense that no contradictions (⊥) can be derived from them.
When constructing the ATMS, we need to distinguish
rules of the form ψ-t where t is a task and ψ has no tasks

in it i.e., they are all domain assumptions. Such rules
should be replaced by ψ∧actual½t�-t, where actual[t] is a
new task. We have the following result supporting the
correctness of this implementation, which is an immediate
consequence of the material in [33]:

Proposition 3.1. If an ATMS is constructed from D∪R in the
manner given above, and all leaf nodes are made :IN, then for
any goal g, its node Ng contains environment with tasks S if
and only if Paraconsist-Min-Goal-AchievementðfggÞ returns,
among others, S,8 if MC is used as the paraconsistent logic.

It can happen that in a requirements model, relations
between requirements create cycles in the graph. Cycles
are supported in the ATMS because of short-circuit eva-
luation. If a node has an existing environment which
8 Where actual[t] is replaced by t.

lease cite this article as: N.A. Ernst, et al., Agile requirement
ystems (2013), http://dx.doi.org/10.1016/j.is.2013.05.008i
subsumes a possible new environment, evaluation
terminates.

Fig. 3 gives an example of using the RE-KOMBINE

operators for capturing requirements problems in Techne,
implemented using an ATMS library with our operators
implemented on top, in Common Lisp.9 As discussed in
Section 3.3, the operation declare-atomic introduces (but
does not assert) goals in the model, while assert-

formula asserts in this case inference or conflict relations
between g0 and its antecedents. Note the use of nrekbn, a
global variable referring to the current instance of REKB and
the :GOAL keyword symbol representing the atom's Type

per T1.
The tool supports a graphical front-end with a transla-

tion engine to the operators. The user may also write
directly in the textual DSL language of Fig. 3. Output of the
reasoning is likewise textual or graphical. In agile software
development, in particular, it is important that the process
artifacts be perceived as nearly invisible (hence the fre-
quent use of index cards and whiteboards). More study is
needed into the effort required to compose RE-

KOMBINE models. What we have done is attempt to keep
the core language as simple as possible, and, as we show in
Section 4, make the tool close to interactive for most
requirements models. The essential tradeoff is that speed
of development needs longer-term support, particularly in
more complex domains.

We are pursuing integrating RE-KOMBINE with a com-
mercial requirements tool like DOORS or Jira, where the
intention is to permit requirements to be captured easily
and managed using RE-KOMBINE. The workflow is for
requirements elicitation to proceed as usual, with the sole
exception being that the requirements engineer or devel-
oper enters the requirements as Techne statements
(which are simple propositional statements with formal
relations). Then, during the prioritization phase at the
beginning of a development iteration, the RE-

KOMBINE tool can provide answers regarding which
requirements/features/user stories to work on.

3.4.2. Implementation using SAT-solvers
Sebastiani et al. [7] implemented 4, as it was

described in Section 2.2.3, by using a minWeight SAT
solver to find minimal abductive solutions. To do this, it
is necessary to replace rules fβ1-b;…; βn-bg that imply
some atom b of the theory transformðΔÞ by their “Clark
completion” fðβ1∨⋯∨βnÞ2bg. In using a SAT-solver, one
can also add constraints, such as :EvidenceForp∨:
EvidenceAgainstp that prevent solutions with conflicting
evidence for p.

If one uses an ordinary SAT-solver on the above theory,
one can find much more quickly non-minimal solutions—i.
e., assignments of True/False to EvidenceForti and
EvidenceAgainstti for tasks ti which make EvidenceForg

be True for desired goals g.

Example 6. Sebastiani et al.'s approach divides the pro-
blem operationally into input goals and target goals,
9 Our implementation is available at http://github.com/neilernst/
Techne-TMS.

s engineering via paraconsistent reasoning, Information

http://github.com/neilernst/Techne-TMS
http://github.com/neilernst/Techne-TMS
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008

Fig. 3. Simple example introducing T1 formulae into RE-KOMBINE. The result of the final call to min-goal-achieve is the set {t1, t2, t3, t4, t5, t6}.

N.A. Ernst / Information Systems] (]]]])]]]–]]]12
corresponding (roughly) to T1's notion of Tasks and
wanted Goals, respectively. In our ongoing example, we
would assign all leaf goals to the input set, and the two
root goals gmob and gencrypt to the target set. We would like
to ideally find that both target goals are True for Eviden-

ceFor_ and False for EvidenceAgainst_, but this is not the
case here: both predicates will be True, indicating con-
flicting evidence {TF}.

4. Evaluating REKB

Recall that our research questions were:
RQ1
Ple
Sys
What formal mechanisms are necessary to support
reasoning with inconsistent requirements models?
RQ2
 Is there a scalable algorithm for automating analyses
of such models?
We begin with a description of our case study of
variability and evolution in requirements found in the
Data Security Standard (henceforth PCI-DSS) [34], an
industry standard which regulates security of credit card
transactions. This is a retrospective case study, based on a
real standard which we merged with a requirements
model from the Alvalade stadium case [35] to examine
our approach. We first constructed a requirements goal
model with several versions, based on changes to the PCI-
DSS standard. We then applied RE-KOMBINE to the pro-
blem to illustrate how paraconsistency is essential for
solving the requirements problem in a specific example
(RQ1). We then discuss how our framework scales to
industrially relevant sizes (RQ2), using the case study
and random models.

4.1. Case study: payment card standards and requirements
variability

PCI-DSS version 2.0 was released in October 2010, and
is currently in force. There is a two-year cycle between
major revisions, with a three month announcement win-
dow immediately prior to the new standard coming into
force. This provides organizations time to achieve compli-
ance. PCI-DSS has the following sub-goals for compliance:
(i) build and maintain a secure network, (ii) protect
cardholder data, (iii) maintain a vulnerability management
program, (iv) implement strong access control measures,
(v) regularly monitor and test networks, (vi) maintain an
information security policy.
ase cite this article as: N.A. Ernst, et al., Agile requirement
tems (2013), http://dx.doi.org/10.1016/j.is.2013.05.008i
PCI-DSS is well-suited for representation as a require-
ments problem. We map requirements as goals, and
constraints as domain assumptions. Tasks are used to
represent compliance tests in the PCI-DSS. A solution to
the requirements problem is a series of tasks which can
pass the compliance audit, a compliance strategy. For this
paper, the relevance of this case study is in describing how
the changes to the standard are realized in individual
organizations, which also have entirely separate sets of
organization-specific requirements. This was shown in
Fig. 1, earlier: the organization-specific goals must be
related to the standard's compliance goals. We then
translate this to a domain-specific language (DSL) which
can be run against the ATMS or MinWeightSAT solvers.

4.1.1. Solving the PCI-DSS requirements problem
We now illustrate how changes in an external standard,

such as PCI-DSS, might lead to inconsistency in an orga-
nizational requirements model. We focus in particular on
how the RE-KOMBINE tool can use paraconsistent reason-
ing to support strategic, change-tolerant decisions.

Let us return to the example from Section 1, shown
again in Fig. 4. We showed that the presence of the conflict
relation and existing (asserted) atoms would cause classi-
cal reasoning to fail. In RE-KOMBINE, we are able to
continue to search for solutions in spite of the conflict.
Recall that the requirements problem has been defined as
D, R, S⊢desiredðGÞ. The state of the REKB, that is, the nature
of the requirements problem of Fig. 4, is as follows.

Set R contains all implications and conflicts, including
the refinement of grev by gmob and the conflict between twep

and d4:1:1. Set G contains the twin goals of gencrypt and gmob,
and g4:1, since in this case study the business would like to
achieve both compliance and business success. The set of
tasks T contains tdione, the use of Dione XPlorer terminals,
and twep, the use of WiFi. D, the domain assumptions,
contains the assumptions that task twep is already satisfied,
i.e., currently the state of affairs for the business network,
and that we must abide by the PCI-DSS requirements, i.e.,
d4:1:1 is asserted. This would be the case if the business was
compliant prior to the June 2010 enforcement of the
restriction on WEP.

In this fragment of the model we are seeking to find
tasks T or assumptions for R such that a subset of goals in G
are satisfied. One way to do this is with the following
operation. Call Paraconsist-Min-Goal-Achievement with the
argument desiredG¼ fgrev; gmobg. RE-KOMBINE performs
an abductive search to find minimal sets of tasks or
assumptions which will satisfy desiredG. In this case,
s engineering via paraconsistent reasoning, Information

http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008

Fig. 4. WEP fragment of the model from the payment card case showing a possible configuration. Grey indicates satisfied goals.

10 The complete model and source code is available at http://github.
com/neilernst/Techne-TMS.

N.A. Ernst / Information Systems] (]]]])]]]–]]] 13
possible answers, returned as TaskSets, include only
{tdione}. Solutions which include assumptions which lead
to conflict are excluded. In this case, since the PCI-DSS is
external and presumably compliance is essential, the
business would choose to phase out WEP, using preferring
to use a Bluetooth solution. Again, paraconsistency in RE-

KOMBINE allows us to maintain the complete model,
adding or retracting tasks as required.

In the PCI-DSS there are multiple types of changes we
must accommodate, including variations in adopting best
practices the standard identifies (such as application
security practices). One type of change is a switch between
alternatives, which are variations [36]. There is little
variation in the high-level requirements the PCI-DSS
defines, in that a compliant organization must comply
with them all. Variation does exist in three other places,
however. One is that some requirements exist as best
practices, which are recommended requirements (in that
they are likely to become mandatory in the next iteration
of the standard). We could manage these “wished for”
requirements using a call to Paraconsist-Get-Candidate-

Solutions with a wishedG parameter (Operator 6).
With respect to domain assumptions, there are clearly

variations between organizations. For instance, the context
of applying the PCI-DSS to a supermarket chain will be
different than for an e-commerce payment processor.
There is also provision for variation within an organization
in proving compliance (i.e., selecting a compliance strat-
egy). In PCI-DSS these are known as compensating controls,
and they define solutions for proving compliance where
domain assumptions in the standard are invalid. For
example (numbers in parentheses refer to the PCI-DSS
standard, v2), in environments that cannot prevent multi-
ple root logins (requirement 8.1), the organization is
permitted to use SUDO (a command to give an ordinary
user full but temporary privileges), just as long as the
system carefully logs each access. The reason to prevent
root login is that the use of a super-user account is opaque,
without this control: it is not clear what physical access is
behind the root account.

Fig. 5 captures this fragment of the requirements
problem. Assume that there are tasks satisfying leaf goals,
Please cite this article as: N.A. Ernst, et al., Agile requirement
Systems (2013), http://dx.doi.org/10.1016/j.is.2013.05.008i
and that there is a call to Paraconsist-Get-Candidate-

Solutions with wishedG¼{Use existing hardware} and
desiredG¼{Assign Unique ID}. Then the result is the tuple
〈solnT : fLog Access;Use SUDO;Use AS=400 Serversg;
satG : fUse existing hardware;Assign Unique IDg〉. This
reflects the (simplistic) result that the best way to satisfy
the wished-for goal to use existing hardware is to apply for
the compensating control of logging access. Again, we
have placed Use AS/400 Servers into D as an assumption,
since it describes the current state of affairs. In this case a
conflict exists if we also assume that the use of Centralized
identity management is satisfied. The paraconsistent opera-
tor has allowed us to find alternative solutions to this
inconsistent state.
4.2. Demonstrating scalability

In [9] we showed that the ATMS reasoner was scalable
for industrial requirements problems. It can return deci-
sions in less than 100 s on random models that were as
large as six hundred requirements and two hundred
relations, as shown in Fig. 6. In this paper, we have
extended our tool to introduce some useful pre-
processing steps, including the elision of and-subtrees,
which greatly reduces the number of assumptions.10 We
then ran our reasoner on the PCI-DSS case study model.
We also evaluated the case study using the tool from [7],
as described in Section 3.4. Applying the tool to industrial
problems is predicated on a useful set of requirements
propositions being generated during requirements elicita-
tion activities, whether geared to lightweight user-story
gathering or more formal use case or IEEE 930 approaches.

The examples above were derived from a complete RE-

KOMBINE model of the case study. It consisted of two
connected components. One was the representation of the
PCI-DSS model, which has 254 requirements and 65
relationships. This is the most basic model, in which every
requirements must be adhered to (thus, all relationships
s engineering via paraconsistent reasoning, Information

http://github.com/neilernst/Techne-TMS
http://github.com/neilernst/Techne-TMS
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008

Fig. 5. The graphical representation of the compensating controls example.

Fig. 6. A log-linear chart of ATMS scalability on randomly generated
requirements problems. Originally appears in [9].

N.A. Ernst / Information Systems] (]]]])]]]–]]]14
are AND-style). This is trivially easy to reason on. We then
added subcomponents representing scenarios for variation
(i.e., nodes with multiple justifications in the PCI model,
representing alternatives for compliance), consisting of 41
nodes and 18 relations, and scenarios for evolution
(changes between version 1.1 and version 2). Finally, we
created components that reflected the business objectives
of a soccer stadium, based on the case study described in
[35]. The final model was 342 nodes and 127 relations
in size.

To compile the model in ATMS took 614 s, on a Mac-
book Pro 2.4 GHz with 8 Gb RAM. This reflects the amount
of time needed to generate the abductively minimal
solutions for all possible goals in the model. Querying a
set of these goals then requires a polynomial amount of
comparisons to generate the answer which is trivial
relative to the exponential abduction problem. This size
of model compares in size with industrial examples of
design requirements described in the literature (e.g., van
Lamsweerde [37] listed KAOS model sizes that were, on
average, 540 goals and requirements). We have found that
the benefits of the ATMS are more apparent when per-
forming incremental computations, e.g., when the model
is evolved. ATMS is inherently incremental and so evolu-
tionary changes are relatively painless.

A single call to the MinWeight SAT solver from [7],
using weak conflict avoiding, did not find a single minimal
solution after 30 min. Admittedly, the MinWeight tool is
not state of the art for SAT solvers. A call to a non-minSAT
solver, zChaff 2007.3.12, by comparison, returned a solu-
tion (a single satisfying instance that is not minimal) in a
few milliseconds.

4.3. Threats to validity

We consider threats as described in Yin [38]. Our
construct validity is related to how well we defined the
key constructs we are examining. In this case, we look for
goal oriented requirements models with inconsistencies,
which are both formally defined constructs. One might
take issue with how we have defined the significance of the
problem of inconsistency and how relevant gross reasoning
time is to the problem. Internal validity concerns the cause
Please cite this article as: N.A. Ernst, et al., Agile requirement
Systems (2013), http://dx.doi.org/10.1016/j.is.2013.05.008i
and effect nature of case study inferences. In this case we
only conclude that reasoning time is acceptable based on
our measures, with reference to previously established
rules for interactive applications. A threat which might be
internal, but could possibly be seen as external, is whether
this framework is the best approach to managing incon-
sistency. We have shown that it supersedes other
approaches in the related work sections of this paper, but
it remains an open question whether managing inconsis-
tency formally is the preferred approach in all cases.

Finally, our external validity is limited to goal-oriented
requirements models with similar characteristics. We would
like to expand our case study to include other models, but it
is not clear how well T1 would handle requirements models
which are not goal-oriented. The principles of paraconsistent
reasoning are well-established in other research papers, but
the tool has yet to be widely applied. We have tried to
address reliability issues by making our source code and case
study data available online.

5. Related work

We described the work of Giorgini et al. [39] and
Sebastiani et al. [7] in Section 2.2.3. Their qualitative
s engineering via paraconsistent reasoning, Information

http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008

N.A. Ernst / Information Systems] (]]]])]]]–]]] 15
approach can simulate some of the capability of RE-

KOMBINE. A major difference in philosophy is the omis-
sion, in RE-KOMBINE, of qualitative, partial satisfaction/
denial relations. RE-KOMBINE deliberately omits this
notion of partial satisfaction, because in practice, this
bipartite approach leads to frequent occurrences of con-
flicting information about a given requirement. In a
dynamic environment, partial satisfaction of goals results
in lack of actionable information. For example, consider
the case where we know that the goal Comply with PCI-

DSS is both partially satisfied and partially denied. This
type of conflict can lead to analysis paralysis and a
substantial cost of delay. RE-KOMBINE is tailored for
automatic, binary answers over conflicting goals. Qualita-
tive reasoning is better suited to up-front problem
exploration. RE-KOMBINE's systematic, lightweight
approach is more suitable when we are doing an iterative
problem exploration by committing to small increments of
the model.

Hunter and Nuseibeh [25] described one of the early
approaches to inconsistent requirements specifications.
We explained the use of their approach in Section 2.2.
Our innovation is the introduction of operations on
requirements problems, including the notion of minimal
solutions, as a way to support design decision-making. We
also feel that the simpler propositional language of Tech-
ne is more suited to the light-weight analysis common in
industry.

The concepts of specification, requirements and domain
assumptions also exist in formal methods research. For
example, Poppleton and Groves [40] discuss the notions of
refinement and retrenchment, which are used to model the
transformation of a program as the specification changes.
which formally implements a specification at time t1 to a
revised specification at time t2. Retrenchment is the ana-
lysis of the old specification in light of the new environ-
ment, with an eye to identifying any structures worth
preserving. Formalization in a language like Z is clearly
more onerous than the one in RE-KOMBINE. The distinc-
tion is primarily in the degree of formality that the tools
demand. We feel that only formalizing high-level relation-
ships between elements in the requirements problem is
more likely to support the wide range of scenarios one
might see in an agile setting.

6. Future work

There are several open questions on the topic of
reasoning from requirements knowledge bases. Paracon-
sistent reasoning simply means that conclusions drawn
from a requirements knowledge base are based on a set of
inference rules that satisfy the paraconsistency property:
whenever ⊥ is inferred, it is not the case that all formulas
are also consequences of the knowledge base, unlike
classical logic.

A key open question for paraconsistency for require-
ments knowledge bases is: What are the properties that a
paraconsistent consequence relation should satisfy, inde-
pendently of the specifics of the language used to repre-
sent requirements? While a paraconsistent consequence
relation will not deduce everything from an inconsistent
Please cite this article as: N.A. Ernst, et al., Agile requirement
Systems (2013), http://dx.doi.org/10.1016/j.is.2013.05.008i
requirements knowledge base, some conclusions are
clearly more appropriate than others during the require-
ments problem-solving process. This issue is related to the
operators one may want to have when interacting with an
(inconsistent) knowledge base. Consider a situation where
there is a requirements knowledge base, and the engineer
asks “Is there a solution?” If the answer is “No”, then there
are three possible reasons why:
(a)
s en
A top-level goal (i.e., a member of desiredG) has no
refinement into tasks and/or domain assumptions (i.e.,
there is no way to satisfy it). Therefore the engineer
must further refine it.
(b)
 There are conflicts between top-level goals. The engi-
neer needs to revise the top-level goals.
(c)
 There is no conflict-free set of tasks/leaf sub-goals/
domain assumptions that refine all top-level goals. The
engineer needs to either find alternative refinements
for which atoms in their refinements are not in conflict
or resolve conflicts.
Observe that one can compute the answer “No” above
using the classical consequence relation ⊢ on the require-
ments knowledge base (provided that its language fits the
language over which the classical consequence relation is
defined). But what ⊢ cannot do is suggest which one or
more of the three options applies, or more generally, what
to do once we know that there is an inconsistency in the
requirements knowledge base. What is interesting is to have
a paraconsistent consequence relation which can be used
to suggest how to proceed in solving the requirements
problem, rather than simply indicate that there is incon-
sistency, as classical consequence does.

One might also wish to distinguish domain knowledge,
DK, from domain assumptions, DA. In the former case, we
would consider such assertions potentially defeasible (i.e.,
retractable), while DA would capture unchanging proper-
ties, such as physical laws.

The questions above are also related to the issue of how
to state the requirements problem. For example, one of the
properties that a solution to the problem should have is
that it is consistent. But being consistent means different
things, as it depends on the proof theory that defines the
consequence relation. Consider for example the property
that S∪ Relations ∪D0 should be consistent. The reflex is to
define this formally as S∪ Relations ∪ D0∪⊬⊥, and this
means that one cannot deduce ⊥ using ⊢ of classical logic.
But what if reasoning over the requirements knowledge
base is not deductive, but argumentative: for example, an
argumentative proof theory may allow a conclusion x from
a set Z even if x is in conflict with some y∈Z, provided there
is also a q that is evidence against y. In that case, we are
not saying that there are no conflicts in a solution, but
instead, that when there are conflicts, they stand in some
specific relations that render them harmless, even in the
solution.

Finally, another issue of interest is what happens when
we use a richer ontology of requirements in the require-
ments knowledge base. In particular, what should we deduce
from an inconsistent requirements knowledge base in case
gineering via paraconsistent reasoning, Information

http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008

N.A. Ernst / Information Systems] (]]]])]]]–]]]16
there are partial orders over its formulas, such as orders of
preference between conflicting requirements.
7. Conclusion

In many situations, establishing the entirety of a soft-
ware development project's requirements up-front is
unrealistic and even undesirable. Instead, we propose a
systematic approach to agile requirements evolution
where it is easy to change requirements and automatically
evaluate the consequences of these changes (answering
RQ1). We further show that this reconciliation makes it
possible to delay decisions about conflicting requirements
until more information becomes available. Our proposal is
grounded on a framework, RE-KOMBINE, for expressing
requirements formally yet sufficiently flexibly as to enable
deferred commitment. The paper introduces a novel defi-
nition of paraconsistency in requirements specifications
using Techne as underlying propositional language. It then
presents properties for defining a paraconsistent conse-
quence operator, . Using that operator, we introduce two
operations for reasoning paraconsistently on requirements
models, searching for minimal solutions to the require-
ments problem despite the existence of contradictory or
missing information. We evaluate our proposal with an
industrial case study of payment card requirements, and
show that the operations to scale to typical industrial
design problems (answering RQ2). In future, we intend to
continue investigating how our proposal works for even
more complex, real-world problems.

References

[1] N.A. Ernst, A. Borgida, J. Mylopoulos, I. Jureta, Agile requirements
evolution via paraconsistent reasoning, in: International Conference
on Advanced Information Systems Engineering, Gdansk, Poland,
2012.

[2] M. Jarke, P. Loucopoulos, K. Lyytinen, J. Mylopoulos, W.N. Robinson,
The brave new world of design requirements: four key principles, in:
International Conference Advanced Informations Systems Engineer-
ing, Hammaret, Tunisia, 2010, pp. 470–482. URL http://dx.doi.org/10.
1007/978-3-642-13094-6 〈http://dblp.uni-trier.de/db/conf/caise/
caise2010.html#JarkeLLMR10〉.

[3] S. Mcgee, D. Greer, Software requirements change taxonomy:
evaluation by case study, in: International Conference on Require-
ments Engineering, Trento, Italy, 2011.

[4] B. Ramesh, L. Cao, R. Baskerville, Agile requirements engineering
practices and challenges: an empirical study, Information Systems
Journal 20 (5) (2010) 449–480, http://dx.doi.org/10.1111/j.1365-
2575.2007.00259.x.

[5] IEEE Software Engineering Standards Committee, IEEE Recom-
mended Practice for Software Requirements Specifications, Techni-
cal Report, IEEE, 1998.

[6] A. van Lamsweerde, E. Letier, R. Darimont, Managing conflicts in
goal-driven requirements engineering, Transactions on Software
Engineering 24 (11) (1998) 908–926, http://dx.doi.org/10.1109/32.
730542.

[7] R. Sebastiani, P. Giorgini, J. Mylopoulos, Simple and minimum-cost
satisfiability for goal models, in: International Conference on
Advanced Informations Systems Engineering, Riga, Latvia, 2004,
pp. 20–35. URL 〈http://dx.doi.org/10.1007/b98058〉.

[8] K. Sullivan, P. Chalasani, S. Jha, Software design as an investment
activity: a real options perspective, in: Real Options and Business
Strategy: Applications to Decision Making, 1999, pp. 215–262.

[9] N.A. Ernst, A. Borgida, I. Jureta, Finding incremental solutions for
evolving requirements, in: International Conference on Require-
ments Engineering, Trento, Italy, 2011.
Please cite this article as: N.A. Ernst, et al., Agile requirement
Systems (2013), http://dx.doi.org/10.1016/j.is.2013.05.008i
[10] R. Wieringa, N. Maiden, N. Mead, C. Rolland, Requirements engineering
paper classification and evaluation criteria: a proposal and a discussion,
Requirements Engineering Journal 11 (1) (2006) 102–107.

[11] W.N. Robinson, S.D. Pawlowski, V. Volkov, Requirements interaction
management, ACM Computing Surveys 35 (2) (2003) 132. URL
〈http://portal.acm.org/citation.cfm?id=857079〉.

[12] S.M. Easterbrook, B. Nuseibeh, Managing inconsistencies in an
evolving specification, in: International Conference on Requirements
Engineering, York, England, 1995, pp. 48–55. URL 〈http://ieeexplore.
ieee.org/xpls/abs_all.jsp?arnumber=512545〉.

[13] D. Zowghi, V. Gervasi, On the interplay between consistency,
completeness, and correctness in requirements evolution, Informa-
tion and Software Technology 45 (14) (2003) 993–1009, http://dx.
doi.org/10.1016/S0950-5849(03)00100-9. URL 〈http://www.science
direct.com/science/article/B6V0B-492W03S-2/2/
e78a8f88512c8927d98a3cb042b4eebb〉.

[14] B. Nuseibeh, S.M. Easterbrook, A. Russo, Making inconsistency
respectable in software development, Journal of Systems and Soft-
ware 58 (2) (2001) 171–180, http://dx.doi.org/10.1016/S0164-1212
(01)00036-X. URL 〈http://www.sciencedirect.com/science/article/
B6V0N-43RHW98-9/2/c3ddc41fdcf7e06032699f48ba18ad70〉.

[15] H. Thimbleby, Delaying commitment, IEEE Software 5 (3) (1988)
78–86, http://dx.doi.org/10.1109/52.2027. URL 〈http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=2027〉.

[16] P. Zave, M. Jackson, Four dark corners of requirements engineering,
ACM Transactions on Software Engineering and Methodology 6 (1997)
1–30. URL 〈http://www.cs.toronto.edu/�nernst/papers/zave97req.pdf〉.

[17] N. Rescher, R. Manor, On inference from inconsistent premisses,
Theory and Decision 1 (2) (1970) 179–217, http://dx.doi.org/10.1007/
BF00154005. URL 〈http://www.springerlink.com/content/g30692
45573x45u6/〉.

[18] R. Fagin, J. Ullman, M. Vardi, On the semantics of updates in
databases (preliminary report), in: International Symposium on
Principles of Database Systems (PODS), Atlanta, 1983, pp. 352–365.

[19] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, D. Savo, Inconsistency-
tolerant semantics for description logics, in: Web Reasoning and
Rule Systems, 2010, pp. 103–117.

[20] N.D. Belnap, A Useful Four-Valued Logic, D. Reidel Publishing Co.,
1977, pp. 7–37.

[21] L. Chung, J. Mylopoulos, B.A. Nixon, Representing and using non-
functional requirements: a process-oriented approach, Transactions
on Software Engineering 18 (1992) 483–497. 〈http://dx.doi.org/10.
1109/32.142871〉.

[22] D. Zowghi, R. Offen, A logical framework for modeling and reasoning
about the evolution of requirements, in: International Conference
on Requirements Engineering, 1997, pp. 247–257. URL 〈http://ieeex
plore.ieee.org/xpls/abs_all.jsp?arnumber=566875〉.

[23] A. Ghose, Formal tools for managing inconsistency and change
in RE, in: International Workshop on Software Specification and
Design, 2000, pp. 171–181. http://dx.doi.org/10.1109/IWSSD.2000.
891138. URL 〈http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=
891138〉.

[24] P. Besnard, A. Hunter, Quasi-classical logic: non-trivializable classical
reasoning from inconsistent information, in: C. Froideveaux,
J. Kohlas (Eds.), Symbolic and Quantitative Approaches to Uncer-
tainty, Springer, 1995.

[25] A. Hunter, B. Nuseibeh, Managing inconsistent specifications: rea-
soning, analysis, and action, ACM Transactions on Software Engi-
neering and Methodology 7 (4) (1998). URL 〈http://portal.acm.org/
citation.cfm?id=292182.292187〉.

[26] D. Gabbay, Labelled deductive systems: a position paper, in: Pro-
ceedings of the Logic Colloquium, 1993.

[27] I.J. Jureta, A. Borgida, N.A. Ernst, J. Mylopoulos, Techne: towards a
new generation of requirements modeling languages with goals,
preferences, and inconsistency handling, in: International Confer-
ence on Requirements Engineering, Sydney, Australia, 2010.

[28] R. Darimont, A. van Lamsweerde, Formal refinement patterns for
goal-driven requirements elaboration, in: SIGSOFT FSE, 1996.

[29] E.S.K. Yu, J. Mylopoulos, Understanding “Why” in software process
modelling, analysis, and design, in: Proceedings of the 16th Inter-
national Conference on Software Engineering, 1994, pp. 159–168.

[30] A. Dardenne, A. van Lamsweerde, S. Fickas, Goal-directed require-
ments acquisition, Science of Computer Programming 20 (1–2)
(1993) 3–50, http://dx.doi.org/10.1016/0167-6423(93)90021-G.

[31] A. Hunter, B. Nuseibeh, Analysing inconsistent specifications, in:
International Conference on Requirements Engineering, Annapolis,
MD, 1997, pp. 78–86. http://dx.doi.org/10.1109/ISRE.1997.566844 URL
〈http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
566844〉.
s engineering via paraconsistent reasoning, Information

dx.doi.org/http://dx.doi.org/10.1007/978-3-642-13094-6
dx.doi.org/http://dx.doi.org/10.1007/978-3-642-13094-6
http://dblp.uni-trier.de/db/conf/caise/caise2010.html#JarkeLLMR10
http://dblp.uni-trier.de/db/conf/caise/caise2010.html#JarkeLLMR10
http://dx.doi.org/10.1111/j.1365-2575.2007.00259.x
http://dx.doi.org/10.1111/j.1365-2575.2007.00259.x
http://dx.doi.org/10.1111/j.1365-2575.2007.00259.x
http://dx.doi.org/10.1111/j.1365-2575.2007.00259.x
http://dx.doi.org/10.1109/32.730542
http://dx.doi.org/10.1109/32.730542
http://dx.doi.org/10.1109/32.730542
http://dx.doi.org/10.1109/32.730542
dx.doi.org/http://dx.doi.org/10.1007/b98058
http://refhub.elsevier.com/S0306-4379(13)00077-X/sbref10
http://refhub.elsevier.com/S0306-4379(13)00077-X/sbref10
http://refhub.elsevier.com/S0306-4379(13)00077-X/sbref10
http://refhub.elsevier.com/S0306-4379(13)00077-X/sbref11
http://refhub.elsevier.com/S0306-4379(13)00077-X/sbref11
http://portal.acm.org/citation.cfm?id=857079
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=512545
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=512545
http://dx.doi.org/10.1016/S0950-5849(03)00100-9
http://dx.doi.org/10.1016/S0950-5849(03)00100-9
http://dx.doi.org/10.1016/S0950-5849(03)00100-9
http://dx.doi.org/10.1016/S0950-5849(03)00100-9
http://www.sciencedirect.com/science/article/B6V0B-492W03S-2/2/e78a8f88512c8927d98a3cb042b4eebb
http://www.sciencedirect.com/science/article/B6V0B-492W03S-2/2/e78a8f88512c8927d98a3cb042b4eebb
http://www.sciencedirect.com/science/article/B6V0B-492W03S-2/2/e78a8f88512c8927d98a3cb042b4eebb
http://dx.doi.org/10.1016/S0164-1212(01)00036-X
http://dx.doi.org/10.1016/S0164-1212(01)00036-X
http://dx.doi.org/10.1016/S0164-1212(01)00036-X
http://dx.doi.org/10.1016/S0164-1212(01)00036-X
http://www.sciencedirect.com/science/article/B6V0N-43RHW98-9/2/c3ddc41fdcf7e06032699f48ba18ad70
http://www.sciencedirect.com/science/article/B6V0N-43RHW98-9/2/c3ddc41fdcf7e06032699f48ba18ad70
http://dx.doi.org/10.1109/52.2027
http://dx.doi.org/10.1109/52.2027
http://dx.doi.org/10.1109/52.2027
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=2027
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=2027
http://refhub.elsevier.com/S0306-4379(13)00077-X/sbref16
http://refhub.elsevier.com/S0306-4379(13)00077-X/sbref16
http://refhub.elsevier.com/S0306-4379(13)00077-X/sbref16
http://www.cs.toronto.edu/~nernst/papers/zave97req.pdf
http://www.cs.toronto.edu/~nernst/papers/zave97req.pdf
http://dx.doi.org/10.1007/BF00154005
http://dx.doi.org/10.1007/BF00154005
http://dx.doi.org/10.1007/BF00154005
http://dx.doi.org/10.1007/BF00154005
http://www.springerlink.com/content/g3069245573x45u6/
http://www.springerlink.com/content/g3069245573x45u6/
http://refhub.elsevier.com/S0306-4379(13)00077-X/sbref20
http://refhub.elsevier.com/S0306-4379(13)00077-X/sbref20
http://refhub.elsevier.com/S0306-4379(13)00077-X/sbref21
http://refhub.elsevier.com/S0306-4379(13)00077-X/sbref21
http://refhub.elsevier.com/S0306-4379(13)00077-X/sbref21
dx.doi.org/http://dx.doi.org/10.1109/32.142871
dx.doi.org/http://dx.doi.org/10.1109/32.142871
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=566875
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=566875
dx.doi.org/http://dx.doi.org/10.1109/IWSSD.2000.891138
dx.doi.org/http://dx.doi.org/10.1109/IWSSD.2000.891138
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=891138
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=891138
http://refhub.elsevier.com/S0306-4379(13)00077-X/sbref24
http://refhub.elsevier.com/S0306-4379(13)00077-X/sbref24
http://refhub.elsevier.com/S0306-4379(13)00077-X/sbref24
http://refhub.elsevier.com/S0306-4379(13)00077-X/sbref24
http://portal.acm.org/citation.cfm?id=292182.292187
http://portal.acm.org/citation.cfm?id=292182.292187
http://dx.doi.org/10.1016/0167-6423(93)90021-G
http://dx.doi.org/10.1016/0167-6423(93)90021-G
http://dx.doi.org/10.1016/0167-6423(93)90021-G
dx.doi.org/http://dx.doi.org/10.1109/ISRE.1997.566844
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=566844
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=566844
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008

N.A. Ernst / Information Systems] (]]]])]]]–]]] 17
[32] A.R. Anderson, N. Belnap, Entailment: The Logic of Relevance and
Necessity, Princeton University Press, 1975.

[33] J. de Kleer, An assumption-based TMS, Artificial Intelligence 28 (2)
(1986) 127–162, http://dx.doi.org/10.1016/0004-3702(86)90080-9.

[34] PCI Security Standards Council, PCI DSS Requirements and Security
Assessment Procedures, Version 2.0, Technical Report, PCI, Boston,
October 2010. URL 〈https://www.pcisecuritystandards.org/securi
ty_standards/documents.php?
document=pci_dss_v2-0#pci_dss_v2-0〉.

[35] R. O'Callaghan, Fixing the payment system at Alvalade XXI: a case on IT
project risk management, Journal of Information Technology 22 (4)
(2007) 399–409, http://dx.doi.org/10.1057/palgrave.jit.2000116. URL
〈http://www.palgrave-journals.com/jit/journal/v22/n4/full/2000116a.
html〉.

[36] S. Liaskos, A. Lapouchnian, Y. Yu, E.S. Yu, J. Mylopoulos, On Goal-
based Variability Acquisition and Analysis, in: International
Please cite this article as: N.A. Ernst, et al., Agile requirement
Systems (2013), http://dx.doi.org/10.1016/j.is.2013.05.008i
Conference on Requirements Engineering, Minneapolis, MN, 2006.
URL 〈http://www.cs.toronto.edu/� jaranda/draftpapers/VarInt.pdf〉.

[37] A. van Lamsweerde, Goal-oriented requirements engineering: a
roundtrip from research to practice, in: International Conference
on Requirements Engineering, 2004, pp. 4–7. URL 〈http://ieeexplore.
ieee.org/xpls/abs_all.jsp?arnumber=1335648〉.

[38] R.K. Yin, Case Study Research: Design and Methods, Applied Social
Research Methods Series, vol. 5, 4th edition, Sage Publications, Inc,
Beverly Hills, CA, 2009.

[39] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, R. Sebastiani, Formal
reasoning techniques for goal models, Journal on Data Semantics
2800 (2003) 1–20. URL 〈http://www.springerlink.com/content/
nfe4tm8u9vt5j12d〉.

[40] M. Poppleton, L. Groves, Software evolution with refinement and
retrenchment, in: International Workshop on Refinement of Critical
Systems: Methods, Tools and Developments, Turku, Finland, 2003.
s engineering via paraconsistent reasoning, Information

http://refhub.elsevier.com/S0306-4379(13)00077-X/sbref32
http://refhub.elsevier.com/S0306-4379(13)00077-X/sbref32
http://dx.doi.org/10.1016/0004-3702(86)90080-9
http://dx.doi.org/10.1016/0004-3702(86)90080-9
http://dx.doi.org/10.1016/0004-3702(86)90080-9
https://www.pcisecuritystandards.org/security_standards/documents.php?document=pci_dss_v2-0#pci_dss_v2-0
https://www.pcisecuritystandards.org/security_standards/documents.php?document=pci_dss_v2-0#pci_dss_v2-0
https://www.pcisecuritystandards.org/security_standards/documents.php?document=pci_dss_v2-0#pci_dss_v2-0
http://dx.doi.org/10.1057/palgrave.jit.2000116
http://dx.doi.org/10.1057/palgrave.jit.2000116
http://dx.doi.org/10.1057/palgrave.jit.2000116
http://www.palgrave-journals.com/jit/journal/v22/n4/full/2000116a.html
http://www.palgrave-journals.com/jit/journal/v22/n4/full/2000116a.html
http://www.cs.toronto.edu/~jaranda/draftpapers/VarInt.pdf
http://www.cs.toronto.edu/~jaranda/draftpapers/VarInt.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1335648
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1335648
http://refhub.elsevier.com/S0306-4379(13)00077-X/sbref39
http://refhub.elsevier.com/S0306-4379(13)00077-X/sbref39
http://refhub.elsevier.com/S0306-4379(13)00077-X/sbref39
http://www.springerlink.com/content/nfe4tm8u9vt5j12d
http://www.springerlink.com/content/nfe4tm8u9vt5j12d
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008
http://dx.doi.org/10.1016/j.is.2013.05.008

	Agile requirements engineering via paraconsistent reasoning
	Introduction
	Paraconsistency and agile requirements evolution
	Inconsistency and Conflict
	Possible logics for paraconsistency
	Maximal consistent subsets
	Minimal repairs
	Multi-valued logics
	Default rules
	Labeled quasi-classical logic

	RE-KOMBINE
	Requirements modeling language T1
	What we can and cannot say using T1
	Operators for (paraconsistent) rekb
	Tool-supported RE-KOMBINE
	Implementation based on ATMS
	Implementation using SAT-solvers

	Evaluating rekb
	Case study: payment card standards and requirements variability
	Solving the PCI-DSS requirements problem

	Demonstrating scalability
	Threats to validity

	Related work
	Future work
	Conclusion
	References

