
AnalyticGraph.com: Toward Next Generation

Requirements Modeling and Reasoning Tools

Joseph Gillain, Corentin Burnay, Ivan Jureta, Stéphane Faulkner

Data Analysis Decisions Advice (DA2) Research Unit

Department of Business Administration & PReCISE Research Center, University of Namur

Abstract—Graphical Requirements Modeling (GRM) consists
of representing requirements in diagrams: requirements (and
other relevant information) are represented as nodes, and re-
lationships between them as edges. Relationships can show, for
example, that one requirement refines another, that some are
in conflict with others, that they are more or less desirable,
and so on. Various software tools have been proposed over the
years as a support to doing GRM, some capable of performing
computations over diagrams, such as searching for text strings,
or determining if a requirement is satisfied (and how much). We
present yet another tool, available at AnalyticGraph.com. The
tool departs from much of prior work in the following ways.
(i) The tool is a web application, is available on-demand, and
requires no installation of specialized software. (ii) Each model
made with the tool gets its own permanent and unique URL, so
that models can be linked in research papers. (iii) If a model on
Analytic Graph is linked in a paper, then any reader can click
on the link, open a free account, and edit and run a copy of
the linked model. (iv) The tool supports the definition of various
requirements modeling languages. (v) Models are stored in a
graph database, and standard graph queries (such as find the
shortest path between two nodes) are included by default. (vi) It
is possible to combine models made with various languages, and
do computations over the resulting mixed models.

I. INTRODUCTION

The aim of this paper is to revive the old, but critical

research topic of software tools for Graphical Requirements

Modeling (GRM). We use the term GRM, to refer to the

widespread practice in the RE field of representing require-

ments and their relationships in diagrams, and of doing reason-

ing (computation) on these representations. Typically, nodes

in such diagrams hold information about the requirements,

environment, or the system to build or change, while edges

are labeled by relationships holding over the connected nodes;

such relationships can say, for instance, that two requirements

are in conflict, that some set of more concrete requirements

refines a less concrete requirement, they may convey the

relative desirability (preference) or importance (priority) of

requirements, and so on. Various Requirements Modelling

Languages (RMLs) [1], [2], [3], [4], [5], [6], [7] rely on

GRM in the sense that models made with these languages

are visualized as diagrams.

To this aim, we present and argue for a series of features

that next generation GRM tools could have, and we present

an early version of a new software tool, freely available at

AnalyticGraph.com, which implements these features. We use

the tool to illustrate the discussion in the paper.

Our aim is not to propose a definite list of features for

GRM tools, but instead to stimulate discussion and hopefully

renew interest of colleagues in coming up and validating

the relevance of new features for software tools which have

received little attention and benefited from little innovation in

the past years.

The paper is structured as follows. Section 2 presents some

existing GRM software tools and their respective features.

Then, in Section 3, we discuss strengths and weaknesses of

existing tools. We introduce Analytic Graph’s architecture in

Section 4. In Section 5, we show with examples how this

architecture allows Analytic Graph to mitigate weaknesses.

We finally conclude and discuss future work in Section 6.

II. BRIEF TOUR OF EXISTING GRM SOFTWARE TOOLS

While vector drawing software can be used to do GRM, this

is rarely, if ever advocated. It is common to see GRM being

done with generic diagramming tools, which may or may not

include graphical primitives corresponding to specific RMLs.

We consider such tools as DIA, Microsoft VISIO, draw.io, yEd

or OmniGraffle to be examples of generic GRM tools. Their

limitation is that they offer little support to users in terms of

syntax-checking and computation over the models (diagrams)

made.

More comprehensive tools have been developed in RE to

deal with such limitations. For instance, Tropos comes with the

java-based GR-Tool, which proposes forward and backward

reasoning on goal models [8], [9], [10].

In line with the Tropos methodology, TAOM4E supports

a model-driven, agent oriented software development, and

has been designed to respect the Model Driven Architecture

(MDA) recommendations [11].

RE-Tools [12] is another modeling tool that supports no-

tations such as i*, the NFR Framework, KAOS, Problem

Frames, and UML. Among other things, RE-Tools supports

the combination of previous notations, enabling engineers to

combine functional and nonfunctional requirements, agents,

goals, soft-goals, formal goals, and objects into one single

diagram.

DesCARTES [13] is a Computer-Aided Software Engineer-

ing (CASE) Tool, which also supports i*, NFR models, UML

models, and I-Tropos developments. It takes the form on a

Eclipse IDE (Integrated Development Environment) plug-in.

2016 IEEE 24th International Requirements Engineering Conference

2332-6441/16 $31.00 © 2016 IEEE

DOI 10.1109/RE.2016.33

341

RE 2016, Beijing, China
RE@Next! Paper

jUCMNav [14] is another example of Eclipse plug-in which

permits the modeling of requirements based on the User

Requirements Notation.

MetaDONE [15] is a tool supporting domain specific mod-

eling languages (DSML); it is aimed at helping engineers in

the more effective implementation of software systems, based

on the production of generative methods [16].

III. STRENGTHS AND WEAKNESSES OF EXISTING TOOLS

Although existing GRM tools clearly differ in the type

of language they support or the nature of reasoning they

enable to perform on requirements models, they all seem to

support requirements engineers in at least one of the following

complementary ways:

• They offer symbols and visuals for a given notation, keep

data and meta-data related to these elements, and ensure

these elements are combined in a way that complies with

the syntax of the modeling language.

• They offer reasoning capability about a model to identify

solutions, discover alternatives or resolve conflicts.

• They offer capability to design their own notation and

behavior capabilities, fitted for the actual domain.

These are the three main pillars of GRMs, on which we

continue to build Analytic Graph.

Beside those strengths, we see a number of improvements

which could be made on existing GRMs, that would further

help requirements engineers in the modeling and analysis

of the requirements. Those improvements, which we discuss

with more details in the remainder of the paper, could be

summarized as follows:

• Portability: models defined in one GRM, on one com-

puter, are difficult to transfer to other GRMs/computers.

• Collaboration: existing GRM are not designed to ease

collaboration between several engineers on same models.

• Navigability: models can get very large, and existing

GRM offer no support to navigate effectively in the many

nodes and edges that constitute a requirements model.

• Reasoning: current GRM offer predefined computations

on models, leaving no room for custom reasoning.

• Extensibility: existing GRM are usually designed to sup-

port one or more preset RMLs, without the possibility for

users to add new RMLs.

• Flexibility: it is normally not possible to make models

made by bridging several models from different RMLs.

Our overall aim in making Analytic Graph is to consolidate

the strengths and address the limitations of existing GRM

tools. Although Analytic Graph is not fully developed, it

is available for use and already illustrates many of its key

features.

IV. ANALYTIC GRAPH ARCHITECTURE

Existing GRMs are predominantly desktop tools, which

hurts portability and collaboration. GRMs do not store and

treat requirements models as graphs, which does not help

navigability and custom reasoning. In this section, we describe

�������	
���
�	��

������������

��������

��������

��������

��������������

���� ���������

���
����!�����

�� ��!�����

���� �������

Fig. 1. Architecture of AnalyticGraph.com

how the architecture of Analytic Graph differs from classical

GRM tools. Next section discusses how that architecture helps

in relation to GRM limitations.

The architecture of Analytic Graph is illustrated in Figure

1. Our system is composed of one web-server on which

AnalyticGraph.com is hosted. The web-server runs queries

against a Neo4j server, which manages the storage of graphs.

Neo4j is a graph-oriented and open-source database manage-

ment system. It receives Cypher queries through a web-service

from AnalyticGraph.com and returns json files with the result

of these queries. AnalyticGraph.com also runs SQL queries

against a MySQL server, to store or retrieve any meta-data

on the graph (graphID, owner...) as well as data that is not

related to a model; for example, requirements notations, logs,

user account data, etc. Clients interact solely with Analytic

Graph using a web browser, as explained in next Sections of

this paper.

A. AnalyticGraph Stores Models as Directed Graphs

A limitation we emphasized in our introduction is that

existing tools do not enable users to define and execute their

own queries/reasoning algorithm on their models. To deal with

this limitation, we designed Analytic Graph as a self-service

system; we intend to let users define themselves the queries

they want to run against a model, to define or import the

requirements notations they want, with as little constraints as

feasible on how the model is stored. The only constraints are

those imposed by the RML which the user wishes to use.

This approach led to important constraints on the way RE

models should be stored in Analytic Graph. Namely, we need

to store the model in a way that is amenable to flexible

querying and computation, while at the same time reflect

the structure of graphical requirements models. We therefore

store models as graphs. Each concept and link of a model

(for example, a goal, a task or a contribution link in i*) is

stored as a node of a graph. Under this scheme, the directed

links in our graph are simply used connect two nodes of the

model, and carry no other information than the direction. For

example, a model in which a goal decomposes into two sub-

goals will be stored in Analytic Graph as a graph composed

of four nodes: one goal node, two sub-goal modes, and one

decomposition node, with a link from each of the sub-goals

342

to the decomposition node, and a link from the decomposition

node to the goal.

The Techne model [7] already adopts such view on mod-

eling. It represents a relationship between two nodes (goals,

tasks, etc.) as other nodes (inferences, conflicts, preference),

so that links (edges) themselves carry no information other

than their direction. Techne is already implemented in Analytic

Graph and we use it in the rest of this paper for illustration.

B. Analytic Graph is a Web Application

Another limitation we emphasized in our introduction is

the difficulty for users to share and interact with models.

We consequently built in collaborative features, namely to

let users share the models they created in Analytic Graph,

or to access and interact with others’ models in few steps. We

wanted a tool that does not require specialized software to be

installed on users’ devices, and we therefore opted for an on-

line platform. Analytic Graph is a web application, in which

users can create, edit, save and load models and RMLs. By

associating a unique URL to each model and notation, it is

also possible for users to share their own models, link models

in documents, research papers, presentations, and elsewhere,

and to access and/or import in their own library, the models

or RMLs created by others.

V. CANDIDATE FEATURES FOR NEXT GENERATION TOOLS

In this section, we discuss features which we consider

important for next generation GRM tools. We do this by

presenting how Analytic Graph addresses common limitations

of GRM tools. For each limitation, we present a feature of

Analytic Graph, and we illustrate and explain how that feature

works.

A. Portability

If a GRM tool is desktop software, then it needs to be

installed on the users’ devices, and models will be stored by

default on these devices. Our tool is a web application; it

means that it is available on-demand anywhere, and requires

no installation of specialized software1.

The main requirements for accessing Analytic Graph is

to have access to an Internet connection, and have a web

browser installed on the device2. Once logged-in, users are

able to save their models. The models are stored on the

Analytic Graph.com server, which means that the users can

access the model on any device, using their credentials. Models

are by default private, so that a model created on one user

account will not be visible to other accounts, unless he gets the

URL. We also leave the possibility for users to design models

without having an account, in which case the model can be

exported as an image or transferred to an existing account, or

lost (not saved) otherwise.

1The tool is accessible at analyticgraph.com/app. Tutorials are provided at
analyticgraph.com/category/tutorial/

2At this stage, Google Chrome is the recommended browser for accessing
AnalyticGraph.com.

B. Collaboration

With desktop GRM tools, a model is stored as a file and

shared by sending the file among collaborators. If the model is

shown in a research paper or other document, a reader needs to

find the model source online, download and setup the relevant

GRM tool, and only then work on the model, and use it in

own research.

Analytic Graph was designed to simplify the process from

seeing the model in a publication to being able to edit and run

it. In the caption of Figure 2, we included a URL. Clicking

on the URL should bring up the reader’s web browser, and

allow the reader to view, edit, and run on Analytic Graph the

model shown in that Figure. It is a Techne model, of simple

requirements for music streaming software.

Linking models for editing is made possible with two

features of Analytic Graph: (i) each model made with the tool

gets its own permanent and unique URL, so that models can

be linked in research papers or other document types, and (ii)

any reader who has access to the URL of a model can click

on the link, open a free account (or access as a visitor), and

edit and run a copy of the linked model.

Putting aside the graphical representation in Figure 2, any

non-interactive visualization of the model – just as the one in

that Figure and on any printed page and on any non-linked

model – suffers from many drawbacks. For example, readers

cannot run themselves computations on the model. They

cannot reuse and enrich that model for their own purposes.

They cannot navigate in the graph. And so on. Analytic Graph

aims to facilitate the interaction with requirements models, by

letting users access to and use the graph. As an example, we

invite the reader to click the URL shown in the caption of

Figure 2.

C. Navigability

We use the term navigability to refer to how one can search

for and find sub-models of a given model. Sub-models may

correspond to, for example, candidate solutions (specifications)

to requirements, alternative refinements of a given require-

ment, all requirements which may be involved in a conflict,

and so on.

Our approach to navigability in Analytic Graph is to store

requirement models in a graph database, use well known

algorithms to search the graphs, and enable users to define

their own queries on models / graphs. A series of queries

are predefined in Analytic Graph. Users open a model, select

and click on the query to execute it against that model. Some

queries are generic, in that they can be run on any graph, in

an RML. Others are specific to an RML.

Queries we have been exploring so far do not add or

remove nodes or edges in a model, but return a sub-graph.

By combining several queries, users are then able to identify

patterns in the model, select only a part of the model, identify

a certain type of nodes, or identify the shortest path between

two nodes. We see in this feature a first step toward more

sophisticated queries and an interface for custom queries.

343

G0
Users can listen
online-music
Val:0
Sat:1

I1 Sat:1

T2
Implement online
audio-player
Val:-150
Sat:1

G5
Users listen
online-music
for free
Val:300
Sat:1

I6 Sat:1

T11
Display ads on
screen
Val:-200
Sat:1

I16 Sat:0

G17
User must
subscribe
to the service
Val:0
Sat:0

G20
Online music
is provided by
subscription
Val:500
Sat:0

I22 Sat:0

I23 Sat:0

T24
Activate
smartphone
payment
Val:-50
Sat:0

T25
Connect service
to credit card
service provider
Val:-150
Sat:0

K26
Users have a
credit card
Val:0
Sat:0

K27
Users have a
smartphone
Val:0
Sat:1

G38
Users can pay
Val:0
Sat:0

I41 Sat:0

I44 Sat:0

G56
User can pay
to hide ads
Val:-120
Sat:0

T61
Allows user to
hide ads
Val:-150
Sat:1

I63 Sat:0

P66
Sat:0

S69 Payment
should
be easy
Val:0
Sat:0

Q71 Time-to-pay is
less than 5min
Val:100
Sat:0

Q72 Time-to-pay is
less than 1 min
Val:100
Sat:0

I73 Sat:0

I74 Sat:0I75 Sat:0

I76 Sat:0

I85 Sat:0 T86
Display account
number information
Val:-50
Sat:0

C89 Sat:0

P92
Sat:0

T1
Maintain
audio-player
Val:-50
Sat:1

Fig. 2. Example of a Techne Graph in Analytic Graph- analyticgraph.com/app/?g=5u3lNJVddv

Consider our running example from Figure 2. The number

of nodes is still limited, yet it might already be difficult to

detect one particular set of nodes. Say for instance that you

want to browse the graph in the refinment direction. You then

need to locate sink goals in order to start the reading of the

model. Using a simple search query, you could detect them

instantly. The same search without a query would likely take

more time, even if the number of goals is limited. Moreover

there always is a risk you miss some of them. Similarly, one

might run a query to count the number of conflicts, to select all

soft-goals, to determine the entire sub-graph associated with

one goal, etc.

D. Reasoning

Reasoning on a model allows engineers to answer questions,

which the language was designed for. This is common to all

RMLs, ranging from early requirement languages such as i* or

Techne to later requirement languages such as BPMN, features

diagrams and so on. For example, in feature diagrams, one

question is to find some subset of interest, among all possible

configurations of the modeled system. Without a proper tool

capable of reasoning, the diagrams themselves are of limited

use. Most GRM tools provide such features, but tend to be

limited to one or more predefined reasoning ways on models.

Since Analytic Graph is based on a graph database, it comes

with a manipulation language (called Cypher3) which has been

used to design behavior on diagrams. Use of this language

enables several ways of defining a behavior (transaction, node

behavior), and leaves that decision to the user. For example,

Techne mechanism of inference has been implemented by

defining for each node a particular behavior. Each inference

is associated with a query that evaluates if premises (i.e.

3http://neo4j.com/developer/cypher-query-language/

G0
Users can listen
online-music
Val:0
Sat:1

I1 Sat:1

T2
Implement online
audio-player
Val:-150
Sat:1

G5
Users listen
online-music
for free
Val:300
Sat:1

I6 Sat:1

T11
Display ads on
screen
Val:-200
Sat:1

I16 Sat:1

G17
User must
subscribe
to the service
Val:0
Sat:1

G20
Online music
is provided by
subscription
Val:500
Sat:1

I22

I23 Sat:1

T24
Activate
smartpho
payment
Val:-50
Sat:1

K27
Users have a
smartphone
Val:0
Sat:1

G38
Users can pay
Val:0
Sat:1

I41 Sat:1

I44 Sat:1

G56
User can pay
to hide ads
Val:-120
Sat:1

T61
Allows user to
hide ads
Val:-150
Sat:1

I63 Sat:1

P66
Sat:0

I85 Sa

C89 Sat:1

T1
Maintain
audio-player
Val:-50
Sat:1

Fig. 3. Example of Reasoning on Techne Graph in Analytic Graph- Illustra-
tion of the propagation of satisfying task T24

incoming nodes) are satisfied, in which case it sets the con-

clusion node (i.e. the outgoing node) as true. This behavior is

propagated from source nodes to sink nodes.

Consider our running example as illustrated in Figure 2.

The number prefixed with Sat below the name of a node is its

satisfaction; 0 means that the node is not satisfied, 1 means that

the node is satisfied. Note the conditional formatting of nodes,

depending on their satisfaction (another customizable feature).

In our example in Figure 2, the goal G17 “User must subscribe

to the service” is unsatisfied. During requirements analysis,

engineers might want to test the effect on the realisation of

some tasks on this goal. Since satisfying goal G38 “Users can

pay” should have an impact on G17, they just need to ensure

the satisfaction of underlying tasks of G38. So, they set value

344

of T24 “Activate smartphone payment” to 1 (true), and run the

model again (we invite the reader to open the model and run

node behavior in Analytic Graph app). The result is reported

in Figure 3; the figure shows that satisfying T24 enables to

satisfy the goal G38 of the model, yet introduces a conflict

with G17 (symbolized by C89). It also satisfied among others

G56, G0 and G20. This is a simple example of how Analytic

Graph implements reasoning on goal models.

As discussed earlier, other reasoning or treatment of the

graphs are possible. Consider now the case where utility

values can be associated to each node in the model. It is

represented by the numbers prefixed with Val next to each

node. Positive value means a revenue while negative value

represents a cost. Having this information, it is possible to

map the model to a mixed-integer mathematical program and

execute an optimization on this [17] (we invite the reader to

open the model and run optimization in Analytic Graph app).

Given these values, the optimal solution allows to reach a value

of 350 with following node satisfied: G0 G17 G20 G38 Q72

K27 T2 T24 T1 I1 I41 I16 I23 I75.

E. Extensibility

GRM are often designed for a specific RML. For example,

GR-Tool implements the Tropos notation, jUCMNav imple-

ments the User Requirements Notation, etc. Analytic Graph

has a language management module, which allows users to

define their own RMLs, both in terms of graphical primitives

and their properties used for queries and computation. Users

are also free to build requirements models using the notation

they prefer. In case users need other notations, they can either

design that notation or import it.

Although Techne is the only built-in RML at the moment,

our aim is to increase the number of built-in RMLs available

to users. The tool will soon allows users to define relatively

simple notations of their own. They will do it using the

Language Management (LM) tool4, which enables users to

define virtually any language, as long as its models can

be represented as directed graphs. The meta-model behind

language definition is depicted in Figure 4. A Language has a

name and is composed of several NodeType. Each of them is

described by a name, a shape (graphical representation) and a

behavior (currently a cypher query). The user can define how

and how many NodeType can be linked together. Moreover,

each NodeType comes with a set of PropertyType which are

characterised by a name, a type and a default value. Reasoning

in a language is introduced by defining functions over values

of node properties.

F. Flexibility

Different requirements notations have been defined to deal

with different requirements engineering concerns. For exam-

ple, Tropos [18] focuses on the agents from early requirements

to specifications and implementation, i* [6] on intentions of

stakeholders, BIM [19] on Business Intelligence aspects. It is

4More information about how the Language Management will work can be
found at analyticgraph.com/create-your-own-language/

Fig. 4. The Meta-Model of Analytic Graph Language Management Module

G5
Users listen
online-music
for free
Val:300

G20
Online music
is provided by
subscription
Val:500

G56
User can pay
to hide ads
Val:-120

P66

i71
Number
of users
250

i72
Revenue
from ads
per user
1.2

i73
Percentage of user
ready to pay for
hidding ads
0.4

i74
Loss
-1

p75
Loss from
hidding ads
-120

E90

from:value
to:value

i96
Subscription
price
5

p97
Revenue from
subscriptions
500

E102

from:value
to:value

p98
Revenue
from ads
300

E103

from:value
to:value

Fig. 5. Example of Mixing 2 Notations in a Model - Application on G5, G20
and G56 from Example Presented in Fig. 2

usually not the case for a GRM tool to allow the building

of combined models, that is, of graphs where sub-graphs

are models in different languages, and where new types of

relationships are used to bridge models of different languages.

However, several approaches combining different notations

have already suggested. For example, Metzger et al. suggested

to distinguish two types of variability by relating orthogonal

variability models (OVMs) to feature diagrams [20]; two

different languages.

We have made early advances in Analytic Graph to allow

users to combine different languages in a same graph. Results

coming from computing such sub-graphs are then used in

other sub-graphs. For example, Analytic Graph comes with

345

an Algebra notation capable of performing simple calculations

such as addition, multiplication and so on. This notation has

been used in the “Music streaming software case” in order to

compute value of some goals. This application is depicted in

Figure 5. Basic data such as the number of users, the price

of subscription and so on, are entered by the user in order to

compute value of goals G5, G20 and G56. These basic data are

represented by nodes i71, i72, i73... The nodes are then used

as inputs of multiplication (represented by cross nodes p75,

p97 and p98) for computing advanced values (labelled next

to the nodes). Results of the multiplications are next used as

inputs of Transfer nodes. The latter are special nodes used

to extract the value of one property of the incoming node

and transfer it in a specified property of the outgoing node

(the value of goals in this case). After running behavoir of

this graph, one can run the optimization model. This example

shows how the Algebra notation can be used with Techne to

perform “what-if” analysis. Engineers will be able to check if

the optimal solution is still the same if the expected number of

users drops by 50%. In the future, users will be able to import

data from external sources (a database, a web-service...)

Notice that the present discussion raises some important

questions about the validity of using mixed RMLs; namely,

does the combination of several different models – designed

based on different assumptions and intended for different

purposes – make sense? While this question is out of the scope

of this paper, it is worth noticing that part of our ongoing work

goes into this both theoretical and empirical discussion.

VI. CONCLUSION AND FUTURE WORK - TOWARD

ANALYTIC GRAPH 2.0

Analytic Graph is still a prototype. This means that we are

still working on the consolidation of our tool, to ensure it

is fully functional and can be used properly by requirements

engineers, as intended. Next steps includes the involvement of

several users, as a way to collect feedback on Analytic Graph

features, and improve/revise them, if relevant. Our future work

will also investigate the feasibility and implementation of

following improvements:

• Connecting Analytic Graph to external data sources such

as databases, webservices;

• Providing classic diagram tool features such as undo,

redo, auto diagram layout;

• Completing the user interface for defining custom lan-

guages, queries and algorithms;

• Improving real-time collaboration with features allowing

users to work on the same model (and not only on a

copy).

Despite all limitations of Analytic Graph today, we hope it

illustrates interesting directions for the development of next

generation GRM tools.

ACKNOWLEDGMENT

This work was partially funded by the FNRS - FRS.

REFERENCES

[1] S. Greenspan, J. Mylopoulos, and A. Borgida, “Capturing more world
knowledge in the requirements specification,” in Proc. 6th international

conference on Software Engineering, 1982, pp. 225–234.
[2] E. Dubois, J. Hagelstein, E. Lahou, F. Ponsaert, and A. Rifaut, “A

knowledge representation language for requirements engineering,” Pro-

ceedings of the IEEE, vol. 74, no. 10, pp. 1431–1444, 1986.
[3] J. Hagelstein, “Declarative approach to information systems require-

ments,” Knowledge-Based Systems, vol. 1, no. 4, pp. 211–220, 1988.
[4] J. Mylopoulos and A. Borgida, “Telos: Representing knowledge about

information systems,” ACM Transactions on Information Systems, vol. 8,
no. 4, pp. 325–362, 1990.

[5] A. Dardenne, A. Van Lamsweerde, and S. Fickas, “Goal-directed re-
quirements acquisition,” Science of Computer Programming, vol. 20,
pp. 3–50, 1993.

[6] E. S. Yu, “Towards modelling and reasoning support for early-phase
requirements engineering,” in Proc. 3rd International Symposium on

Requirements Engineering, 1997, pp. 226–235.
[7] I. J. Jureta, A. Borgida, N. a. Ernst, and J. Mylopoulos, “Techne:

towards a new generation of requirements modeling languages with
goals, preferences, and inconsistency handling,” in Proc. International

Conference on Requirements Engineering, 2010.
[8] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani, “Rea-

soning with goal models,” in Proc. 21st International Conference on

Conceptual Modeling (ER’02). London, UK: Springer-Verlag, 2002,
pp. 167–181.

[9] ——, “Formal Reasoning Techniques for Goal Models,” Journal on

Data Semantics I, vol. 2800, pp. 1–20, 2003.
[10] R. Sebastiani, P. Giorgini, and J. Mylopoulos, “Simple and minimum-

cost satisfiability for goal models,” Advanced Information Systems

Engineering, vol. 3084/2004, pp. 675–693, 2004. [Online]. Available:
http://www.springerlink.com/content/kllxamyqbw61npxq/

[11] D. Bertolini, A. Novikau, A. Susi, and A. Perini, “TAOM4E: an Eclipse
ready tool for Agent-Oriented Modeling. Issue on the development
process,” Tech. Rep., 2006.

[12] S. Supakkul and L. Chung, “The RE-Tools: A multi-notational require-
ments modeling toolkit,” in Proc 20th IEEE International Conference

on Requirements Engineering Conference (RE), 2012, pp. 333–334.
[13] M. Kolp and Y. Wautelet, “DesCARTES Architect: Design CASE

Tool for Agent-Oriented Repositories, Techniques, Environments and
Systems,” Louvain School of Management, Universite catholique de

Louvain, Louvain-la-Neuve, Belgium. http://www.sys. cl.ac.be/descartes,
2007.

[14] “University of Ottawa: jUCMNav. http://softwareengineering.ca/ jucm-
nav/ (2011).”

[15] V. Englebert and P. Heymans, “Metadone, a flexible metacase to support
evolution.”

[16] S. Kelly and J.-P. Tolvanen, “Visual domain-specific modeling: Benefits
and experiences of using metacase tools,” in International Workshop on

Model Engineering, at ECOOP, vol. 2000. Citeseer, 2000.
[17] J. Gillain, S. Faulkner, P. Heymans, I. Jureta, and M. Snoeck, “Product

portfolio scope optimization based on features and goals,” in Proceed-

ings of the 16th International Software Product Line Conference-Volume

1. ACM, 2012, pp. 161–170.
[18] J. F. B. Castro, M. Kolp, and J. Mylopoulos, “Towards requirements-

driven information systems engineering: the Tropos project,” Informa-

tion systems, vol. 27, pp. 365–389, 2002.
[19] J. Horkoff, D. Barone, L. Jiang, E. S. Yu, D. Amyot, A. Borgida,

and J. Mylopoulos, “Strategic business modeling: representation and
reasoning,” Software & Systems Modeling, oct 2012.

[20] A. Metzger, K. Pohl, P. Heymans, P.-Y. Schobbens, and G. Saval,
“Disambiguating the documentation of variability in software product
lines: A separation of concerns, formalization and automated
analysis,” . . . , 2007. RE’07. 15th . . . , 2007. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs{ }all.jsp?arnumber=4384187

346

