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Abstract Representation and reasoning about goals of an

information system unavoidably involve the transformation

of unclear stakeholder requirements into an instance of a

goal model. If the requirements engineer does not justify

why one clear form of requirements is chosen over others,

the subsequent modeling decisions cannot be justified

either. If arguments for clarification and modeling deci-

sions are instead explicit, justifiably appropriate instances

of goal models can be constructed and additional analyses

applied to discover richer sets of requirements. The paper

proposes the ‘‘Goal Argumentation Method (GAM)’’ to

fulfil three roles: (i) GAM guides argumentation and jus-

tification of modeling choices during the construction or

critique of goal model instances; (ii) it enables the detec-

tion of deficient argumentation within goal model

instances; and (iii) it provides practical techniques for the

engineer to ensure that requirements appearing both in

arguments and in model instance elements are clear.

Keywords Goal modeling � Argumentation �
Clarification � Goal-oriented requirements engineering

1 Introduction

Requirements engineering (RE) is a structured approach to

the assessment of the role that a future information system

(IS) is to have within a relatively well-delimited human

and/or automated environment. It involves the identi-

fication of goals to be achieved by the IS, their

operationalization into implementable IS services and

constraints, the identification of resources required to per-

form those services and the assignment of responsibilities

for the resulting requirements to agents, such as humans,

devices, and software.

A usual starting point in RE is the elicitation of goals

that the future IS will need to achieve once developed and

deployed [57]. Goal modeling can be defined as the activity

of representing and reasoning about IS goals using models,

in which goals are related through relationships with other

goals and/or other model elements, such as, e.g., actions

that system agents are expected to execute, resources that

they can use, or roles that they can occupy. With a number

of currently established RE methods relying on goal

models in the early stages of requirements analysis (e.g.,

[8, 12, 17, 19, 39]; see, [32, 57] for overviews), there seems

to be a consensus that goal models are useful in RE.

When an instance of a goal model (henceforth, ‘‘goal

diagram’’) is constructed by few stakeholders having similar

backgrounds, during a very limited amount of time, and

consequently for a relatively simple system, there is gener-

ally no need to record the details of the decision process that

has led to the final goal diagram. However, as the system

under scrutiny gains in complexity—which tends to occur
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for most but toy systems, and is certainly true for IS

employed in automating, e.g., government and healthcare

services, air–traffic management, industrial production

processes—the inherent inability of individual human

stakeholders to grasp the full extent of interactions and in-

terdependencies between system components, to predict

with detail and/or certainty the future conditions in which the

system is expected to operate and the influence of such

conditions on its functioning, makes the construction of the

goal diagram an intricate task, critical for the success of the

subsequent IS development activities. Moreover, stake-

holders’ preferences are rarely absolute, relevant, stable,

consistent, precise, or exogenous (e.g., [42] and later), thus

making it difficult to choose among alternative requirements.

A prominent consequence of system complexity, envi-

ronment unpredictability, and preference variability is that

the requirements provided by the stakeholders will be,

among others, ambiguous, overgeneral, and vague (overall:

‘‘unclear’’), thus unavoidably leading the requirements

engineer to transform such information into a clear form

written in a goal diagram. This transformation consists

essentially of the engineer interpreting the information

provided by a stakeholder, relating the interpretation to the

semantics of the goal model, and finally, establishing how

to represent it using the syntax of the model. In doing so,

the engineer encounters two significant issues:

• With stakeholders’ tendency to express expectations in

natural language prone to misinterpretation, it is

difficult for the engineer to be assured that her

understanding corresponds to what the stakeholders

intended to communicate.

• Although it is reasonable to assume that problem and

solution knowledge relevant for the engineering of the

future IS rests mostly with the stakeholders, system

complexity and environment unpredictability make it

necessary for the engineer to take an active role in

shaping requirements, namely by questioning the

rationale behind the expectations expressed by the

stakeholders.

Failing to address the above in a structured manner has

apparent consequences on the success of the RE phase in

system development:

1. Traceability between expectations and their represen-

tation in a goal diagram is undoubtedly weak: why a

particular natural language requirement is represented

in a particular way and not another remains unknown.

It is to expect then that stakeholders reviewing the

diagram will not know why another stakeholder or the

requirements engineer made the given modeling

decision. The result may be an unnecessary review

of the diagram, changes, or additional explaining.

These activities require time and resources that could

have been employed in a more productive manner.

2. A stakeholder cannot recall the reasons for making a

modeling decision. While goal modeling is an iterative

process, it is not uncommon to review the prior

decisions because of imperfect recall of reasons

leading to them in the first place. Future iterations

could be better informed if rationale for prior ones is

explicit.

3. The ideas, arguments, and assumptions underlying a

decision remain implicit and/or are lost over time.

Alternative ideas and confronting views that could

have led to different, possibily more adequate model-

ing choices are lost as well. Both favor a poor

understanding of the problem and solution domains.

Empirical data suggest that this is an important cause

of RE project failure [16].

4. There is no guarantee whatsoever that expectations are

not misinterpreted by the engineer, as intuitive detec-

tion of ambiguities, vagueness, and so on in

stakeholders’ statements by itself gives no serious

grounds for claiming proper understanding. If there are

no checks for clarity of requirements statements, it is

difficult for a stakeholder or the requirements engineer

to establish whether a statement is unclear and how it

can be clarified. As illustrated in the remainder, some

such clarity checks are obvious, but many are not at all

trivial. Leaving the clarity checking implicit is likely

to lead to the application of trivial and intuitive checks,

while non-trivial ones will be disregarded for

simplicity.

5. Inconsistencies that could have been identified by

clarifying initial requirements in a structured manner

would remain hidden until later steps of the RE

process. Inconsistencies identified early on help in

eliciting additional requirements that would otherwise

have been missed.

1.1 Contributions

One possible approach to reducing the issues 1–5 is to (i)

externalize and document arguments that led the stake-

holders to express some requirements as well as the

arguments that led the requirements engineer to transform

these requirements into goal diagram content; and, (ii) to

analyze the clarity of these arguments and of the information

given within the goal diagram, revising it if proves neces-

sary. To facilitate tasks (i) and (ii), the present paper proposes

the so-called ‘‘goal argumentation method (GAM)’’, which

integrates a decision process, an argumentation model, and

techniques combined to enable the analysis of argument
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structure, justification of modeling choices, and clarification

of information appearing in arguments and elsewhere in the

the goal modeling decision process. Drawing on design

rationale literature (see, [40] for an overview), the decision

process suggests an intuitively acceptable organization of the

goal modeling task. The argumentation model, inspired by

work in artificial intelligence argument models (see, [11] for

an overview), is introduced in the evaluative step of the

decision process, allowing various degrees of structure and

rigor in the provision of arguments for modeling choices.

The analysis techniques serve for the justification of mod-

eling choices, the study of argument interaction (e.g., defeat

and counterargumentation), the detection of deficient argu-

mentation, and the checking for unclear information and

subsequent clarification.

An important characteristic of GAM is that it does not

integrate a particular goal model; instead, it is independent

of specific goal model syntax and semantics, allowing its

combined use with any available RE framework which

employs goal models. In conjunction with any available

goal-oriented RE framework, GAM fulfils three roles:

1. GAM guides argumentation and justification of mod-

eling choices during the construction or revision/

critique of IS goal diagrams.

2. It enables the detection of deficient argumentation

within available goal diagrams (which need not have

been built using GAM).

3. It provides practical techniques for the requirements

engineer to ensure (to a reasonable extent) that

information appearing both in arguments and in

diagram elements is clear (i.e., is not ambiguous,

overgeneral, vague, among others).

The principal contributions of this paper to the RE field

are the introduction of generic argumentation and clarifi-

cation conceptualizations and techniques in goal modeling

for RE. Hopefully, the present paper highlights that the

activities of argumentation and clarification are method-

independent concerns and therefore significant for RE at

large. Following the initial presentation of GAM at the 14th

International Requirements Engineering Conference

(RE’06), the present paper extends the method consider-

ably, to include clarification of arguments and stakeholders’

statements of requirements.

1.2 Case studies

While the reader may assume from the above that GAM

addresses issues arising only when the complexity of the

future system surpasses some considerable threshold, it

turns out that such a threshold is, in actual application,

unexpectedly low. Having exemplified GAM initially using

the classical case study involving the engineering of

requirements for a meeting scheduler system [58], GAM

was shown to apply to a wide range of settings, including

systems that are less complex than many to which GAM

has initially been oriented. To ensure that the text is

readable and that the main features of the method are

salient, the same case study is maintained herein. Since the

presentation of preliminary results at the RE’06 confer-

ence, GAM was applied to a realistic case study of

considerable complexity, involving the clarification and

justification of requirements for an air–traffic management

(ATM) IS. Requirements are based on extensive docu-

mentation providing records of numerous meetings of the

stakeholders involved in the European Organisation for the

Safety of Air Navigation [20]. Part of the results obtained

in the ATM case study are employed herein to illustrate the

applicability of some specific features of GAM to the

engineering of requirements for complex systems.

In the present paper GAM is used with the Tropos RE

method [8, 23]. Tropos’ goal model is based on the well-

known i* modeling framework (see, [60] and related). The

i* notation features a simple yet expressive notation, which

is briefly overviewed below (Sect. 2). An advantage of

adopting Tropos is that the modeling primitives of i* are

usually present in similar form within most goal-oriented

RE frameworks (see, e.g., [57]), thus maintaining the dis-

cussion generic.

1.3 Organization

Problems of justification and clarification are first exem-

plified within the two case studies (Sect. 2). Examples are

then used to illustrate the features and use of GAM, that is,

the decision process (Sect. 4), the clarification techniques

(Sect. 5), and the argumentation model and associated

analysis techniques (Sect. 6). After reviewing related work

(Sect. 7) and discussing limitations of GAM (Sect. 8),

conclusions are drawn and directions for future work

identified (Sect. 9). Each section presenting parts of the

method provides and discusses a set of definitions of

concepts, techniques employing these concepts, and

examples illustrating the use of techniques in the case

studies. The suggested techniques are derived from our

experience in using GAM and the literature associated to

concepts employed in GAM but introduced in related

research.

2 Illustration of the problem

Consider a system for scheduling meetings, similar to that

described in [58, 61]. The meeting scheduler should try to
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select a convenient date and location, such that most

potential participants participate effectively. Each meeting

participant should provide acceptable and unacceptable

meeting dates based on his/her agenda. The scheduler will

suggest a meeting date that falls in as many sets of

acceptable dates as possible, and is not in unacceptable

date sets. The potential participants will agree on a meeting

date once an acceptable date is suggested by the scheduler.

A goal diagram for such a system would be represented

in Tropos as an instance of the i* Strategic Rationale (SR)

model. The i* framework comprises, in addition to the SR

model, the so-called ‘‘strategic dependency (SD)’’ model,

which features a subset of the modeling primitives of the

SR—the latter is therefore taken as the reference Tropos

model in the remainder. An example SR diagram for the

scheduler, taken as-is from [61], is reprinted in Fig. 1. It

shows actors such as Meeting Scheduler and Meeting

Participant, their interdependencies in the achievement of

goals, the execution of tasks, and the use of resources, and

their internal rationale when participating in the given IS.

For example, the Meeting Be Scheduled goal of the

Meeting Initiator can be achieved (represented via a

means-ends link) by scheduling meetings in a certain way,

consisting of (represented via task-decomposition links):

obtaining availability dates from participants, finding a

suitable date (and time) slot, proposing a meeting date, and

obtaining agreement from the participants. Cloud-shaped

elements designate softgoals which differ from goals in

that there are no crisp criteria for their satisfaction. Soft-

goals are commonly used to represent nonfunctional

requirements in a goal diagram.

During the RE process, the appropriateness of this goal

diagram can be evaluated on the basis of arguments that

support its content. The appropriateness is defined here as

the likelihood of the IS produced from the given diagram to

satisfy stakeholder needs. If arguments are missing, alter-

native diagrams that could be produced by the stakeholders

or requirements engineers for the same IS could be con-

sidered appropriate, provided that no errors are made when

using the syntax and semantics of the relevant goal model.

While the SR in Fig. 1 serves as a valuable example to

illustrate the syntax and semantics of the i* framework in

[61], it is difficult to accept without justification that dia-

gram as more appropriate than another one in a RE project.

Lack of arguments to support the diagram in Fig. 1 lead a

stakeholder to challenge it by pointing, e.g., to unnecessary

extensiveness or to incompleteness, as in the following

questions:

• How does the initiator inform participants that a

meeting is being organized?

• Would it not be user friendly for the meeting initiator to

inform participants about the meeting using the meeting

scheduler?

• Would it not be user friendly if the scheduler looked

available dates up in participants’ electronic agendas?

• Does the scheduler remind participants of the meeting

date? If yes, how/when does it do so? If no, why not?

If arguments were given explicitly for the diagram in

Fig. 1, stakeholders might know that, e.g., the initiator

prefers to inform participants verbally, that different for-

mats of electronic agendas make it costly to develop a

scheduler that can communicate with each participant’s

software, and so on. Even if such questions are not asked,

making it unnecessary for the requirements engineer to

address them, ideas and assumptions that could have sur-

faced and led to additional requirements as a result of the

questions would remain hidden. It would be easier to

Fig. 1 An i* Strategic rationale diagram from [61]
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consider the goal diagram in Fig. 1 appropriate if modeling

decisions leading to it are justified.

Adding arguments alone certainly seems helpful in

answering questions such as above, though it is a different

issue altogether to ensure answers given in arguments are

meaningful, and this in the same (or, at least very similar)

way to all relevant stakeholders—it would otherwise be

particularly difficult to agree on the relevance and

acceptability of arguments given to support modeling

decisions; in practice, this translates in extensive counter-

argumentation due primarily to lack of clarity. The same

applies to information already placed within the goal dia-

gram—consider, e.g., the nonfunctional requirement

Quality of the proposed date represented as a softgoal in

Fig. 1. The stakeholder could ask the following questions:

• What does ‘‘quality’’ of a meeting date mean?

• Who decides when the quality of the date is high/low?

• Under what conditions is the quality of the proposed

date considered high or low?

• What if my criteria for meeting date quality are

different from those assumed in the diagram?

The questions point to stakeholders’ unsatisfactory

understanding of the goal diagram, due to a lack of clarity

of the information in the diagram. For a more elaborate

illustration of clarity issues in statements of requirements,

consider an actual requirements document [20] which is a

result of consultations that took place from 1994 to 1998 of

a number of stakeholders selected by and involved in the

European Organization for the Safety of Air Navigation.

The document compiles information about the needs the

given parties expressed regarding the air traffic manage-

ment strategy and information systems that would support

it for the period after the year 2000. The following is an

example of a requirement from the cited document (more

such examples are given in Sect. 5):

‘‘For short haul and regional operations there is a

need for ATM to make them wait on the ground

rather than in the air in case of weather contingencies

and to be treated fairly with respect to arriving long

haul aircraft in the air while they have not taken off

yet. Once given the takeoff clearance they should be

able to fly directly to the destination’’ [20] (p.18).

A number of questions arise, some answerable through a

specialized glossary (e.g., What are the conditions for a

flight to qualify as short haul?) while other are more

intricate (e.g., Under what conditions can be said that there

is a weather contingency? What is a ‘‘fair’’ treatment?

When can the fair treatment be overrun by human opera-

tors?). Provided that the system involved in satisfying the

above requirement is partly automated and as argued ear-

lier, the latter questions involve interpretation by a

requirements engineer involved in the specification of the

automated parts of such a system. There is seemingly no

pressing issue here if the requirements engineer is also an

expert in air traffic management, for this person would

already know the precise answers to these questions and

would know how to appropriately specify them in a

requirements diagram. However, while air traffic is suffi-

ciently safety-critical for society to warrant the existence of

bodies that specialize in managing requirements acquisi-

tion, analysis, maintenance for ATM systems, in most

situations the RE expertise lies not with the same people as

expertise in the problem that the engineered system is

expected to resolve. Empirically, the said separation of

effort is observed to weigh on the success of RE projects

[16]. Separation entails that the requirements engineer

ought to take particular care when interpreting requirments

stated by the stakeholders who are likely to be more

knowledgable in the specific problem at hand. As observed

in Sect. 7, it is surprisingly rare for available RE frame-

works to suggest ways to raise the awareness of the

requirements engineer to unclear information and the

problems of interpretation of requirements. GAM addres-

ses this issue through the concept of unclear information,

introduced and discussed in Sect. 5.

The preceding discussion highlights essentially two

issues:

1. It is desirable to argument and justify modeling

decisions, as the notion of appropriateness of a goal

diagram would lose all meaning—i.e., any diagram

would be appropriate provided that no technical errors

are made in modeling.

2. Information used and produced during RE can be

unclear, thus increasing the probability that it will be

misinterpreted by the requirements engineer and that

the resulting diagram will be inappropriate.

The position adopted in the remainder is that the two

problems are related: the arguments leading to specific

modeling choices can be unclear and the information

contained in a goal diagram can be unclear—both therefore

require clarification. Hence the analysis of information

clarity (Sect. 5). But as clarification of a piece of infor-

mation can result in choosing among alternative clear

forms of the given information (in case it is, e.g., ambig-

uous), and the apparent interest in arguing for some choices

over other, understanding how to proceed to argumentation

is of relevance as well.

Although it may be interesting to further claim that the

clarity problem may arise in part from restrictive (or, e.g.,

ambiguous and incomplete) syntax and semantics of a goal

model that is being employed, the present discussion does

not go so far: the existing literature is followed in assuming

the value of the chosen Tropos goal model for RE activities

Requirements Eng (2008) 13:87–115 91
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(e.g., [8, 23, 61]). Additional information, aimed at clari-

fying and arguing for modeling choices, is therefore given

with (instead of in) diagrams to avoid changing the original

model or the associated, wider RE framework.

A useful complement to a goal diagram contains argu-

ments that justify or challenge decisions for clarifying and

then modeling requirements in a particular way. Although

argumentation and clarification can be informal and with-

out a particular structure, the following benefits can be

gained by using a structured method:

• Of relevance to traceability, the use of a decision process

explicitly adapted for argumentation allows each ele-

ment introduced in a goal diagram to be related to a set of

arguments that justify or criticize the modeling decision

leading to the given representation of that element.

• When new information becomes available, the change

of the diagram that it may require can be easier to

understand if arguments for prior decisions are explicit.

Otherwise, the engineer may not be capable of under-

standing the relationship between the new elements

added to the diagram and the existing ones, leading the

engineer to overlook additional changes for ensuring

the consistency of information in the diagram.

• If arguments are explicit and structured according to a

few simple rules Sect. 6, the justification process can be

analyzed for inconsistency and preference over argu-

ments can be established. If arguments are further

formalized, the justification process for a goal diagram

can be at least partly automated.

• In addition to qualifying some information as unclear, it

is possible to determine the kind of information that

clarifies it. Namely, it will be illustrated that informa-

tion can be unclear in many different ways, so that no

single clarification technique always applies. Accord-

ingly, it is useful for the requirements engineer to

determine in which way the information is unclear so as

to apply specialized techniques.

3 Brief overview of GAM

To address the problem outlined in Sect. 2, GAM combines

three components:

• A decision process (Sect. 4) which highlights the key

steps to take when creating a new or modifying an

existing goal diagram, and gives an overall organiza-

tion to the argumentation and clarification activities in

relation to goal modeling.

• A set of clarification techniques (Sect. 5) to check the

information used and produced during decision making

for clarity, and clarify it in case it is judged unclear.

• An argumentation model (Sect. 6) which imposes

restrictions on how pieces of information are composed

into arguments, and how the latter combine to arrive at

a justified decision.

While the decision process and the clarification tech-

niques are essentially informal, the argumentation model is

suggested in both an informal and a formal variant. The

formalisms facilitate and make precise the presentation of

the definitions of argument and dialectical trees. It should

be noted that the formalization of arguments is not required

for the remarks and suggestions made below to apply;

however, avoiding a structured language (be it first-order or

a propositional one) is not helpful when automated trans-

lation between goal diagrams and arguments is attempted

(see, Sect. 6.1). The three following sections present and

discuss respectively the decision process, the clarification

techniques, and the argumentation model.

4 GAM decision process

GAM employs a decision making process to organize the

activities involved in clarification and argumentation, and

whose outcome is a change in the content of a goal dia-

gram. Although systematic decision procedures are

generally adapted for specific application domains, most

involve a number of common steps shown in Fig. 2. A

decision maker generally proceeds by setting the problem

to be resolved by application of the process. The problem

statement provides initial directions for the identification of

alternative solutions, which are in turn evaluated, by

making qualitative or quantitative arguments to support or

defeat each alternative. The chosen alternative takes the

form of a solution statement. A new problem can then be

tackled and the decision process repeated until the stake-

holders involved in decision making consider that the

relevant issues have been addressed.

The GAM decision process, given in Fig. 2 is pur-

posefully generic, for its principal purpose is to highlight

the steps at which the clarification and argumentation

activities are to be executed within any decision process

suggested in the engineer’s RE framework of choice. The

activities and deliverables appearing in Fig. 2 are based on

recomendations of design rationale research (e.g., [14, 40,

52]), which is concerned with assisting humans when

reasoning about the rationale behind decisions that lead to

the production of an artifact. A design rationale expresses

elements of the reasoning which have been invested behind

the design of the artifact [52]. The various design rationale

approaches that have been suggested in the software

engineering literature give a set of concepts and suggest

ways in which these can be manipulated during a design
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activity (for an overview, see [40]). For example, the IBIS

[14] approach consists of relating issues that need to be

deliberated to positions that resolve issues, and arguments,

that support or object to positions. More recently, [40]

suggested the reasoning loop model (RLM), which inte-

grates common characteristics of established design

rationale approaches. It starts from a description of a

problem which generates goals that characterize potential

solutions. Then, hypotheses about potential solutions that

satisfy goals are generated through problem analysis.

Evaluation of alternative hypotheses leads to a justification

of a selected alternative, which in turn leads to deciding an

action. The result of an action is likely to lead to new goals,

thus restarting the reasoning loop. It is not difficult to

establish immediate links between the concepts given in

Fig. 2 and the ones common in design rationale research:

• The problem statement designates any objective to be

reached, demand to be satisfied, problem to be solved,

issue to be discussed, in general anything one would

like to achieve through problem resolution. It corre-

sponds to the concepts of issue (in IBIS [14]), goal

(RLM [40]), requirement (REMAP [47]), decision

problem (DRL [35]), question or criterion (QOC [41]).

• The alternatives are potential solutions to the stated

problem, and correspond to positions (IBIS, REMAP),

hypotheses (RLM), alternatives (DRL), and options

(QOC).

• The argument is a piece of information (e.g., a

statement) that either provides support for, or is

provided against choosing an alternative. It is concep-

tually close to argument (IBIS, REMAP, QOC),

justification (RLM), and claim (DRL).

• The solution statement encompasses both the alterna-

tive chosen as the result of evaluation and the action

taken to conform to the prescription given in the chosen

alternative. As such, it is similar to decision (REMAP)

and design action (RLM).

Technique 1. (Applying the GAM decision process) The

decision process is applied as follows. Starting from an

empty or already elaborate goal and/or decision diagram

(the latter is an output of the decision process), stake-

holders proceed by setting the problem, which consists of

finding gaps between the desired and the observed in both

diagrams. To describe the result of the problem setting

activity, a problem statement is devised in natural language

by stakeholders who consider the given diagrams’ content

inadequate. The problem statement should not be mistaken

for a goal of the IS for which the requirements are being

engineered: a problem statement may result in adding an IS

goal to a goal diagram, but it may also lead to adding any

other modeling element or changing any of the two dia-

grams in some other way. Stakeholders then suggest ideas

and make proposals about the resolution of the stated

problem. They generate a set of alternatives (shown as

Alternative1,...,Alternativen in Fig. 2). Alternatives are

evaluated by providing one or more arguments to support

or contest each alternative. When only one alternative

remains justified and all others defeated, a decision is

reached, and the diagram is changed according to the

information contained in the justified alternative. The

completion of a cycle in the reasoning process leads to the

initiation of a new loop, until stakeholders agree that no

further reasoning about a diagram is required. A loop must

be closed, i.e., all activities executed—otherwise, the stated

problem is not considered to be treated adequately.

Technique 2. (Initiating additional decison processes)

The dashed arrows in Fig. 2 indicate that additional deci-

sion process loops may be initiated from some of the

specific decision deliverables. It is possible to identify new

problem statements from alternatives (e.g., an alternative

may highlight, be it is selected or not, the need for existing

diagram elements to change in a way not anticipated in the

problem statement) and arguments (e.g., some of the

arguments provided for alternatives may be based on

information already in the goal diagram, so that additional

arguments that contest the former may point to problems in

the goal diagram). There are no dashed arrows from the

decision and problem statements, as any issue identified as

a result of the decision statement generates a problem

Fig. 2 Outline of the GAM

decision process
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statement, which itself initiates a new instance of the

decision process.

Technique 3. (Unstructured clarification in the decision

process) The small circular arrows in Fig. 2 indicate that

there may be a need for clarification of information pro-

duced in the activities of the decision process. Information

that requires clarification is written in a problem statement

of a new reasoning loop, in which alternatives can be, e.g.,

different clear forms of the unclear statement. Until

Sect. 5, clarification is left to the intuition of the engineer

and the participating stakeholders.

Example 1. (Applying the GAM decision process) To

illustrate the application of the decision process in GAM,

part of an i* SR diagram for the meeting scheduler is

constructed starting from an empty diagram. The output of

the decision process, i.e., the decision diagram, is on the

left-hand side of Fig. 3. Next to it is an incomplete SR

derived from part of the information contained in the

decision diagram. To relate SR diagram elements to those

of the decision diagram, each SR element is annotated with

the reference of the reasoning diagram element from which

it is derived, and the expression from the decision diagram

that is translated into the SR diagram is underlined. For

example, the goal Schedule Meeting is marked with PS1

indicating the decision element (here, the problem state-

ment at the root of the reasoning diagram) that led to the

introduction of the goal in the goal diagram. As a con-

vention, arguments for an alternative are marked with

Ax + /–, where x is the number of the argument in the list,

and + (plus) and – (minus) symbols are used, respectively,

to indicate that the argument supports or contests the

alternative. Clarification is the first activity that has been

realized: the PS1 problem statement has been considered

unclear, in that the meanings of user friendly and effortless,

as well as the potential relationship between the two are

unclear. Two alternatives were suggested and a decision

has been taken to adopt the second alternative (1.Dec)

based on arguments given for the alternative. Some of the

alternatives led to additional problem statements that were

in turn subjected to the decision process. Each element of

the decision diagram is labeled with the name of the

stakeholder that suggested it, and the time of writing.

Several additional observations can be made:

• There is information in the decision diagram that is not

in the goal diagram (e.g., the reasoning behind the

construction of the goal diagram), and there is infor-

mation in the goal diagram that is not in the decision

diagram (e.g., that some expression in an argument is

interpreted as a task or a goal). The two diagrams are

complementary, allowing a stakeholder to discover why

a goal diagram has been constructed in a particular way

by reading it in conjunction with the decision diagram.

• Because the construction of the (incomplete) diagrams

in Fig. 3 started from an empty sheet, the information

in both of them is still unclear. For example, one could

ask if the task marked 3.Alt2.A3 + is a decomposition

of another goal diagram element, and if so, which one;

or if the goal Schedule Meeting could be made more

precise and how, etc. Clarification will lead to

additional decision loops (as was initially the case for

PS1). As illustrated above, the result can be increas-

ingly precise decision and goal diagrams.

• GAM can be used to document the decision making

behind the use of specific goal analysis techniques,

1.Dec

3.Alt2
Meeting 
Sched.

3.Alt2
3.Alt2.A3+

PS1: Meetings should be 
scheduled in a user friendly
and effortless way.

Stakeholder: A. Smith

Time: 14Feb2006;14:42

1.Alt1: Effortless and user friendly mean the 
same thing: that the meeting initiator should 
spend less time than now to determine the 
appropriate meeting date.

P.C.

14Feb2006;14:45

1.Alt2: Effort and user friendly are different 
criteria for evaluating the quality of a meeting 
scheduler software.

A.S.

14Feb2006;14:48

1.Alt2.A1+: Effort could be reduced if it took 
less time to schedule meetings than is the 
case with the current process. 

P.C.

14Feb2006;14:52

1.Alt1.A1-: Making something user friendly is 
different than automating it, and both of these are
ways to reduce effort. 

C.J.

14Feb2006;14:50

1.Alt2.A2+: User friendliness can concern time 
needed to find the options necessary for 
informing participants, and collecting availability
information and confirmations from them.

C.J.

14Feb2006;14:56

1.Alt2.A3+: User friendliness is related to the 
visual appeal and time needed to learn how to 
use the scheduler interface.

A.S.

14Feb2006;15:01

1.Dec: User friendliness contributes to reduce 
effort. The two are different in that the former 
helps satisfy the latter.

14Feb2006;15:05

PS5: How to reduce time 
needed to learn the use 
of the scheduler?

PS4: What interface for 
the scheduler would be 
visually appealing?

PS3: How to reduce total 
time needed to schedule 
a meeting?

C.J.

14Feb...

J.S.

14Feb...

P.C.

14Feb...

PS2: What other criteria 
should be taken into account 
to evaluate the new 
scheduler?

A.S.

14Feb...

PS1
Schedule 
meeting

1.Alt2
User friendly

1.Dec

+

1.Alt2
Low effort

  PS1

+

1.Alt2.A3+
Visually 

pleasing UI

1.Alt2.A3+
Low learning 

time

+

2.Alt1: There are no other 
relevant criteria.

A.S.

14Feb...

2.Alt1.A1+: Visually pleasing 
UI, easy learning, user 
friendliness, and low effort 
have been identified.

A.S.

14Feb...

...

... ...

......

3.Alt1: Schedule meeting 
using email only. 

3.Alt1.A1+: Low cost since 
software available and 
standardized.

3.Alt1.A2-: Dificult to keep 
track of many emails 
exchanged to schedule a 
single meeting.

3.Alt1.A3-: Requires many 
emails to be exchanged 
before agreeing on a date.

3.Alt1.A4-: Initiator needs to 
find a date manually.

C.J.

14Feb...

C.J.

14Feb...

P.C.

14Feb...

J.S.

14Feb...

A.S.

14Feb...

3.Alt2: Use a meeting 
scheduler that plugs in the 
email client software. 

J.S.

14Feb...

3.Alt2.A1-: Costly, but the 
budget is available.

A.S.

14Feb...

3.Alt2.A2+: Automatic date 
suggestion to the initiator 
reduces effort.

J.S.

14Feb...

3.Alt2.A2+
Suggest dates 
automatically 
to the initiator

+

3.Alt2.A3+: Can use widgets 
of the email client UI, which 
can reduce learning time
since familiar.

J.S.

14Feb...

3.Alt2.A3+
User interface 

widgets

3.Alt2.A3+
Use email client 

UI widgets

3.Alt2.A4-: To keep costs 
low, requires users to have 
the same email client.

P.C.

14Feb...

3.Alt2.A5+: All users in the 
firm use the same email 
client (diff. ver. for Mac/PC).

J.S.

14Feb...

3.Alt2.A1-
Scheduler 

development cost

3.Alt2
Meeting 

scheduler plugs 
in email client

3.Alt2.A1-

-

3.Alt2.A3+

PS6: The meeting date 
suggested by the scheduler 
should be confirmed by the 
initiator prior to sending it to 
the participants.

A.S.

14Feb...

6.Alt1: Use a popup window 
to ask the initiator for 
confirmation and select a list 
of recepients from the 
address book.

6.Alt1.A1+: ...

6.Alt1.A2+: ...

PS5: What functionality 
should the scheduler 
interface provide?

P.C.

14Feb...

...

...

1.Dec

3.Alt2.A2+

3.Alt2
Email 
client 
softw.

...

...

3.Alt2

+

3.Alt2.A2+

3.Alt2.A6+: ...

Fig. 3 Using the GAM decision process to build an i* diagram for the meeting scheduler
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already established in RE (such as, e.g., goal refinement

and operationalization [57]). For example, the modeler

can document reasons leading to, e.g., a particular

refinement or decomposition of the Schedule Meeting

goal in Fig. 3. This way, the decision process in GAM

helps to fill a gap between abstract suggestions on how

the goal modeling activity should be organized (e.g.,

elicit goals from available documentation and look

further by asking why and how questions [57]) and very

precise, formal techniques already available in RE

methodologies (such as formal refinement, abstraction,

operationalization [36, 57]), without requiring them to

change to fit the design rationale approach.

The reader may question whether the GAM decision

process should further incorporate concepts that tend to

commonly appear in RE decision making: for instance, the

REMAP [47] decision rationale approach features addi-

tional concepts such as ‘‘constraint’’ and ‘‘design object’’,

as well as a number of specialized links to relate the

different concepts, including, e.g., ‘‘generalizes’’,

‘‘specializes’’, ‘‘responds to’’, etc. It would then appear

interesting to introduce the RE-specific concepts such as,

‘‘goal’’, ‘‘task’’, ‘‘actor’’ within the decision process model.

It has, however, been observed that particularly close

integration of design rationale with the specific artifacts

(here, goal models) may result in the loss of the original

vision of argumentative decision making [52]. Since GAM

is intended to assist more extensive RE methods that

already rely on specific techniques to organize the RE

process as well as specific ontologies, it was important not

to use an approach that requires adaptation of the estab-

lished methods. Therefore, the direction of design rationale

approaches that aim to be minimally prescriptive, light-

weight, informal, non-intrusive on the design activity they

complement, and place no restrictions on the artifact being

produced are favored, so as to facilitate the practical

applicability of GAM. It can also be observed that the

concepts appearing in the GAM decision process pur-

posefully leave much to interpretation, leaving emphasis on

argumentation and clarification in choosing among alter-

native solutions. GAM is in this respect an argumentative

approach to goal modeling: by involving and integrating

argument and argumentation of alternatives as, respec-

tively, a key concept and activity, the proposal follows the

noted relevance of argumentation in dealing with problems

that lack a precise, agreed-upon formulation or available

plans of action (e.g., [14, 50]).

The construction of the example given in Fig. 3 uses

neither the specific clarification techniques nor the argu-

mentation model available in GAM. Arguments are given

without verifying their clarity and without a particular

structure. Moreover, no precise criteria have been applied

to determine whether arguments are inconsistent and if

some arguments defeat others. Clarification remained

informal, grounded in the intuition of the engineer and the

stakeholders while structured around the decision process,

in which the unclear information is considered the problem,

and alternatives its various clear forms. Clarification

techniques are proposed in the following section to avoid

ambiguity, overgenerality, synonymy, and vagueness of

arguments and of information in the goal diagram.

5 Clarification

Even in safety-critical systems such as those used in air-

traffic management, unclear information abounds, as the

example below illustrates.

Example 2. (Unclear information in ATM documenta-

tion) Consider the following excerpt on stakeholders

expectations about the ATM system [20]:

‘‘All users want total visibility on costs and charging

(cost recovery) mechanisms regarding ATM system

development and operation expenditures. Constant

monitoring of ATM services costs and quality of

service (’benchmarking’) delivered to the client is

needed to ensure the cost effective provision of such

services’’ [20] (p.12).

The above seems ambiguous (does ‘‘total visibility’’

involve control of expenditures in addition to their trans-

parency?), overgeneral (for it refers in a much too general

way to the entities it concerns: e.g., Who are the ‘‘users’’?

What are the ‘‘cost and charging mechanisms’’?), carries

synonyms (is there a difference between ‘‘cost’’ and

‘‘expenditure’’?), and vague (since ‘‘cost effective’’ relies

on a gradeable adjective, admits borderline cases of

application, and the Sorites paradox—see Sect. 1). Similar

issues are found in the excerpt below:

‘‘... also applies to pre-tactical (day minus one) and

tactical (same day) flight planning phases’’ [20]

(p.17).

Where ‘‘day minus one’’ admits alternative and contra-

ditory interpretations: day minus one can be measured in

different ways, while ‘‘day’’ can mean 24 h or a working

day, thus requiring disambiguation.

‘‘... the flexibility of ATM to cope with unforeseen

short term changes in demand or partial failures

whilst ensuring that the repercussions for all airspace

users remain acceptable’’ [20] (p.20).

Above, ‘‘acceptable’’ is vague, as is ‘‘excessive com-

munication’’ below:
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‘‘... eliminating excessive routine voice communica-

tions should apply to all flight phases in the ground/

ground and air/ground communications... The pilot

wants as few frequency changes as possible...’’ [20]

(p.17).

Stakeholders may have a number of reasons to com-

municate statements of requirements or give arguments

that are unclear in one way or another: their knowledge of

problem and solution domains may be restricted; they learn

as the project unfolds, thus establishing and/or changing

their preferences over alternative (parts of) problem and

solution statements; for ease, they are likely to avoid a

rigorous representation language, expressing their needs in

natural language. It can then be reasonably assumed that

the production of a specification obliges the requirements

engineer to clarify the stakeholders’ statements either in a

passive or an active way. A passive approach would be to

consider a statement sufficiently clear if there are no

stakeholders that explicitly question it. This may be

unhelpful because: (i) a stakeholder may not question a

statement since its understanding is based on implicit

domain knowledge shared with other stakeholders; (ii)

there may be few motives/rewards for a stakeholder to

participate actively in the RE process; (iii) a stakeholder

may consider either being incompetent to question the

statement, or unaffected by the part of the system that the

statement concerns. In case of (i), domain knowledge of the

engineer is likely to remain limited, while important

requirements are also likely to be overlooked if (ii) and/or

(iii). An active approach, in which the requirements engi-

neer questions stakeholders’ statements openly by using

specialized clarification techniques therefore appears

desirable.

Unclear information is problematic because the engineer

has difficulties in giving it a unique interpretation and

consequently translating it into elements of a goal diagram

or using it as useful arguments in justifying modeling

decisions. Although the engineer may perceive some

information as unclear, to act in order to clarify it, the

engineer ought to know how to detect a lack of clarity and

to identify directions for the enchancement of unclear

information. Moreover, as ambiguity differs from vague-

ness, synonymy differs from each of the latter, and so on,

there can be various distinct techniques for detecting lack

of clarity and subsequent clarification: i.e., clarity is a

multi-facetted construct. In practical terms, in addition to

perceiving a piece of information as unclear, the method

must enable the engineer to determine along which facets it

is unclear, and clarify accordingly.

From there on, an active clarification process is con-

ceptualized as a successive application of a set of basic

clarification techniques, each being a transformation of

information initially considered unclear into that perceived

as clear by the stakeholder(s). The aim of the requirements

engineer is to move on each dimension towards a direction

assumed desirable: e.g., moving from ‘‘more’’ to ‘‘less’’

ambiguity, from more to less vagueness, etc. In addition to

clarification techniques, clarity checking techniques are

required to detect if some information is unclear along a

particular facet. It follows that a way of helping the engi-

neer in an active approach is to provide a rich catalog of

clarity facets, to define each facet for easier identification,

and to suggest clarity checking and clarification techniques

to be applied when a facet is identified.

The catalog of four facets—ambiguity (Sect. 5.2),

overgenerality (Sect. 5.3), synonymy (Sect. 5.4), and

vagueness(Sect. 5.5)—introduced herein is not meant to

be complete and its extension is encouraged: it is impos-

sible, knowing the extent of the literature on linguistic

phenomena such as ambiguity, to provide a full account

herein. Practicality has therefore been the focus, with dis-

cussion and careful reuse of established results in

linguistics (e.g., [24, 33, 48]), philosophy (e.g., [2, 25, 55,

59]), and artificial intelligence (e.g., [4, 26]). The proposed

facet classification, along with the clarity checking and

clarification techniques make no attempt at settling debates

on the essence of concepts such as vagueness or ambiguity.

Instead, the proposal draws on various literatures, taking as

given some of the existing philosophical and AI results

while introducing techniques specialized for the problem at

hand.

5.1 Introduction to clarity checking and clarification

As argued above, the aim of the requirements engineer is to

know whether a piece of information is unclear along a

particular facet, and if so, to know how to clarify it.

Therefore, each facet is associated with one or more

domain-independent clarity checking and clarification

techniques. Both are in essence informal, for no solid

conceptual and formal foundations exist for the various

concepts (e.g., vagueness, ambiguity) that underlie the

facets. In the present paper at least, and in absence of fully

automated requirements acquisition frameworks, the

informal treatment of the present issue is deemed sufficient.

The problem of providing a formal acquisition language

which would allow explicit representation and reasoning

about all of the four facets is not to be underestimated.

Because lack of clarity can appear in any fragment of

information in a goal diagram or argument or elsewhere

(i.e., information used as a source for goal modeling and

argumentation), clarification need be applicable to any part

of thereof. The basic approach consists of a labeling

technique outlined below, involving the checking of
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information for lack of clarity, and subsequent application

of clarification techniques associated to ambiguity, over-

generality, synonymy, and vagueness. All information

obtained through clarification is written in a thesaurus.

Technique 4. (Clarification by labeling) Clarification

techniques associated to the cited four facets share a

common approach to the labeling of unclear information,

albeit employing different techniques for the identification

of elements to mark and their subsequent clarification.

Labeling proceeds by the following steps:

1. Choose a word or expression and test it for lack of

clarity along a particular clarity facet. Choice is not

arbitrary, but guided by stakeholders’ or engineer’s

questions about what a word or expression is intended

to mean.

2. If unclear along one or more clarity facet (see,

Sect. 5.2–5.5), place brackets around it and label it

accordingly (below, assume that the fragment of

interest in a sentence is of the form: ‘‘... word(s)...’’):

(a) If ambiguous, then ‘‘. . .Ai ½wordðsÞ�Ai . . .’’, where A

is to refer to the ambiguity facet, and i is a number

to ensure a unique reference to the given label.

(b) If overgeneral, then ‘‘. . .Gi ½wordðsÞ�Gi . . . ’’.

(c) If synonymous, then ‘‘. . .Si ½wordðsÞ�Si . . . ’’ with

the same label (i.e., Si) applied to all words

synonymous with ‘‘word(s)’’.

(d) If vague, then ‘‘. . .Vi ½wordðsÞ�Vi . . .’’.

3. Clarify the element in brackets it by applying a

technique suggested for the given facet.

4. Transfer the result of the clarification into the thesau-

rus, and enforce the result of clarification over other

artifacts so that the agreed meaning is maintained

accross the project.

Example 3. (Clarification by labeling) Returning to the

excerpt used in Example 2, labeling leads to the following:

‘‘All G1 ½users�G1 want A1 ½total visibility�A1 on
G2 ½S1 ½costs�S1 and charging (cost recovery) mecha-

nisms] G2 regarding ATM system development and

operation S1 ½expenditures�S1 : Constant monitoring of

ATM services S1 ½costs�S1 and quality of service

(’benchmarking’) delivered to the G3 ½client�G3 is nee-

ded to ensure the V1 ½cost effective�V1 provision of such

services’’ [20] (p.12).

Labels—A for ambiguity, G overgenerality, S synon-

ymy, and V for vagueness—are thus introduced for each of

the four facets, applied to unclear information according to

results of checks for clarity, and are then ready for analysis

using clarification techniques outlined in the following

subsections.

Dealing with these four facets requires the understand-

ing of linguistic phenomena that ambiguity, overgen-

erality, synonymy, and vagueness refer to, as discussed

below.

5.2 Ambiguity

An encyclopedic entry [2] suggests that a word or an

expression (i.e., several related words) is ambiguous if it

has more than one meaning. Examples include words, such

as ‘‘light’’ (which can mean not heavy or not dark), or

phrases, such as ‘‘user’s agendas provide their availability’’

(Whose availability is provided?). While people seem

capable in many cases to intuitively detect the occurrence

of ambiguity, a useful criterion for doing so seems elusive

(e.g., [24, 49]). The aim at present is to suggest a practical

criterion for ambiguity that is acceptable in many cases. In

addition, it is required that ambiguity is distinguished from

the other three facets. For instance, separating ambiguity

from overgenerality can be difficult if a word designating a

class is considered ambiguous if the designated class is

divisible onto subclasses. If this is accepted as a necessary

condition for ambiguity, and knowing that a subclass

contains instances of the subdivided class (see, Sect. 5.3),

all ambiguous words would be considered as general.

However, this is not appropriate: Hospers [28] has argued

that a word is ambiguous neither because (i) the class of

objects it refers to can be broken down into smaller classes

or subclasses, nor (ii) when it may have many instances of

use. Moreover, it is now accepted that ambiguity does not

require generality [24].

Ambiguity is multiplicity of meaning of an expression,

regardless of whether it originates from polysemy [48] of

individual words or from multiplicity of structural analyses

[24]. Polysemy occurs when a word, taken out of context,

admits multiple meanings [48]—e.g., ‘‘run’’ as a verb has

29 distinct meanings and 125 sub-meanings according to

the Webster’s dictionary. Context of use tends to resolve

problems of polysemy in communication [48], in that a

word which is taken with other words in an expression

loses most of its alternative senses. It is, however, not

necessary to have a polysemous word in an expression for

it to be ambiguous, as the expression ‘‘in airports, the

police cannot shoot suspects with guns’’ illustrates. In this

latter case, it is not polysemy that generates ambiguity, but

the fact that the proposition admits different structural

analyses [24]—each structural analysis leads roughly to

one alternative reading of this proposition. The reader

should note that matter is more elaborate than the above

indicates: for instance, negation with ‘‘not’’ in English is

often ambiguous for it leaves open whether it is the truth or

the assertability of a proposition that is negated.
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It is therefore difficult to propose a unique and general

clarity check for ambiguity. For instance, it is useful to

check if there is a state of affairs in which the ambiguous

expression can both be affirmed and denied. For instance,

in a state in which ‘‘armed police cannot shoot unarmed

suspects on airport grounds’’ and ‘‘armed police can shoot

armed suspects on airport grounds’’ both hold, the

expression ‘‘in airports, the police cannot shoot suspects

with guns’’ can both be affirmed true and false: in the last

expression, the reader cannot know who carries guns (and

is thus armed)—the police or the suspects, or both. A true

reading of the given expression is, e.g., ‘‘in airports, the

armed police cannot shoot unarmed suspects’’, while a

false one is ‘‘in airports, the police cannot shoot armed

suspects’’. Tautologies and contradictions cannot, however,

be addressed by the given clarity check. Moreover, this

check does not point to the source of ambiguity—finding it

requires additional knowledge about the language being

used, and thus varies accross languages (e.g., [24]).

Although imperfect, structural analysis and word polis-

emy can be first used to detect potential for ambiguity.

Once detected, the above clarity check is applied to verify

if there is a state in which some alternative readings can be

affirmed and others denied.

Definition 1. An expression e is ambiguous if there are

at least two of its alternative readings ej and ek such that

one can be affirmed and the other denied within the body of

knowledge (denoted A; and referred to in the remainder as

domain knowledge) contained in the project artifacts (i.e.,

goal diagram, arguments, thesaurus, stakeholders’

requirements documentation) in which the expression is

employed: ambiguousðeÞ 6� ? iff:

1. There is a non-empty set E which contains alternative

readings of e.

2. There are two readings ej and ek in E such that one

gives rise to inconsistency given A; while the other

does not: Aej, ek [E s.t. ðA; eiÞ � ? and ðA; ejÞ 6� ?:1

Technique 5. (Brute force ambiguity check) Identify as

many alternative readings as feasible, and search for

information relevant to the given body of knowledge which

when combined with the readings is consistent with some

but inconsistent with other. While it may seem cumber-

some, this form of clarity checking is often feasible, for

many alternative readings can be intuitively eliminated,

whereas the remaining few can be subjected to scrutiny to

relevant stakeholders through informal discussion.

Technique 6. (Ambiguity resolution in the thesaurus)

The ambiguous element is labeled and introduced in the

thesaurus with a list of alternative readings elicited by the

engineer. Resolving ambiguity amounts to choosing one of

the available readings and enforcing it throughout other

fragments of the requirements specification through a the-

saurus D; where the the ambiguous word is carried over

and accompanied with its chosen reading.

Example 4. Consider the following excerpt from a stake-

holder expectation about the ATM:

‘‘... also applies to the pre-tactical

ðAi ½day minus one�Ai . . . ’’ [20] (p.17).

Speaking of duration in terms of days engenders ambi-

guity by polysemy, as different and contradictory

interpretations are available for ‘‘day’’ in ‘‘day minus

one’’2—among others: 24 h before takeoff, and working

day before takeoff. Because this seems to be a case of

ambiguity from polysemy, the Technique 5 above applies.

The identified alternative readings are written down in the

thesaurus:

(Ambiguity, ) Day minus one: 1. 24h before takeoff;
2. One working day before takeoff;

The ambiguous expression ‘‘day minus one’’ has been

labeled according to Technique 4. The expression, along

with the alternative readings and the decision (i.e., the

choice of a reading—decorated with ‘‘•’’) is transferred to

the thesaurus. Choosing randomly one of the interpreta-

tions is inappropriate, for the probable impact an

inadequate choice would have—e.g., scheduling problems,

which are bound to result in lack of efficiency in airport

operations.

Technique 7. (Structural analysis ambiguity check) In

English, knowing that a ‘‘noun phrase can have comple-

mentary propositional phrases’’ and a ‘‘verb phrase can

contain just a verb and propositional phrase’’ [24] allows

showing that ‘‘in airports, the police cannot shoot suspects

with guns’’ admits two structural analyses: (1) in airports,

the police [[cannot shoot]verb[suspects [with guns]prop.

phrase]noun phrase]verb phrase; and (2) in airports, the police

[cannot shoot [suspects [with guns]prop. phrase]noun phrase]verb

phrase.

Example 5. For the meeting scheduler, the following is

ambiguous:

‘‘Aj ½User’s agendas provide their availability:�Aj ’’

1 No restrictions are placed on the way domain knowledge is

represented—both informal and formal representations of stakehold-

ers’ knowledge about the domain are allowed in A:
2 Similar can be said for ‘‘day’’ in ‘‘same day’’ but the example

focuses on ‘‘day minus one’’ only.
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as the following two readings can be identified using

structural analysis:

(Ambiguity, ) User’s agendas provide their availability:
1. Agendas that belong to the users provide the

availability of the users;
2. Agendas that belong to the users provide

information on whether they (the agendas) are
available for fulfilling a request;

5.3 Overgenerality

Overgenerality is introduced to characterize a relationship

present between expressions such as ‘‘provide awareness of

traffic in the areas involving aircraft movement’’ and

‘‘provide awareness of traffic in the areas involving heli-

copter movement’’, where the first is general with regards

to the second if helicopter is understood to designate a

subclass of aircraft.

Definition 2. A word g is overgeneral if domain

knowledge A contains an expression about an instance or

specialization of g, say p, whereby the expression with p

contradicts with an expression containing g. As a conven-

tion, let FðaÞ 2 A in the definition indicate that an

expression F(a) containing a word of interest a is in

domain knowledge A: FðaÞ 2 A; that is, there is an

affirmable expression F(a) in domain knowledge, where a

is a word that occurs once in F(a) and can be replaced with

the particular word p or the general word g. Then, by

convention, F(a)/g denotes the affirmable expression

obtained by replacing the word a with the word g. We have

overgeneralðgÞ 6� ? iff:

1. The expressions F(a)/g and F(a)/p are inconsistent

given the domain knowledge in A : A; ðFðaÞ=gÞ;
ðFðaÞ=pÞ � ?:

2. general(p,g) holds, i.e., it must be verified that g is a

general of p. A word g is general with respect to a

word p iff for an affirmable expression F(a), the

expression :ðFðaÞ=gÞ ^ ðFðaÞ=pÞ is a contradiction.

The given clarity check for generality was suggested in

[43] and defended against alternative checks in [24]—it is

taken as appropriate for the purpose herein. In the ATM

case study for instance, g can stand for the word ‘‘aircraft’’

and p for ‘‘helicopter’’, see, Example 6.

Technique 8. (Criteria-based resolution of overgenerali-

ty) Define criteria for distinguishing entities that fall in,

from those that do not fall in the set designated by the

expression F(a) in which substitution for g and p gives

inconsistency. The entry in the thesaurus explicates the

criteria used to discriminate what particulars can be used as

substitutes for a in F(a).

Example 6. If the general piece of information is ‘‘aircraft

landing is allowed on strip Z’’, if helicopter is considered a

particular of aircraft, and if the particular appears in an

expression, e.g., ‘‘helicopter landing is not permitted on

strip Z’’, then the two expressions are inconsistent, making

the expression ‘‘aircraft landing is allowed on strip Z’’

overgeneral. A criterion that may be used to clarify over

the overgenerality facet in this case would express that

helicopters do not land on airstrips.

Example 7. The following fragment expresses stake-

holders expectations about aircraft movement:

‘‘The main goal of an A-SMGCS is to provide all

‘control authorities’... with positive situation aware-

ness of traffic evolving in the areas used for
Gi ½aircraft movement�Gi ; the runway strip...’’ [20],

(p.22).

It is expressed elsewhere in the documentation that

aircraft movement inside hangars and repair areas is not to

be communicated to all control authorities. Applying the

Technique 8 results in adding the expression labeled above

as an entry in the thesaurus and providing a criterion which

accounts for the exception:

(Overgenerality, ) Aircraft movement: excludes aircraft movement
inside hangars and repair areas.

Example 8. Simplistic expressions of expectations tend to

contain overgeneral information, e.g.,:

‘‘Gj ½Any user of the meeting scheduler

can initiate a meeting�Gj : ’’

(Overgenerality, ) Any user of the meeting scheduler can initiate
a meeting: Full-time employees that have at
least the managerial status in the research
department can initiate meetings.

5.4 Synonymy

Synonymy treats the use of common terminology in an

inconsistent manner—it highlights the use of syntactically

different terms, which are given the same semantics.

Definition 3. Words w1 and w2 are synonymous within A
if they are can be used interchangeably in A : synony-

mous(w1, w2) holds iff:

1. Both words appear in A : w1;w2 2 A;
2. w1 appears in expression F1(w1) and w2 appears in

expression F2(w2), and interchanging the two words

within the expressions maintains the meaning of the

new expressions equivalent with original ones. That is,
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F1(w1)/w2 has the same meaning as F1(w1), and

F2(w2)/w1 has the same meaning as F2(w2).

Technique 9. (Synonymy by interchangeability check)

Intuitively, words used within similar expressions are

candidates for synonymy. Clarity checking for synonymy

proceeds by replacing a word in an expression with another

word within one or more expressions in which the first

appears. For instance, if F(a) and G(b) are two expressions

appearing in domain knowledge, and the requirements

engineer believes that both expressions refer to the same

properties or behaviors of the IS, then if the engineer

understands F(a)/b (i.e., the expression F(a) in which each

occurrence of the word a is replaced with the word b) in the

same way as F(a), and G(b)/a in the same way as G(b),

then a and b are synonymous for the given expressions.

Example 9. Consider the following potential synonymy:

‘‘For Si ½incident�Si and Si ½accident�Si investigation

purposes the ATM network must provide mecha-

nisms to record and make available any data...’’ [20]

(p.23).

By applying Technique 9 over the above and other

requirements fragments, it has been established that the two

expressions ‘‘incident investigation’’ and ‘‘accident inves-

tigation’’ are not synonymous, leading to:

(Synonymy, ) Accident investigation Incident investigation:
distinct processes, which is executed depends on
the gravity of the event.

Example 10. The excerpt below illustrates how synon-

ymy can be involved in inconsistency—resolving it

expectedly resolves the inconsistency:

‘‘Sj ½A meeting participant�Sj is anyone who has con-

firmed attendance at the meeting . . .Sj ½A participant�Sj

is any the person who attends the meeting, except the

initiator.’’

(Synonymy, ) Meeting participant = participant: A participant
is any the person who has confirmed attendance
and attends the meeting, except the meeting
initiator.

Technique 10. (Resolving synonymy by equivalence or

criteria in case synonymy is absent) In case two words are

checked for synonymy, resulting in the conclusion that they

are nor synonymous, the criteria for their distinction are

provided in the corresponding thesaurus entry to avoid any

further questioning. Otherwise, if words are considered

synonymous, their equivalence is written down in the

thesaurus as well.

5.5 Vagueness

According to [3], ‘‘any grammatical element whose con-

tribution to truth conditions requires perception,

categorization, or judgement of gradient contingent facts—

including tense, aspect, and plurality suffers from an

incurable susceptibility to vague uncertainty’’. Consider the

expression:

‘‘All users want total visibility on costs and charging

(cost recovery) mechanisms regarding ATM system

development and operation expenditures. Constant

monitoring of ATM services costs and quality of

service (’benchmarking’) delivered to the client is

needed to ensure the cost effective provision of such

services’’ [20] (p.12).

The above is vague in that what exactly means to count

as ‘‘cost effective’’ is indeterminate. According to linguists

(e.g., [33] and related), such expressions have three dis-

tinguishing characteristics:

1. Truth conditional variability: The truth valuation of

the expression depends on the context in which it is

used.

2. Existence of borderline cases: Whatever the context of

use, there will generally be sets of entities to which ‘‘is

cost effective’’ either clearly applies or not, but there

will also be entities for which it is difficult or

impossible to determine whether the said predicate

applies or not.

3. The Sorites Paradox: When employed within a

particular form of argument, the predicate will give

rise to the Sorites paradox: e.g., if a $2 million project

is cost effective, and any project that costs 1 cent less

than a cost effective one is still cost effective, then any

project is cost effective. In such a line of reasoning, the

argument appears valid, premises true, yet the conclu-

sion false.

Admitting vagueness in a requirements specification

leaves room for questioning the degree to which the goals

are satisfied after the corresponding software has been

built. Leaving vague expectations thus leaves room for

misunderstanding. An immediate consequence thereof is

the difficulty with translating expectations into develop-

ment or evaluation decisions, that is, difficulty to

operationalize the requirements specification. This is pre-

cisely because calling a part of the software, e.g., ‘‘highly

usable’’ will depend on the stakeholder, or, more impor-

tantly, will depend on what the stakeholder knows about

usability and about the system in question: it will depend

on the conditions in which the evaluation is to be made.

The more the engineer and the stakeholders agree on the
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content of this set of information, the more likely that

vagueness will be reduced.

The locus of vagueness in many vague expressions, just

as the one above, is the presence of a predicate headed by a

gradeable adjective, (above: ‘‘effective’’). Such predicate

designates a property of having a degree of cost that is at

least as great as some standard of comparison of cost, that

itself is not part of the meaning of ‘‘effective’’ but is

determined by the context in which the said adjective is

used. From there on, truth assignment can change as the

standard changes (and as context changes).

This matter is, however, more intricate, as setting a

standard of comparison seems to eliminate borderline cases

altogether (and subsequently the Sorites paradox). While

attractive, this seems removed from reality: assuming e.g.,

that $2.5 million is a mean cost for similar projects (and,

say, the standard for comparison), then some stakeholders

may still refuse to accept that the given project of $2

million is cost effective, for they have witnessed similar

projects in which cost was significantly lower (i.e., the

variance in the sample from which the mean was computed

can be considered high). A solution to this is suggested in

[25], where for a borderline case to be described truthfully

with the given vague predicate, it is necessary for it not to

exceed the standard without exceeding it by a significant

amount—in practice, two very similar cases along the scale

of measurement associated to the vague predicate will be

taken same (i.e., will carry the same truth valuation) if the

cost of discriminating between them outweighs the benefits

of doing so. They will count as the same for the given

purposes [25]. Unfortunately, it seems that how much

significant it is, is itself vague—the only realistic solution

then remains seeking stakeholders’ agreement on the

standard and its enforcement throughout a chosen context.

These established positions on gradable adjectives (e.g.,

[25, 33]3) already provide relevant practical indications for

the problem at hand.

Definition 4. An adjective e is gradeable and can be

assumed giving rise to vagueness within the expression in

which it appears, if the following conditions are met (it is

said then that vague(e) holds):

1. First assumption on the gradeable adjective: the

adjective maps its arguments onto abstract represen-

tations of measurement, or degrees.

2. Second assumption on the gradeable adjective: the set

of degrees totally ordered with respect to some

dimension (e.g., cost, size, etc.) constitute a scale.

The first and second condition together give an

ontology for gradeable adjectives which provides

indications on what adjectives to consider when clarity

checking for vagueness.

3. Presence of context-dependent standard of compari-

son: the adjective itself does not entail a standard for

comparison, so that such a standard varies with

context.

4. Presence of borderline cases: it should be possible to

identify borderline cases of application of the given

adjective.

5. Truth conditional variability: the truth of the expres-

sion in which the adjective appears should vary with

the change of standard which is accepted to distinguish

when the adjective applies from when it does not.

6. The Sorites Paradox: the predicate generated by the

adjective can be used in lines of reasoning that follow

the one taken in the Sorites paradox (see above).

Technique 11. (Vagueness check) See the conditions for

the presence of vagueness in Definition 4.

Technique 12. (Resolving vagueness from gradeable

adjectives) For gradeable adjectives that generate vague-

ness, the desired solution is to specify the standard of

comparison, and to treat borderline cases individually.

Within the specification process, the identified source of

vagueness is placed between brackets [...]V, transferred to

the thesaurus, and associated with a sharp criterion.

Example 11. Returning to the example cite above, con-

sider the following fragment:

‘‘... quality of service (’benchmarking’) delivered to

the client is needed to ensure the Vi ½cost effective�Vi

provision of such services.’’ [20] (p.12).

‘‘(Cost) effective’’ is a gradeable adjective—applying

Technique 12 results in the definition of a criterion or

standard of comparison, as follows:

(Vagueness, ) Cost effective: Not cost effective if above the budget
permitted at the outset of the development project.

If feasible, the above thesaurus entry can be extended to

include explicit indications on the scale to employ when

measuring the degree of cost effectiveness—e.g., if a glo-

bal indicator of stakeholder satisfaction is available, it can

be combined to the difference between actual project cost

and the budget.

Example 12. In the following statement about the meet-

ing scheduler system, the word ‘‘few’’ generates

vagueness:

‘‘The scheduler should send a reminder Vj ½a few

days before the meeting date�Vj : ’’

3 The reader is reminded that the present work is not one focused on

linguistics, so that no specific references will be given beyond

overview and extensive discussions from the aforementioned field.

For instance, no minority positions are mentioned herein. For details,

the reader will refer to the works cited within the given references.
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(Vagueness, ) A few days before the meeting date: The meeting
initiator should have a choice of automatically
informing the participants 1, 2, ..., 7 days
before the meeting date.

Following the above discussion, it appears that many

softgoals identified early on in the Tropos RE process can

be qualified as vague. In this respect, softgoals can be dealt

with at the very early stages using GAM in a relatively

novel manner, without harming the applicability of estab-

lished RE approaches that employ the softgoal concept. For

instance, instead of leaving a softgoal ‘‘1.Alt2 User

friendly’’ of the meeting scheduler as is and then estab-

lishing contribution links between this and other goal

diagram elements, taking this softgoal as vague in GAM

would require the application of clarification techniques,

which would likely result in more detail as to what is

actually meant and agreed upon to be the meaning of the

given softgoal. The information obtained by clarification

and written in the thesaurus can subsequently serve as the

source for finding ways to operationalize the clarified

softgoal.

5.6 Clarification and argumentation

As suggested above, the given techniques can be applied

to clarify information used and produced when using the

GAM decision process, being therefore useful both to

clarify the information to be placed in a goal diagram

and the information employed when justifying the mod-

eling choices. In both cases, arguments can be compared

over specificity (as usual in the argumentation modeling

literature—see, Sect. 6), but also according to their rel-

ative clarity: the following section introduces preferences

orderings over arguments based on the presence or

absence of clarity therein. For instance, an argument can

be rejected in favor of another one if the former is

unclear and the latter clear along a clarity facet. Clari-

fication thus provides additional informal criteria for

the comparison and discrimination between alternative

arguments.

6 Argumentation and justification

With clarification, the information used and produced when

applying the GAM decision process can be checked for

clarity and clarified to avoid misunderstanding. Returning

to the evaluation activity of the decision process, argu-

mentation and justification are introduced to provide a

structured approach to the discussion, documentation, and

revision of rationale behind modeling decisions—in the

evaluation step, techniques presented below serve as an

integrative approach to qualitative selection among alter-

native modeling choices.

Argumentation modeling literature [11] in the artificial

intelligence field focuses on formalizing commonsense

reasoning in the aim of automation. An argumentation

model [56] is a static representation of an argumentation

process, which can be seen as a search for arguments,

where an argument consists of a set of rules chained to

reach a conclusion. Each rule can be rebutted by another

rule based on new information. To formalize such defea-

sible reasoning, elaborate syntax and semantics have been

developed (e.g., [6, 11, 53]) commonly involving a logic to

formally represent the argumentation process and reason

about argument interaction.

A structured argumentation system (i.e., a model and

processes employing the model) is introduced in GAM for

a number of reasons: (i) it is needed for a rigorous justi-

fication process in the Evaluation step of the GAM

decision process; (ii) content of the decision diagram can

be more closely related to the content of the goal diagram

than was illustrated in the previous section; and, (iii) the

structured approach is a basis for automating some of the

argumentation-specific analyses in GAM.

Example 13. To further illustrate the need for an argu-

mentation system in GAM, consider the example in Fig. 3.

In the problem statement 3 (PS3), assume that a decision

has been made to adopt alternative 3.Alt2 and not 3.Alt1.

Such a decision can be considered as justified only because

the clearly unsupportive argument in 3.Alt2 (i.e., 3.Alt2.A4-)

is rebutted by 3.Alt2.A5+, while the other negative argu-

ment 3.Alt2.A1- is written in such way that its second part

provides support against its first part. The requirements

engineer could overlook the ambiguity in 3.Alt2.A1- and

conclude that there are no arguments that interfere with

3.Alt2, accepting it then as justified. In contrast, because

there are no arguments that interfere with the negative

ones, which in turn interfere with 3.Alt1 (i.e., 3.Alt1.A2- to

3.Alt1.A4-), choosing 3.Alt1 is not justified. In presence of

an argumentation system, it is required that the arguments

for each alternative be more precise in terms of their

structure, and their relationships explicit for more rigor in

justification.

To arrive at a structured argumentation system, the

concept of argument is first defined below, followed by a

set of argument relationships, and the justification process.

Definition 5. An argument is defined recursively as

follows:

1. Any information of the form P)c is an argument,

where c is called ‘‘conclusion’’ and is a speech act of

any type (i.e., assertive, directive, commissive, expres-

sive, or declarative [51]), ) is a conclusion indicator
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(read it ‘‘therefore’’), and P is a set of assertive

propositions suggested to support the conclusion (such

a proposition is called ‘‘premise’’).

2. If for A and B such that A ¼ PA ) cA and B ¼ PB ) cB;

PA � PB then A is a subargument of B.

3. An argument cannot have its conclusion as a premise

for its conclusion: if A ¼ PA)cA and cA [PA then A is

not an argument.

4. There can be no inconsistent propositions in P.

5. Nothing is an argument unless it obeys the rules above.

The suggested definition is common in philosophy (see,

e.g., [27] for a discussion) and AI (for an overview, see

[11]). It has the desirable properties of avoiding incon-

sistent information as support for a conclusion, allows

complex arguments, in which a premise can be a

conclusion of another argument, and bans cyclical

argumentation.

The above definition can be formalized as follows.

Assuming a first-order language L defined as usual, let K
represent a consistent set of formulae (i.e., K 6‘ ?Þ; each

being a piece of information about the universe of dis-

course, and let K � KN [ KC: Members of the set KN ;

called necessary knowledge, represent facts about the

universe of discourse and are taken to be formulae which

contain variables, thus stating relationships. Necessary

knowledge is taken at face value (i.e., is assumed

unquestionable). The set KC; called contingent knowledge

are information that can be put in question or argued for. It

is then said that the knowledge an agent a (here, a stake-

holder of the RE project) can use in argumentation is given

by the pair (Ka, Da), where Ka is a consistent subset of K
(i.e., K � K and K 6‘ ?Þ; and Da is a finite set of defeasible

rules. A defeasible rule has the form a b: The relation 

between formulae a and b is understood to express that

‘‘reasons to believe in the antecedent a provide reasons to

believe in the consequent b’’. In short, a b reads ‘‘a is

reason for b’’.

Definition 6. Let A a set of agents (e.g., stakeholders),

K �
S

a2A Ka; and D �
S

a2A Da Given (Ka, Da) and

P � D#a, where Da
; is a set of formulae from Da instantiated

over constants of the formal language (i.e., variables

appearing in these formulae are replaced with specific

values), P is an argument for c 2 KC; denoted P; ch iK ; if

and only if:

1. K [ Pj�c (K and P derive c)

2. K [ P 6‘ ? (K and P are consistent)

3. 6 9P0 � P;K [ P0j�c (P is minimal for K)

where ‘‘j�’’ is called the defeasible consequence [53] and is

defined as follows. Define U = {/1,..., /n} such that for

any /i [U, /i 2 K [ D#: A formula / is a defeasible

consequence of U (i.e., Uj�/Þ if and only if there exists a

sequence B1,..., Bm such that / = Bm, and, for each Bi

[{B1,..., Bm}, either Bi is an axiom of L; or Bi is in U, or Bi

is a direct consequence of the preceding members of the

sequence using modus ponens or instantiation of a

universally quantified sentence.

The formal argument definition given above is well-

understood and established in the AI literature. Looking at

alternative approaches (for extensive overviews, see, [11,

46]), the principal difference is in the choice of ‘‘j�’’, that

is, of the assumptions made on how the premises formally

relate to the conclusion. For instance, [6] situate their

discussion within classical propositional logic and take

classical logical consequence ‘‘‘’’ instead. Choosing one

over other formal approaches to argumentation (here,

[53]) does not impose significant restrictions on the

present discussion—the intuition behind the definitions

proposed here are well known and do not differ within the

AI argumentation literature.4 Observe that the formal and

the intuitive definition of argument fit—for an argument

P ) c; the formal definition writes P; ch iK
5 so that the ) is

replaced with binary relationships (being either ‘‘?’’ in

case of necessary knowledge or the ‘‘ } for defeasible

knowledge) between premises in P; also, definitions of

subargument do not differ, minimality ensures that there

is no circular argumentation, and consistency of premises

is ensured in both definitions.

While an argument can be constructed by combining

explicitly expressed knowledge (e.g., from a knowledge

base, as is often the case in AI argumentation modeling

literature), the aim with GAM is to start from a conclusion

and build arguments that support it from the knowledge

that stakeholders provide, and that can be related to the

conclusion. An important observation about the above

definitions is that an argument P ) c or, equivalently,

P; ch i can be seen as a tree in which the root is the con-

clusion c and the leaves are members of P. A subargument

is then a subtree in the tree of the argument. The evaluation

activity of the GAM decision process amounts to com-

bining two techniques: the argumentation of each

alternative, which consists of constructing an argument

tree AT for each alternative, whereby the root of the tree is

4 It is, however, significant to note that the choice of derivation is
critical if the aim is to build arguments automatically from a

knowledge base: in case, e.g., arguments for requirements are to be

obtained automatically from a knowledge base, the derived arguments

will differ depending on the chosen derivation. It is obvious that

following the above suggestions would require a knowledge base

which contains defeasible rules.
5 In the remainder, the subscript K will be omitted, since no

knowledge base other than K (which is taken here to contain any

knowledge that the stakeholders can provide) will be used.
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the alternative, and the nodes are premises proposed to

support the given alternative; and the comparison of

alternatives, which is the identification of arguments that

counterargue the arguments which appear in argument

trees.

Technique 13. (Argumentation of an alternative) Sup-

porting an alternative Alt consists of recursively defining an

argument tree ATAlt as follows:

1. Define Alt as the root of the tree ATAlt and set c = Alt.

2. Let P; ch i: Identify p1,..., pn such that {p1,..., pn} = P,

P � K [ D#:
3. Define a node for each premise pi [ P and define an

edge from that node to c. Draw the edge ‘‘�!’’ if p [K,

or as shown in Fig. 4(a) in case p [ D; (i.e., notice that

the symbol for defeasible rule relation ‘‘ ’’ is changed

in the argumentation tree in Fig. 4).

Each premise can be in turn argued for, that is, steps 1–3

above can be repeated for each premise pi [ P by letting pi

be a conclusion of a new argument, e.g., Pi; pih i: The tree

built for Pi; pih i is a subtree of the tree built for P; ch i: By

building subtrees subsequently for premises of Pi; pih i and

this for some or all pi [ P, the argumentation can proceed

until the stakeholders and/or the requirements engineer

judge that the argument tree for Alt has been constructed to

a satisfactory extent.

Example 14. The following example illustrates how the

definitions above are used to build an argument in GAM.

Consider the suggestion (see, Fig. 3): ‘‘1.Alt2.A3+: (The

Meeting Scheduler is) user friendly if well integrated in the

user interface of the email client.’’ For a meeting scheduler

ms, a formula c for which we wish to argue or interfere

with can be written: userFriendly(ms). Stakeholders may

then suggest a set of defeasible rules:

D ¼ easyToLearnðxÞ ^ usableUIðxÞ userFriendlyðxÞ;f
standardizedUIðxÞ _ alreadyKnownUIðxÞ
squigarrowusableUIðxÞ; integratedInExistingAppðxÞ
^stakeholdersUseExistingAppðxÞ alreadyKnownUIðxÞg

And the following necessary knowledge, where ‘‘?’’ is

the standard implication operator:

K ¼ falreadyKnownUIðxÞ ! easyToLearnðxÞg

An argument tree that supports userFriendly(ms) can be

constructed using the given knowledge and defeasible

rules, and represented using a tree-like structure shown in

Fig. 4a. The root of the tree is the sentence for which the

argument structure provides support. The defeasible and

necessary knowledge have been instantiated over the

meeting scheduler ms. The argument in Fig. 4 can be

written:6

hfintegratedInExistingAppðmsÞ alreadyKnownUIðmsÞ;
stakeholdersUseExistingAppðmsÞ alreadyKnownUIðmsÞ;
alreadyKnownUIðmsÞ usableUIðmsÞ; usableUIðmsÞ
 userFriendlyðmsÞ; easyToLearnðmsÞ userFriendlyðmsÞg;
userFriendlyðmsÞi

where

hfintegratedInExistingAppðmsÞ alreadyKnownUIðmsÞ;
stakeholdersUseExistingAppðmsÞ alreadyKnownUIðmsÞg;
alreadyKnownUIðmsÞi

integratedInExistingApp(ms)

alreadyKnownUI(ms)

usableUI(ms)

userFriendly(ms)

easyToLearn(ms)

stakeholdersUseExistingApp(ms)

Legend: Relation for defeasible rules

Relation for necessary knowledge

(a) Argumentation (b) Counterargumentation

Fig. 4 In a an argument tree with premises supporting the conclusion userFriendlyUI(ms). In b argument concluding : usableUI(ms)

counterargues the argument concluding userFriendlyUI(ms), at usableUI(ms)

6 Note that the argument is extracted from the tree by ensuring

minimality, according to Definition 6, so that some branches of the

tree need not be maintained.
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is one of the subarguments of the argument shown in

Fig. 4a.

The argument tree (or, simply argument) shown in

Fig. 4a contains only information that supports the con-

clusion that the meeting scheduler is user friendly. Albeit

being useful as it is, a particular interest in argumentation is

in confronting arguments and rejecting some conclusion in

favor of other. It is therefore necessary to define relation-

ships between arguments.

Definition 7. Two arguments P1; c1h i and P2; c2h i dis-

agree, denoted by:

P1; c1h i fflK P2; c2h i

if and only if K [ c1; c2f g ‘ ?:

Definition 8. Instead of seeking contradiction of con-

clusions, the counterargument relation looks at the

incompatibility of an argument’s conclusion with the

conclusion of a subargument of another argument. An

argument P1; c1h i counterargues at c the argument

P2; c2h i; denoted by:

P1; c1h i 6,c P2; c2h i

if and only if there is a subargument P; ch i of P2; c2h i such

that P1; c1h i fflK P; ch i:

Example 15. The following argument counterargues at

usableUI(ms) the argument in Fig. 4a:

hfcommandLineInterfaceðmsÞ ^ nonExpertUsersðmsÞ 
:usableUIðmsÞg;:usableUIðmsÞi

Counterargumentation is represented by a crossed line,

as in Fig. 4b, directed from the root (i.e., conclusion) of the

argument that counterargues to the node which is

countered.

Definition 9. In case two arguments are such that one

counterargues the other, it is necessary to determine which

of the two is to be maintained. An argument hP1, c1i
defeats at c an argument hP2, c2i, denoted by:

P1; c1h i 
c P2; c2h i

if and only if:

1. P1; c1h i 6,c P2; c2h i; that is, P1; c1h i counterargues

P2; c2h i at c;

2. there is a subargument P; ch i of P2; c2h i such that

P1; c1h i �spec P; ch i; i.e., hP1, c1i is more specific than

hP, ci.

Definition 10. The specificity relation ‘‘�spec’’ is an order

relation over arguments, defined so that arguments

containing more information, i.e., which are more specific,

are preferred over other. An argument P1; c1h i is strictly

more specific than P2; c2h i; denoted by:

P1; c1h i �spec P2; c2h i

if and only if:

1. 8e 2 KC such that KN [ feg [ P1j�c1 and KN [ fegj
6 �c1; also KN [ feg [ P2j�c2; and

2. 9e 2 KC such that:

(a) KN [ feg [ P2j�c2

(b) KN [ feg [ P1j6 �c1

(c) KN [ feg 6‘ c2

Example 16. The argument:

hfeasyToLearnðmsÞ ^ usableUIðmsÞ userFriendlyðmsÞg;
userFriendlyðmsÞi

is more specific than:

hfeasyToLearnðmsÞ :userFriendlyðmsÞg;
:userFriendlyðmsÞi

because although easyToLearn(ms) alone is taken as suf-

ficient for arguing the conclusion :userFriendlyðmsÞ; it

cannot by itself be sufficient to argue userFriendly(ms). If

easyToLearn(ms) ^ usableUI(ms) alone is used to argue

userFriendly(ms), the argument that supports : user-

Friendly(ms) can also be concluded. In other words, the

former argument contains at least the same premises as

the latter—the additional information makes it more

specific.

Technique 14. (Comparison of arguments over clarity)

Arguments employed in the examples above are con-

structed of premises and conclusions made of primitive

propositions, which in practice are references to parts of

the specification or initial documentation, or are replaced

with sentences of natural language which express in a rich

manner the given premise or conclusion. There is therefore

no particular guarantee that the content of premises or

conclusions carries clear content. Consequently, premises

and conclusions can be clarified over ambiguity, overgen-

erality, synonymy, and vaguenes using the techniques

presented earlier. In addition then to comparing arguments

using the ordering relation defined by specificity, the fol-

lowing order relations can be defined:

• Arguments containing non-ambiguous information are

preferred to those containing ambiguous information:

P1; c1h i �A P2; c2h i
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iff 9e 2 P2 [ fc2g s.t. ambiguousðeÞ 6‘ ? and 8e0 2
P1 [ fc1g; ambiguousðe0Þ ‘ ?:
• Arguments containing non-overgeneral information are

preferred to those containing overgeneral information:

P1; c1h i �G P2; c2h i

iff 9e 2 P2 [ fc2g s.t. overgeneralðeÞ 6‘ ? and 8e0 2
P1 [ fc1g; overgeneralðe0Þ ‘ ?:
• Arguments containing non-synonymous information are

preferred to those containing synonymous information:

P1; c1h i �S P2; c2h i

iff 9ei; ej 2 P2 [ fc2g s.t. synonymousðei; ejÞ 6‘ ? and

8ek; el 2 P1 [ fc1g; synonymousðek; elÞ ‘ ?:
• Arguments containing non-vague information are pre-

ferred to those containing vague information:

P1; c1h i �V P2; c2h i

iff 9e 2 P2 [ fc2g s.t. vagueðeÞ 6‘ ? and 8e0 2 P1 [ fc1g;
vagueðe0Þ ‘ ?:

Technique 15. (Justification) The justification process

consists of recursively defining and labeling a dialectical

tree T P; ch i as follows:

1. A single node containing the argument P; ch i with no

defeaters is by itself a dialectical tree for P; ch i: This

node is also the root of the tree.

2. Suppose that P1; c1h i; . . .; Pn; cnh i each defeats P; ch i:
Then the dialectical tree T P; ch i for P; ch i is built by

placing P; ch i at the root of the tree and by making this

node the parent node of roots of dialectical trees rooted

respectively in P1; c1h i; . . .; Pn; cnh i: One way of

finding arguments P1; c1h i; . . .; Pn; cnh i that defeat

P; ch i is to look for arguments that support the

negation of a premise in P or the negation of the

conclusion c.

3. When the tree has been constructed to a satisfactory

extent by recursive application of steps (1) and (2)

above, label the leaves of the tree undefeated (U). For

any inner node, label it undefeated if and only if every

child of that node is a defeated (D) node. An inner

node will be a defeated node if and only if it has at

least one U node as a child. Do step (4) below after the

entire dialectical tree is labeled.

4. P; ch i is a justification (or, P justifies c) if and only if

the node P; ch i is labelled U.

Technique 16. (Justification in the GAM decision pro-

cess) The GAM decision process is combined with the

justification process in the following way. First, when

problem analysis leads to the identification of a set of

alternatives, a dialectical tree is built for each alternative,

whereby the root of the dialectical tree is the argument tree

of the given alternative. The evaluation decision activity

consists of labeling each dialectical tree, and accepting the

one justified alternative, this being the alternative whose

dialectical tree is such that the root node is labeled unde-

feated U. At most one alternative must remain justified—in

case more than one alternative appear justified, additional

arguments need to be added as leaf nodes to each alter-

native’s dialectical tree until only one alternative remains

justified. The decision decision activity amounts to

choosing the justified alternative, and acting upon it in

terms of changing the associated goal diagram.

Example 17. For illustration, Fig. 5 shows the dialectical

tree for 3.Alt1 ‘‘Schedule meeting using email only’’. To

simplify the representation, the dialectical tree is built with

formulae. The justification process showed that the alter-

native is unjustified and therefore cannot be accepted.

Argument trees for scheduleByEmail(mi) and complicated-

Scheduling(ms) are shown. The argument f. . .g;h
complicatedSchedulingðmsÞi defeats f. . .g; scheduleByh
EmailðmiÞi at : userFriendly(ms) with to the subargument:

hfmanualSchedulingðmsÞ ^ manyEmailsToReadðmiÞ

 :userFriendlyðmsÞg;:userFriendlyðmsÞiof f. . .g;h

complicatedSchedulingðmsÞi:

Observe that the given dialectical tree suggests

alternative 3.Alt1 should to be rejected as it does not

satisfy user friendliness. It appears, however, that the same

alternative satisfies low implementation cost, for there are

no arguments that defeat lowImplementationCost(ms).

Rejecting the alternative assumes that user friendliness is

preferred by the decision makers to low implementation

cost—preferences orderings ought to be specified outside

GAM, i.e., within the goal diagram constructed using the

RE framework that GAM complements. Integrating

preferences in justification is a matter that requires a

separate treatment (for an introduction, see, e.g., [29]).

6.1 Analyzing arguments in existing goal diagrams

The definitions given earlier can be applied to analyze

goal diagrams constructed without using the GAM deci-

sion process, thus allowing GAM to be applied in a

relatively straightforward manner to study the arguments

implicit behind modeling decisions of which only the

solution statements are available to the requirements

engineer.
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This is realized by defining a mapping for translation

between a goal diagram and a dialectical tree. In the present

paper, only the rules for translating between a Tropos goal

diagram (TGD) and a dialectical tree (DT) are suggested.

Similar rules can be defined when using GAM with other

goal-oriented RE frameworks. The DT can thus be sub-

mitted to Tropos-specific analyses, provided it is translated

into a TGD; and a TGD can be subjected to the analysis of

the justification behind the modeling decisions that led to it.

Mapping is defined using an intermediary language and

a set of keywords illustrated with the meeting scheduler

case study examples in Fig. 9. The translation rules are

bidirectional. When translating from a TGD to a DT

(moving from left to right in Fig. 9) the intermediary lan-

guage is used to write down th structure of the TGD. The

obtained TGD specification is then translated into formulae

labeled with a restricted set of keywords. The rules used for

translating between the intermediary language and the DT

are referred to as the ‘‘GAM/Tropos translation rules’’ and

are formalized as follows. The operator ‘‘ !�label
’’ denotes

translation rules, with label indicating the name of the rule

being used in the translation (f stands for ‘‘formula’’)—

definitions are given in Figs. 6 and 7.

Observe that the relationships in the goal model are

interpreted as defeasible rules. Intuitively, this seems ade-

quate: e.g., if a task is decomposed into a resource in a

TGD, the need to provide a resource can be interpreted to

exist because that resource is used when executing the

given task; in a negative contribution, the link in the TGD

is directed from an element that contributes negatively to

the target softgoal, whereas in a DT, a negative contribu-

tion exists between a defeater argument and the argument it

defeats. The dependency relationship is interpreted as a

chain of two defeasible rules (i.e., a b ^ b vÞ: In the

first, b marks the dependency between actors and a is the

dependum of the dependency (because, e.g., in a goal

dependency, the dependum goal is the reason for the

dependency to exist: the depender cannot achieve the goal

without the dependee). In addition, a can contain one or

more ckeyword to indicate why the depender alone is

unable to obtain the dependum (this is required if a Tropos

SR is being translated, whereas it is often unknown in a

Tropos SD). In b v; v expresses goals / tasks/... softgoals

that the dependee is expected to, respectively achieve /... /

optimize in order to assist the depender in obtaining the

dependum (v is often unknown in a Tropos SD, whereas it

is available in a Tropos SR). The use of the tranisition rule

for dependencies is illustrated in Fig. 8.

To translate a DT to a TGD, the formulae appearing in

the DT are transformed into labeled formulae. Labels are

used to derive a goal diagram element from a formula (i.e.,

a label maps to one or more concepts in the ontology of the

goal model). For formulae that are to be translated into

goals in a TGD, the Tropos goal taxonomy [23] is

employed, giving four labels: achieve(f), maintain(f),

achieve&maintain(f), and avoid(f). For formulae that will

result in resources, the label provide(f) is used when a

resource is being provided by an actor, whereas the label

use(f) is applied when the resource is to be used by an

actor. Figs. 6, 7 and 9 give other labels along with their

corresponding TGD representation.

Example 18. The arguments in Fig. 10 have been obtained

by applying the GAM/Tropos translation rules to the Tropos

goal(Name)
≈←−goal−−→ achieve(f) | maintain(f) | achieve&maintain(f) | avoid(f)

task(Name)
≈←−task−−→ do(f)

resource(Name)
≈←−resource−−−−→ use(var) | provide(var)

softgoal(Name)
≈←−softgoal−−−−→ optimize(f)

actor(Name)
≈←−actor−−→ var

cgmodel
def
= goal(Name) | task(Name) | resource(Name)

| softgoal(Name) | actor(Name)

cgmtype
def
= goal | task | resource | softgoal

ckeyword
def
= achieve(f) | maintain(f) | achieve&maintain(f) | avoid(f) | do(f)

| use(var) | provide(var) | optimize(f)

Fig. 6 GAM/Tropos translation rules

Fig. 5 A dialectical tree for

3.Alt1 ‘‘Schedule meeting using

email only’’
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SR in Fig. 1. Using the obtained dialectical tree (shown in

its developed form, that is, with detail of its component

arguments, in Fig. 10), the stakeholders can, e.g., question

modeling choices by providing new arguments that defeat

existing ones and lead to changes in the tree. For example, it

can be observed that there is cyclical argumentation in two

cases: do(agreeToDate(mp))  depend(mp, provide(pro-

posedDate(ms)), ms), and do(scheduleMeeting(ms))  

depend(ms, do(enterDateRange(mi)), mi). As this is un-

dersirable, the stakeholders may consider adding defeasible

rules so that either the antecedent or the consequent is

defeated or replaced. The same applies to arguments that

some stakeholders may consider inappropriate—in

response, they could add defeating arguments in order to

request a change in the goal diagram.

While the discussion and the translation rules presented

in this subsection remain Tropos-specific, the intention is

not to provide within this paper a library of translation rules

between GAM and various RE frameworks’ goal models.

Instead, the above illustrates how mappings can be defined

and used, and therefore constitute exemplified guidelines

for requirements engineers aiming to use GAM with their

favorite framework. Moreover, while the translation rules

suggested in Fig. 6 seem to fit intuition, we cannot suggest

that the given rules are definite and cannot be adjusted as

the requirements engineer deems appropriate.

7 Related work

The need for justifications of modeling choices has not

been overlooked in various RE methods that employ goal

models. In particular, high-level goals in a diagram can be

understood as reasons for representing lower-level goals

(i.e., the need for the latter is justified by the presence of

the former) and any other element in a goal diagram.

Informal and formal AND/OR refinement and decompo-

sition techniques, widespread in RE (for an overview, see

[57]), can therefore be seen as incorporating argumentation

and justification, in that sub-goals could be understood

as arguments supporting parent goals. A refinement alter-

native would then be justified if there are no conflicts

contribution[+](cgmodel1 , cgmodel2)
≈←−contribute[+]−−−−−−→ (cgmodel1

≈←−cgmtype−−−−→ ckeyword1

∧cgmodel2
≈←−cgmtype−−−−→ ckeyword2

∧ckeyword2 ckeyword1)

contribution[−](cgmodel1 , cgmodel2)
≈←−contribute[-]−−−−−−→ (cgmodel1

≈←−cgmtype−−−−→ ckeyword1

∧cgmodel2
≈←−cgmtype−−−−→ ckeyword2

∧∃ P1, c1 , P2, c2 such that c1 is the formula in ckeyword1

and c2 is the formula in ckeyword2

and P2, c2 >>c P1, c1 )

task-decomposition(task(Name), cgmodel)
≈←−task-decomp−−−−−−→ (cgmodel

≈←−cgmtype−−−−→ ckeyword ∧ task(Name)
≈←−task−−→ do(f)

∧do(f) ckeyword)

means-ends(goal(Name), cgmodel)
≈←−means-ends−−−−−−→ (cgmodel

≈←−cgmtype−−−−→ ckeyword

∧(goal(Name)
≈←−goal−−→ achieve(f) | . . . | avoid(f))

∧(achieve(f) | . . . |avoid(f) ckeyword))

dependency(mel1, cgmodel, mel2)
≈←−dependency−−−−−−→ (cgmodel

≈←−cgmtype−−−−→ ckeyword

∧(∀i = 1, 2, meli = (cgmodeli,1, . . . , cgmodeli,r)

∧∀1 ≤ k ≤ r, r > 0, cgmodeli,k
≈←−cgmtype−−−−→ ckeywordi,k

with cgmodeli,1
≈←−actor−−→ vari

∧∀i, depi =
m̂

ckeywordi,m, 2 ≤ m ≤ r)

(ckeyword ∧ dep1) depend(var1, ckeyword, var2)

∧depend(var1, ckeyword, var2) dep2)

Fig. 7 Continued from Fig. 6:

GAM/Tropos translation rules

Fig. 8 Example illustrating the use of the GAM/Tropos transition rule for dependencies

108 Requirements Eng (2008) 13:87–115

123



between sub-goals (i.e., it is consistent), as few obstacles as

possible harm sub-goal achievement, there are no super-

fluous sub-goals (the refinement is minimal), and the

achievement of sub-goals can be verified to lead to

achieving the parent goal (if refinement is formal [18]).

While this interpretation may seem satisfactory, argumen-

tation and justification processes differ from and are

complementary to refinement in several respects:

1. Regardless of clarification, argumentation anterior to

modeling uses and produces richer information than is

contained in a refinement recorded in a goal diagram,

due to the relatively strict syntax and semantics of the

underlying goal models. To leave such information

unrecorded is likely to lead to issues 1–3 highlighted in

Sect. 1 and not analyzing it would lead to 4–5. This

has been argued and illustrated throughout the paper.

2. Historically, weak refinement links have been pro-

posed in the NFR goal model [44], which has been

inspired in part by work in informal design rationale

approaches that involve argumentation (e.g., [34]).

One result has been the integration of a class of

argumentation goals to justify modeling choices. Any

argumentation goal in NFR is of the sort ‘‘claim’’ (with

subsorts ‘‘FormalClaim’’ and ‘‘InformalClaim’’) and

represents ‘‘evidence or counter-evidence for other

goals or goal refinements’’ [44]: taking the example

from [44], the following is an argumentation goal

InformalClaim[‘‘Rigorous examination is recom-

mended for publication by employees’’]

which supports this argumentation goal:

FormalClaim½9e :ValidatedBy½e; attributesðEmployeeÞ�
^ EmpStatusðe; SecIÞ�

The formalism above states that class I secretaries (SecI)

review employee data. Notice that an argumentation goal is

not by itself an argument, since there is no conclusion

indicator and only one piece of information is given

Fig. 9 Exemplified GAM/Tropos translation rules
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(i.e., one does not know if the content of the argumentation

goal is a premise or a conclusion). In GAM, the above two

argumentation goals are written as the following argument:

rhf½‘‘Rigorousexaminationisrecommended

forpublicationbyemployees00� ½9e :

rValidatedBy½e; attributesðEmployeeÞ�
^ EmpStatusðe; SecIÞ�g; ½9e :

ValidatedBy½e; attributesðEmployeeÞ�
^ EmpStatusðe; SecIÞ�i

Argumentation goals produced using NFR can thus be

reused in GAM. As a rigorous argumentation and

justification process employing argumentation goals has

not been proposed, GAM can be usefully combined with

NFR to provide a rigorous argumentation and justification

process. Another difficulty with weak refinements may be

that semantics of weak refinement links (called

contribution links) between goals remain, according to

[37] ‘‘too vague for deep, accurate understanding of the

[softgoal] model’’, leading to recent critiques in [37] on

their meaning and subsequent applicability when rigorous

qualitative analysis is required.

3. Formal goal refinement has clear, but limited seman-

tics: It remains difficult to compare alternative

refinements in a rigorous qualitative way (thorough

quantitative comparison is possible using probabilistic

measures of goal satisfaction [37], although it is

applicable to already clear requirements). It has been

suggested to use a temporal logic [36] to compare

Fig. 10 Translation of the Tropos SR diagram in Fig. 1 using GAM/Tropos translation rules
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alternative refinements for e.g., minimality, conflict,

and obstacles. Such techniques are RE method-specific

and applicable when goals are already clear, leading

[57] to argue that systematic approaches for alternative

comparison are still not available.

A different approach, explored in this paper, is to allow

qualitative and quantitative information by constructing

and analyzing arguments. One novelty of GAM is thus to

combine a design rationale approach to organize com-

monsense reasoning with an argumentation model to

document the arguments leading to a modeling decision

and allow structured justification to take place, while

allowing informal and formal use with any goal model. As

arguments accept both qualitative and quantitative infor-

mation, the importance of quantitative evidence can be

acknowledged, along with qualitative, subjective, and

defeasible information.

Regarding design rationale and argumentation modeling

literature, GAM adopts and adapts existing approaches,

adjusting them for combined application in RE activities.

In this respect, an important characteristic of this work is

its integrative aim and its appropriateness to RE. As argued

above, the GAM decision process is not a novelty in itself,

and maps nicely to existing design rationale approaches;

however, it is adapted to the purpose to which it has been

put in the present paper.

Apart from the contribution of the integrative approach

to justification in relation to goal models, another contri-

bution is the identification of the clarity facets. While a

considerable amount of work on, e.g., vagueness and

ambiguity exists in various fields (as noted in Sect. 1), its

interpretation in the context of RE has not been proposed,

and an extensive treatment has not been realized. Although

the issues raised in Sect. 1 are pressing for RE, in that the

reader will undoubtedly agree that initial requirements tend

to be, among others, ambiguous and vague, the research in

RE comparable to the one here is limited. Ambiguities

arising from the presence of coordination conjunctions and,

or, and and/or in natural language requirements have been

studied [10]. Text appearing in instances of modeling

primitives in goal models normally does not contain

coordination conjunctions since these are avoided with

goal modeling constructs such as AND/OR refinement or

decomposition (see, e.g., [8, 17, 61]). The approach sug-

gested in [10] can be combined with GAM: while GAM

focuses on goal diagram content, the said approach can be

applied before goal modeling, on information represented

in textual documentation from which the engineer is

expected to derive goal diagram elements. Ambiguity of

natural language requirements has been discussed and

techniques suggested for detecting ambiguity without dis-

cussing clarification in [30]. Their approach does not

consider ambiguity detectable by structural analysis.

Others [5] have concentrated on ambiguity that may arise

from the use of plural in natural language requirements.

Fuzzy logic has been suggested for dealing with vague

requirements (e.g., [38] among others—a more elaborate

discussion is given in. However, Sect. 1 clearly illustrates

that vagueness is merely one among many facets. Some-

what close to our effort here is [45], where three

dimensions along which any RE project or framework can

be described, are identified. It is suggested there that the

overall aim in any RE project is to move from informal to

formal representations of requirements (along the repre-

sentation dimension), from individual to shared views (the

agreement dimension), and from an opaque understanding

of the system to its complete specification (the specification

dimension). It may be interesting in such a framework to

perceive clarity facets as refining the three dimensions with

a number of dimensions, and in particular, enriching the

specification dimension by disaggregating it onto many

dimensions that we called clarity facets.

8 Discussion

In real world RE projects, GAM can be applied to guide the

construction, questioning, and critique of (fragments of) a

goal diagram in three ways:

1. When only the GAM decision process (Sect. 4) is put to

use, clarification and argumentation are unstructured

and left to intuition of the requirements engineer and of

the stakeholders. Although the discussions of clarifica-

tion (Sect. 5) and argumentation (Sect. 6) illustrate that

neither of these is trivial, using the GAM decision

process alone helps in organizing the goal modeling

activity. In addition to being grounded in established

results in design rationale research, the decision process

is intuitive: adding a new fragment or revising an

existing part of the goal diagram is normally due to

particular reasons (described in the problem statement);

there are often alternative ways of changing the

diagram to solve the stated problem (the alternatives);

each alternative has its merits and drawbacks (i.e.,

arguments for and against each alternative), whereby

merits and drawbacks need to be compared to select

one alternative over others (the evaluation activity);

finally, a decision is reached (decision statement) and

the goal diagram is modified accordingly. As high-

lighted at the outset of the paper, this or a very similar

approach is usually implicitly performed by the engi-

neer. It is when the system to engineer is of non-trivial

complexity and when stakeholders participate actively

in modeling that it becomes useful to have a structured
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and shared approach to goal modeling. Having a

sequence of clearly identifiable steps allows each

participant to know how others take part in the

modeling activity and how to intervene to question

others’ modeling decisions.

Applying a rationale approach to structure the design

process (regardless of whether the rationale is recorded or

not) is not trivial. Fitting the thinking involved in the

design activity to a framework can be perceived as

unnatural and thus involves further effort from the partic-

ipants [14, 52]. In GAM, this issue is tempered by using a

small set of imposed concepts and activities, thus facili-

tating the learning of the decision process.

Whether the information produced in the various

activities of the GAM decision process is recorded is a

project-specific choice. Recording gives rise to the fol-

lowing difficulties:

(a) As already observed in design rationale research (e.g.,

[40]), recording rationale requires additional effort

from the engineer and the stakeholders participating

in the design activity.

(b) It is noted in literature on design rationale that the

artifacts containing records of design rationale tend to

become rapidly complex and thus difficult to use.

(c) Allowing stakeholders to modify records of design

rationale requires training.

Issue (1a) above is tempered in GAM by using a small set

of intuitively acceptable concepts and techniques, as in the

reasoning loop model [40] on which the GAM decision

process draws. In addition, the visual syntax of the decision

diagram remains flexible so that various available tools can

be used (e.g., gIBIS [14], Euclid [54], CM/1 [13],

Belvedere [9], Compendium [15], Hermes [31]). Annota-

tions of the decision and goal diagrams also allow the use

of simpler tools, such as common word processors to

record the decision process. When applying the GAM

decision process to guide and record the details of the

rationale invested in building a goal diagram, elaborate

decision diagrams (see, issue (1b) above) are obtained even

for goal diagrams of limited size (see, e.g., Fig. 3). Again,

annotations provide a simple means to relate fragments of

decision and goal diagrams to focus questioning and

revision on such fragments only. Regarding issue (1c),

training is necessary both if meetings are organized to

collaboratively apply GAM and if distributed acquisition of

information for the decision process is allowed. Distributed

acquisition supported by simple tools was sufficient for the

case studies: for instance, a web log (i.e., blog) platform (in

which each post and comment is annotated as in the

decision and goal diagrams) is not to underestimate for

recording and making available to participants the content

of the decision diagram at all times, with the engineer

updating the goal diagram using a standard diagramming

solution and posting the updated versions on the blog.

Keeping the participants posted of new additions to the

blog by automatically generated email messages proved a

simple and useful solution, avoiding the need for learning a

new tool. This approach, however, encountered difficulties

in meetings (more suitable for brainstorming than distrib-

uted acquisition) as the engineer is expected to act as the

facilitator and record changes to the goal diagram.

2. A second way to apply GAM is to combine the GAM

decision process (Sect. 4) with the clarification

(Sect. 5) and argumentation (Sect. 6) techniques.

The engineer applies clarification techniques on infor-

mation recorded in the design rationale. Candidate

information for clarification has one or more of the fol-

lowing characteristics: (i) the engineer does not understand

the information; (ii) a stakeholder indicates a difficulty in

understanding the information; and (iii) the information

gave rise to arguments and counterarguments in which it

appears that the confrontation results from lack of shared

understanding of the given information. Clarification

requires the writing and updating of the thesaurus in order

to enforce clarification choices throughout the goal dia-

gram and accompanying documentation. In the case

studies, a cross-referenced document was created and

maintained with a word processor, while markup and cross-

referencing was performed with Atlas.ti [1], which allows

markup and cross-referencing of both text and graphical

(including diagrams) artifacts. A more advanced tool

would automatically verify internal thesaurus consistency

and automate the enforcement of clarification decisions in

associated artifacts (i.e., decision and goal diagram). It

remains for future work. In practice, clarification tech-

niques proved particularly useful in raising awareness of

clarity issues in stakeholders’ statements and various doc-

umentation used in the case studies. This lead the

participants to rephrase pieces of information in the goal

and decision diagrams and the thesaurus so as to check

whether they understand them appropriately. When

rephrased information appeared different than the original,

clarification techniques were applied to check what clarity

issue is present and subsequently resolve it. Clarification is

time consuming: one potential direction for improvement

lies in linking the thesaurus to lexicons such as, e.g.,

WordNet [21] in order to automatically generate lists of

potential synonyms and facilitate the writing of definitions,

which is useful in dealing with overgenerality.

Using the argumentation techniques does not necessarily

require the formalization of argument or goal diagram

content (see point (5) below). Applying techniques such as
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the argumentation of an alternative and justification already

render more rigorous the Evaluation activity in the GAM

decision process. Such rigor is needed to avoid issues

which stem from unstructured argumentation and justifi-

cation, and described in Example 13 (e.g., the limited

justification of alternatives). It has been empirically

observed that nonmonotonic reasoning is hard for humans

[22]. Effort involved in finding arguments in GAM is

considerable, which is in line the cited empirical result.

Some techniques derived from theory are particularly hard

to apply in practice: for instance, comparing arguments for

specificity appeared counterintuitive and was thus seldom

used. The suggested informal orderings based on clarity of

arguments appeared, however, practical for rejecting

unclear arguments in favor of clear ones. Because these

orderings are derived from clarification techniques, clari-

fying arguments was combined to argument comparison

over clarity. To help stakeholders’ in their search for

arguments, it is useful to question why they believe in the

information they provide (thus expecting answers in which

they give reasons for what they suggest). Prior experience

and resources about the debated domain are relevant

sources of arguments, so that referring to these is sug-

gested. Although the difficulties are considerable when

applying argumentation and justification, a significant

benefit is that these techniques lead to the externalization

of information usually left implicit in goal modeling.

Abstract entities such as goals of the goal diagram are thus

associated with more precise information that led the par-

ticipants to introduce the given goal in the first place, and

that can subsequently be used when operationalizing goals.

Moreover, the information made explicit is available to a

number of stakeholders who can, through argumentation

and justification, question and revise the goal modeling

decisions. Lessons can be learned from past modeling

problems as sources of these issues (such as, e.g., fallacious

argumentation) can be identified by going back to the

recorded design rationale and the arguments therein.

3. A third, most rigorous and resource intensive way of

applying GAM is to formalize the content of

arguments. If the engineer intends to arrive at a

formal specification of the goal diagram, it is useful to

formalize premises and conclusions using the formal

logic of the chosen goal modeling framework: for

instance, in Tropos, a temporal first order logic is

used, so that the premises and conclusions would be

written in that logic, while any automated detection of

argument relationships would be performed using the

theory of the argumentation framework (Sect. 6).

However, as there is normally much more information

describing the design rationale than is in the product

of the design activity, formalizing the former because

the latter needs to be formalized may be difficult to

justify in terms of cost and benefits. When GAM is

applied to an already elaborate goal diagram (not

necessarily constructed with GAM) which is accom-

panied by a formal specification, argument

formalization is facilitated by reusing fragments of

the specification. The choice of formalizing depends

also on the characteristics of the system: formalizing

arguments and justifications of requirements for a

safety-critical system can prove relevant, as it is likely

that using formal instead of natural language would

give rise to less clarity issues. The choice of

formalizing or not remains a difficult one (some

general suggestions can be found in [7]) in particular

since current support for automated analysis of

formalized arguments is limited. This, however, does

not limit the benefit of introducing the argumentation

and justification activities in GAM by using a formal

notation, as it simplified the discussions and helped

make the presentation precise.

9 Conclusions and future work

Goal modeling unavoidably involves the transformation of,

often unclear requirements expressed by stakeholders,

inexperienced in RE goal modeling techniques, into more

precise information written often in an instance of a goal

model. Difficulty further arises when many stakeholders

with different backgrounds participate in the engineering of

requirements.

The suggested Goal Argumentation Method (GAM)

addresses these issues by advancing the available research

in the following ways:

1. Techniques for identifying and resolving problems of

clarity in expectations expressed by the stakeholders

are suggested. The issue of clarity is identified and

treated in GAM as one of central problems that appear

when dealing with initial statements of requirements.

Lack of clarity is treated in a systematic manner,

relying on precise and operational definitions of the

clarity facets, along with specialized techniques for

clarifying information to arrive at more elaborate

understanding of stakeholders’ expectations.

2. Argumentation of modeling choices is considered

critical in obtaining justifiably appropriate instances

of requirements models. Argumentation and justifica-

tion allow straightforward, yet rigorous discussion,

revision, and settling on the goal modeling choices.

3. Combination of clarity facets and argumentation

allowed the definition of novel ordering relations

based on the analysis of argument content to prefer
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non-ambiguous, -overgeneral, -synonymous, and -

vague arguments to other.

The proposed framework advances the state of the art

both on the argumentation and clarification issues. While

GAM is method-independent, aiming for complementarity

to established and potentially future RE methods, its use

has been illustrated in combination with the Tropos goal

model. The meeting scheduler and air–traffic management

case studies served for illustration.

9.1 Future work

Both argumentation and clarification can be refined and

studied further than has been presented in this paper. For

instance, justification could be partly automated when

GAM is employed with formal RE methods, such as KAOS

[17, 36], where arguments could be constructed automati-

cally from already formalized requirements. In this respect,

automated translation between goal diagrams and argument

trees would allow novel automated checking of goal

diagrams.

One important direction of future effort is the extension

of GAM beyond goal models, and the use of argumentation

and clarification with standardized modeling languages,

such as the UML. While GAM has been initially developed

and presented herein with goal modeling in mind, it is

difficult to accept that UML diagrams are necessarily well

argued for or always contain clear information.

Finally, clarification can be further studied. In its current

form, a formalism for requirements clarification is

unavailable. As mentioned above, arriving at such a for-

malism is difficult, as it requires the integration of already

well discussed, but also still debated topics in logics and

AI, such as the formalization of vagueness and generality.

Any specification language that would claim to allow the

formal representation and reasoning about clarity facets

would need to be based on a well-structured formal system,

while remaining usable. Arriving at such a formal system

would be a significant contribution, for it would take RE a

step closer to increased automation of requirements

acquisition, whereby such automated requirements assis-

tants would interactively clarify initial statements of

requirements. Following the discussion in Sect. 1, such a

formalism would allow novel precise and structured rep-

resentation and reasoning about quality and nonfunctional

requirements which tend to involve vague and ambiguous

information, an open and pressing issue in requirements

and software engineering during the last 4 decades.
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