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Abstract

Increasing automation requires open, distributed,
service-oriented systems capable of multicriteria-driven,
dynamic adaptation for appropriate response to chang-
ing operating conditions. We combine a simple architec-
ture with a novel algorithm to enable openness, distribu-
tion, and multi-criteria-driven service composition at run-
time. The service-oriented architecture involves mediator
web services coordinating other web services into composi-
tions necessary to fulfil user requests. By basing mediator
services’ behavior on a novel multicriteria-driven (includ-
ing quality of service, deadline, reputation, cost, and user
preferences) reinforcement learning algorithm, which inte-
grates the exploitation of acquired knowledge with optimal,
undirected, continual exploration, we ensure that the system
is responsive to changes in the availability of web services.
The reported experiments indicate the algorithm behaves as
expected and outperforms two standard approaches.

1 Introduction

Managing the complexity of systems is considered a key
challenge in computing (e.g., [24, 25]) and is addressed
through various approaches aimed at increased automation.
Service-oriented architectures (SOA) are expected to en-
able the provision of a large number of distinct and compet-
ing web services which the prospective users will be able to
choose dynamically in the aim of receiving at all times op-
timal offerings for their purposes. SOA ought to be open to
permit many services to participate and avoid biased selec-
tion. Openness commits SOA to a distributed architecture
for entering and leaving resources are bound to be decen-
tralized. To be adaptable, service provision should be per-
formed by dynamically selecting and composing the par-
ticipating services according to multiple quality criteria, so
that the users continually receive optimal results. Efficiency
and flexibility that such systems are expected to exhibit are
valuable given the pressing complexity concerns.

Building systems that exhibit the given characteristics
involves many issues already treated to varying degrees in
the literature: among them, infrastructure for services (e.g.,
[7]), description of services (e.g., [10]), matchmaking be-
tween descriptions and requests (e.g., [5]), and so on. This
paper focuses on the composition of services under the con-
straints of openness, resource distribution, and adaptability
to changing web service availability w.r.t. multiple crite-
ria and constraints. To enable such system characteristics,
a fit between the system architecture and service composi-
tion behavior is needed, that is: (1) To support openness,
few assumptions can be made about the behavior of the
web services that may participate in compositions. It thus
seems reasonable to expect service composition responsi-
bility not to be placed on any web service: the architecture
ought to integrate a special set of web services, the madia-
tors, that coordinate service composition. (2) To allow the
distribution of web services, no explicit constraints should
be placed on the origin of entering services. (3) To enable
adaptability, mediator behavior should be specified along
with the architecture. (4) Since there is no guarantee that
web services will execute tasks at quality levels advertised
by the providers, composition should be grounded in em-
pirically observed service quality and such observation be
executed by the mediators. (5) The variety of stakeholder
expectations requires service composition to be driven by
multiple criteria. (6) To ensure continuous adaptability at
runtime, composition should involve continual observation
of service qualities, the use of available information to ac-
count for service behavior, and exploration of new options
to avoid excessive reliance on historical information.

Contributions. To respond to the requirements (1)–(6)
above, our proposal is to combine a SOA with a novel al-
gorithm for mediator behavior. The architecture organizes
web services into groups, called “service centers”. Each
service center specializes in the provision of a composite
service (i.e., the composition of web services). Within each
center, a single “mediator web service” receives service re-
quests. Upon reception, the mediator decides how to com-
pose the available web services into the composite service
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to be delivered, and this depending on observed prior qual-
ity while accounting for anticipated quality of newly avail-
able services. As no constraints are placed beyond orga-
nizing service delivery through mediators, the architecture
places no constraints on openness and distribution. Within
such an architecture, each mediator plays a critical role: it
organizes work by composing services, negotiates with in-
dividual services, and observes their quality in order to ad-
just compositions in the aim of continually optimizing qual-
ity criteria. Mediators’ composition behavior is guided by
a novel multicriteria-driven (including QoS, deadline, rep-
utation, cost, and user preferences) reinforcement learning
(RL) algorithm, called Randomized Reinforcement Learn-
ing (RRL) (first introduced in [20], and specialized here),
which integrates the exploitation of acquired knowledge
with optimal, undirected, continual exploration. Instead of
relying on experience only, exploration allows the media-
tor to continually explore the pool of agents available for
task allocation, thus ensuring the responsiveness of the sys-
tem to change. The reported experiments show the RRL
outperforming two standard exploration methods, namely,
ε-greedy and naive Boltzmann. Because the principal con-
tributions of the present paper are the architecture and the
algorithm, no specific commitments are made on, e.g., task
allocation or negotiation protocols, to ensure the results are
generic. Such choices are left to the designer.
Organization. The remainder of the paper starts with the
description and discussion of the architecture (§2). Detail of
the RRL algorithm is then presented (§3), and experimental
evaluation and comparison of the algorithm with standard
competing solutions are reported (§4). Finally, related work
is discussed (§5) before closing the paper with conclusions
and pointers to future work (§6).

2 Service Center Architecture

The Service Center Architecture (SCA) groups services
into Service Centers (SC). Each SC contains one Media-
tor Web Service (MWS) and all distinct Web Services (WS)
needed to provide a Composite Web Service (CWS) corre-
sponding to the Service Request (SReq; e.g., finding the
itinerary between two physical addresses as common in
map applications, booking a flight, searching for files, and
so on) originating from the user (who can be an WS or an
MWS). The MWS composes WS by observing past quality
of individual WS, then subsequently using (and updating)
this information through the RRL (see, §3). Combining the
SCA and the RRL brings the following benefits: (a) Adapt-
ability to changes in the availability and/or performence
levels of WS is ensured, as the algorithm accounts for ac-
tual quality observed in the past and explores new composi-
tions as new WS appear. (b) Continuous optimization over
various criteria in the algorithm allows different criteria to

guide service composition, while exploitation and exploita-
tion ensure MWS continually revise composition choices.
(c) By localizing composition decisions at each MWS, the
architecture remains decentralized and permits distribution
of resources. (d) The architecture and algorithm place no
restrictions on openness or resource distribution.

Because a number of CWS involve the execution of com-
mon services, the presence of generic services (i.e., those
whose frequency of execution is above some externally
fixed threshold) makes it possible to pool the information
about idle WS executing the generic services into the same
center, called the Support Service Center (SSC). The ef-
fects sought in doing so are (i) ensuring the availability of
WS which execute frequently needed tasks; (ii) having an
MWS dedicated to identifying and scheduling the work of
WS which are most appropriate for generic services in var-
ious SC; and (iii) avoiding communication between various
MWS regarding generic WS, but instead centralizing rele-
vant information on generic WS at one MWS. The remain-
der of this section revisits the SCA with more precision.

Definition 1 A tuple 〈I,O, s̃QoS , s̃cost, s〉 is called a Web
Service (WS) w. I and O specify, respectively, the inputs
and the outputs of the service. The WS advertises its capa-
bility to provide the service to the QoS levels given by the
vector s̃QoS and cost s̃cost. The structure of s̃QoS is deter-
mined by the employed QoS ontology. s is a specification
of all additional properties of the service irrelevant for the
present discussion, yet necessary when building a system.

Definition 2 A Mediator Web Service (MWS) wMWS
c in a

service center c ∈ C is a WS capable of executing the RRL
algorithm (A), denoted: A ∈ wMWS

c .

MWS in SC and in SSC both behave according to the
algorithm; the difference being that the MWS in SSC allo-
cates WS to various SC where the local MWS need them.

Definition 3 〈sN , sE , servTransit, servState, sι〉 is a Com-
posite Web Service (CWS) w̆. (sN

j , sE
j ) defines a directed

acyclic graph. In the terminology of the algorithm, a node
represents a “state” and an edge a “transition”, that is, a
node is a description of inputs or outputs of a service, while
an edge represents a task1. The two functions label nodes
and edges with WS information: servTransit : sE 7−→ W
is a partial function returning the WS for a given edge in
the graph (W is by convention the set of all WS), while
servState : sN 7−→ {I}w∈W ∪ {O}w∈W maps each edge
to inputs or outputs of WS. The WS on an edge must have
the inputs and outputs corresponding to conditions given,
respectively, on its origin and its destination node.

1“Task” refers to the transformation of inputs to outputs that a WS can
execute and is necessary in providing a CWS.
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A service understood here as a process, composed of a
set of tasks (accomplished by WS) ordered over the graph
representing the service. The functional specification of
the service, i.e., sι is not of interest here, but involves in
practice, e.g., a specification of interfaces, and other im-
plementation considerations. Requesting a service involves
the specification of expected QoS, in addition to a deadline
for providing the service, minimal level of reputation for
agents that are to participate in service execution, the max-
imal monetary cost, and explicit user preferences on agents
to select (e.g., users may prefer globally the services of
some providers over others, regardless of actual quality—
this may occur with preferential treatment resulting from
environment constraints such as, e.g., legal constracts on
cooperation between organizations and/or individuals).

Definition 4 ŝj = 〈w̆, sQoS , sD, sR, scost, spref〉 is called a
Service Request (SReq), where:

• w̆ is the composite service to provide.

• sQoS specifies expected qualities and their required
level. Its definition follows an QoS ontology, such
as, e.g., the FIPA QoS ontology specification [12].
Whatever the specific QoS ontology, expected quali-
ties are likely to be specified as (at least) sQoS =
〈(p1, d1, v1, u1), . . . , (pr, dr, vr, ur)〉, where:

– pk is the name of the QoS parameter (e.g., con-
nection delay, standards compliance, and so on).

– dk gives the type of the parameter (e.g., nominal,
ordinal, interval, ratio).

– vk is the set of desired values of the parameter,
or a constraint <,≤,=,≥, > on its value.

– uk is the unit of the property value.

• sD is a deadline, specified as a natural.

• sR = 〈R̂a,wi

k , R̂
a,wi+1
k , . . .〉 specifies minimal levels of

reputation over quality parameters that any WS must
satisfy. It is not necessary to specify reputation for all
qualities over all WS, selective reputation expectations
are admitted.

• scost is the maximal monetary cost the user requesting
the service is ready to pay to obtain the CWS.

• spref is a set of expressions that constrain the pool of
potential WS to which the MWS can use in the compo-
sition.

Definition 5 Reputation Ra,wi

k of a WS wi over the QoS
parameter k is:

Ra,wi

k =
1

n− 1

n∑
i=1

[(
vAdv

k − v̂i
k

)2
δ−time(v̂i

k)
]

where time() returns the time of observation (a natural, 1
for the most recent observed value, time(v̂i

k) > 1 for all
other) and δ is the dampening factor for the given quality
(can be used with time() to give less weight to older ob-
servations). We assume that the advertised quality for wi is
s̃QoS
wi

= 〈(p1, d1, v
Adv
1 , u1), . . . , (pr, dr, v

Adv
r , ur)〉, and that

n observations v̂i
k, 1 ≤ i ≤ n have been made over a qual-

ity parameter k.

Reputation and trust receive considerable attention in the
literature (e.g., [27, 17]). The ideas underlying Maximilien
and Singh’s approach [17] are followed, with two caveats:
they use “trust” to select services from a pool of compet-
ing services and exploit user-generated opinions to calculate
reputation, whereas herein WS are selected automatically
and reputation is generated by comparing WS behavior ob-
served by the MWS and the advertised behavior of the WS.
Reputation is used here instead of trust since no user opin-
ions are accounted for.

Definition 6 〈wMWS
c , w̆,Ww̆,c〉 is called a Service Center

(SC) c ∈ C, where wSM
c is the MWS in the given center, w̆

is the CWS that the SC is to provide, and Ww̆,c is the set
of WS involved in the composition chosen by the wMWS

c to
deliver w̆.

Definition 7 A Service Support Center (SSC) cSSC is
a service center in which all WS are generic, i.e.,
〈wMWS

c , w̆,Ww̆,c〉, with the additional constraint that
∀wi ∈ Ww̆,c, genericTask(wi, P, x) = true, where
genericTask : W×timePeriod×N 7−→ {true, false} returns
true if a given task has been executed over a given time pe-
riod for more times than the specified threshold x ∈ N.

Definition 8 SCA is a set containing one SSC and m ≥ 1
SC: SCA = {c1, . . . , cm, cSSC}.

2.1 Role of the Algorithm

The SCA can be argued open and distributed, for it
places no constraints other than centralizing WS compo-
sition at MWS. The SCA cannot be argued adaptable and
optimally responsive to service requests without the algo-
rithm. The RRL presented in §3 defines the behavior of
MWS by specifying how the mediator-specific service, tA,
proceeds to compose WS for CWS delivery by optimizing
one or more service request criteria (referred to as r in the
remainder), while taking the remaining criteria (vector s
containing all criteria from the service request other than
r) as hard constraints. Returning to how a service request
is specified in SCA (see, Def.4) it is apparent that many
criteria can be accounted for when selecting among alter-
native WS compositions, hence qualifying the algorithm as
multicriteria-driven within the present paper. As decision
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making in presence of multiple criteria permits arguing for,
and accepting various decision rules (which differ on, e.g.,
how criteria are aggregated), the algorithm is constructed to
leave much freedom to the designer in actual implementa-
tion. Moreover, it does not require full specification of all
possible criteria for each service—instead, it is up to the
users to choose what criteria to specify. The algorithm thus
optimizes a single normalized (i.e., taking values in the in-
terval [0, 1]) variable, leading to three approaches to spec-
ifying this variable and the remaining hard constraints the
algorithm takes as input when running:

1. If the user prefers to have one criterion optimized (this
being either a ratio-type2 QoS parameter in sQoS , or
sD, or reputation from sR, or scost

j ), expected values
over the remaining criteria will be treated by the al-
gorithm as hard constraints, whereby task allocations
which violate hard constraints will be eliminated by
the algorithm.

2. If the user prefers to have several criteria optimized,
it is necessary to provide an aggregation function for
the relevant criteria, so that the result of the function
is what the algorithm will optimize (i.e., r is an ag-
gregate). Guidelines for aggregation functions can be
found in, e.g., [26]. Non-aggregated criteria are treated
as hard constraints (i.e., s, see §3.2 below).

3. A third option is to have the mediator suggest alterna-
tive allocations and the user chooses the one to apply.
Presence or absence of this approach depends entirely
on the choices of the designer, as it does not affect the
formulation of the algorithm—it is essentially the first
option above, with the nuance that the user asks the
mediator to provide a list of optimal allocations for
each criteria, and then selects manually.

3 Randomized RL Algorithm

Whenever the environment is changing, new WS outper-
forming the available ones can appear. The exploitation of
acquired knowledge about the quality of WS can therefore
be usefully combined with the exploration of composition
options arising with change in operating conditions. For-
mally, exploration is the association of a probability distri-
bution to the set of available WS in each state (i.e., choice
randomization). Usually, the exploration/exploitation is-
sue is addressed by periodically readjusting the policy for
choosing actions (here, such action consists of deciding to
use a WS in a composition for delivering a CWS) and re-
exploring up-to-now suboptimal paths [18, 22]. Such a
strategy is, however, suboptimal because it does not account

2Nominal or ordinal QoS parameters that cannot be converted to ratio
form give rise to hard constraints.

for exploration. The RRL algorithm introduced in [20] is
adapted herein to dynamic service composition while (i)
optimizing criteria, (ii) satisfying the hard constraints, (iii)
learning about the quality of new WS so as to continually
adjust composition, and (iv) exploring new composition op-
tions. The exploration rate is quantified with the Shannon
entropy associated to the probability distribution of allocat-
ing a task to a WS. This permits the continual measurement
and control of exploration.

Returning to the conceptualization of the SCA, the
problem the algorithm resolves is a composition problem,
whereby the MWS ought to choose the WS which are to
execute tasks in a given CWS. By conceptualizing the CWS
as a labeled directed acyclic graph in Def.3, the composi-
tion problem amounts to a deterministic shortest-path prob-
lem in a directed weighted hypergraph. The CWS is thus
mapped onto a directed weighted hypergraph G where each
node in G is a step in CWS provision and an edge in G
corresponds to the allocation of a task tk to a WS wk,u,
where u ranges over WS that can execute wk according to
the criteria set in the service request. Each individual allo-
cation of a task to a WS incurs a cost c(tk, wk,u), whereby
this “cost” is a function of the criterion (or aggregated cri-
teria, as discussed in §2.1) formulated so that the minimiza-
tion of cost correponds to the optimization of the criterion
(i.e., minimization or maximization of criterion value). This
criterion is the one the user chooses to optimize, whereas
other criteria are treated as hard constraints. For illustra-
tion, consider the representation of a generic CWS as a hy-
pergraph in Fig.1 where nodes are labeled with states of
the service provision problem, and edges with costs of al-
ternative task-to-WS allocations (for simplicity, only some
labels are shown). Nodes are connected by several edges to
indicate the presence of alternative allocations of the given
task to WS. Any path from the starting node to the desti-
nation node is a potential allocation of tasks to WS (i.e.,
a WS composition). The CWS provision problem is thus
a global optimization problem: learn the optimal complete
probabilistic allocation that minimizes the expected cumu-
lated cost from the initial node to the destination node while
maintaining a fixed degree of exploration, and under a given
set of hard constraints (specified in the service request). At
the initial node in the graph (in Fig.1, node s1), no tasks are
allocated, whereas when reaching the destination node (s13
in the same figure), all tasks are allocated.

3.1 RL Formulation of the Problem

At a state k of the CWS provision problem, choosing
an allocation of tk to wk,u (i.e., moving from k to another
state) from a set of potential allocations U(k) incurs a cost
c(tk, wk,u). Cost is an inverse function of the criterion the
user wishes to optimize (see, §2.1), say r. The cost can
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Figure 1. CWS as a labeled hypergraph.

be positive (penalty), negative (reward), and it is assumed
that the service graph is acyclic [8]. It is by comparing
WS over estimated r̂ values and the hard constraints to sat-
isfy (see, §3.2) that task allocation proceeds. The allocation
(tk, wk,u) is chosen according to a Task Allocation policy
(TA) Π that maps every state k to the set U(k) of admissi-
ble allocations with a certain probability distribution πk(u),
i.e., U(k): Π ≡ {πk(u), k = 1, 2, . . . , n}. It is assumed
that: (i) once the action has been chosen, the next state k′

is known deterministically, k′ = fk(u) where f is a one-to-
one mapping from states and actions to a resulting state; (ii)
different actions lead to different states; and (iii) as in [6],
there is a special cost-free destination state; once the ser-
vice mediator has reached that state, the service provision
process is complete.

Definition 9 The degree of exploration Ek at state k is
quantified as:

Ek = −
∑

u∈U(k)

πk(u) log πk(u) (1)

which is the entropy of the probability distribution of the
task allocations in state k [9, 15]. Ek characterizes the
uncertainty about the allocation of a task to a WS at k. It
is equal to zero when there is no uncertainty at all (πk(i)
reduces to a Kronecker delta); it is equal to log(nk), where
nk is the number of admissible allocations at node k, in
the case of maximum uncertainty, πk(i) = 1/nk (a uniform
distribution).

Definition 10 The exploration rate Er
k ∈ [0, 1] is the ra-

tio between the actual value of Ek and its maximum value:
Er

k = Ek/ log(nk).

Fixing the entropy at a state sets the exploration level
for the state; increasing the entropy increases exploration,
up to the maximal value in which case there is no more
exploitation—the next action is chosen completely at ran-
dom (using a uniform distribution) and without taking the
costs into account. Exploration levels of MWS can thus be
controlled through exploration rates. Service provision then

amounts to minimizing total expected cost Vπ(k0) accumu-
lated over all paths from the initial k0 to the final state:

Vπ(k0) = Eπ

[ ∞∑
t=0

c(kt, ut)

]
(2)

The expectation Eπ is taken on the policy Π that is, on all
the random choices of action ui in state ki.

3.2 Satisfying Hard Constraints

Hard constraints are satisfied by adopting a special hy-
pergraph structure and task allocation process, detailed in
this section and inspired by critical path analysis (see for
instance [4]). As shown in Fig.1, each node of the graph
represents the completion of a task and each edge the as-
signment of a WS to the specific task. Each path from the
starting node (e.g., node s1 in Fig.1) to the destination node
(node s13 in Fig.1) thus corresponds to a sequence of as-
signed tasks ensuring the completion of the CWS within
the prescribed hard constraints. The model thus assumes
that there are alternative ways for completing the CWS. The
topology of the graph—i.e., the node structure and the tasks
associated to edges between the nodes—is provided by the
designer through the service definition, so that the graph
is a graphical model of the different ways the service can
be performed as a sequence of tasks. Each constraint will
be of the form “cannot exceed a given predefined quantity”
(upper bounds); e.g., total duration along any path should
not exceed some predefined duration. Extensions to inter-
val constraints could be handled as well, but are not reported
here.

To illustrate allocation while maintaining the hard con-
straints satisfied, let gki

be the vector containing the largest
values, for each quantity subject to a constraint, along any
path connecting the starting node (called k0) to node ki, and
hki

the vector containing the largest values, for each quan-
tity subject to a constraint, along any path connecting node
ki to the destination node (called kd). Let sQoS = (s1, s2)
be the vector containing hard constraints on two QoS cri-
teria (for the sake of simplicity, two-dimensional criteria
vectors are considered; extension to n-dimensional vec-
tors is straightforward). It follows that gki

represents the
worst sQoS when reaching ki, while hki is the worst sQoS

for moving from ki to kd. Computing the two vectors is
straightforward in dynamic programming (e.g., [4]):{

gk0
= 0

gki
= maxP (ki)→ki

{sQoS
P (ki)→ki

+ gP (ki)
} (3)

{
hkd

= 0
hki = maxki→S(ki){s

QoS
ki→S(ki)

+ hS(ki)}
(4)
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where P (ki) is the set of predecessor nodes of ki and S(ki)
the set of successor nodes of ki. When computing gki

,
the maximum is taken on the set of edges reaching ki (i.e.,
P (ki) → ki); while when computing hki

, the maximum
is taken on edges leaving ki (i.e., ki → S(ki)). sQoS is
the QoS criteria vector (s1, s2) for a WS j associated to
an edge. Any vector gki

< smax and hki < smax is ac-
ceptable since it does not violate the constraints (assuming
smax = (s1,max, s2,max) contains upper bounds on hard
constraints). Suppose then that the SM considers assigning
a task on an edge between nodes ki and kj to a WS with a
vector sQoS of QoS criteria. It is clear that the WS is eli-
gible for the given task iff gki

+ sQoS + hkj < smax (the
inequality is taken elementwise). WS is rejected if the in-
equality is not verified. This rule ensures the constraints are
always satisfied along any path, i.e., for any assignment of
WS to tasks; it allows to dynamically manage the inclusion
of new WS in the service provision.

3.3 Computing the Optimal TA Policy

The MWS begins with task allocation from the initial
state and chooses from state k the allocation of a WS u to a
task ti with a probability distribution πk(u), which aims to
exploration. The associated cost c(ti, wu) is incurred and
is denoted for simplicity c(k, i) (cost may vary over time
in a dynamic environment); the MWS then moves to the
new state, k′. This allows the SM to update the estimates of
the cost, ĉ(k, i). The RRL for an acyclic graph, where the
states are ordered in such a way that there is no arc going
backward (i.e. there exists no arc linking a state k′ to a state
k where k′ > k), is as follows (for details, see [3]):

1. Initialization phase: Set V (kd) = 0, which is the ex-
pected cost at the destination state.

2. Computation of the TA policy and the expected cost
under exploration constraints: For ki = (kd − 1) to
the initial state k0, compute:

πki
(u) =

exp[−θki(c(ki,u)+V (k′i,u))]
P

u′∈U(ki)
exp

h
−θki

�
c(ki,u′)+V (k′

i,u′ )
�i ,

V (ki) =
∑

u∈U(ki)

πki(u)
[
c(ki, u) + V (k′i,u)

]
for ki 6= kd

(5)
where k′i,u = fk(u) and θki is set in order to respect
the prescribed degree of entropy at each state (see Eq.1
which can be solved by a simple bisection search).

One can show that this probability distribution law for
task allocation minimizes the expected cost (see Eq.2) from
the starting to the destination node for a fixed exploration
rate [3, 20]. Various approaches can be used to update
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the estimated WS criterion r̂u; e.g., exponential smoothing
leads to:

r̂u ← αr̄u + (1− α)r̂u (6)

where r̄u is the observed value of the criterion for wu and
α ∈]0, 1[ is the smoothing parameter. Other stochastic ap-
proximation updating rules could also be used. The MWS
updates its estimates of the criterion each time a WS per-
forms a task and the associated cost is updated accordingly.

4 Experimental Results

Experimental setup. Task allocation for the CWS diplayed
in Fig.1 was performed. A total of three distinct WS were
made available for each distinct task. Each wk,u is charac-
terized by its actual ru which is an indicator of the WS’s
quality over the optimization criterion (see, §3.1). In this
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simulation, it will simply be the probability of successfully
performing the task (1 – probability of failure). In total, 57
WS are available to the MWS for task allocation. For all
WS u, ru takes its value ∈ [0, 1]; for 70% of the WS, the
actual ru is hidden (assuming it is unknown to the MWS)
and its initial expected value, r̂u, is set, by default, to 0.3
(high probability of failure since the behavior of the WS
has never been observed up to now), while actual ru value
is available to the MWS for the remaining 30% (assuming
these WS are well known to the MWS). Actual ru is ran-
domly assigned from the interval [0.5, 1.0] following a uni-
form probability distribution. It has been further assumed
that ĉ(ti, wu) = −ln(r̂u), meaning that it is the product
of the ru along a path that is optimized (this is a standard
measure of the reliability of a system). After all tasks are
allocated, the selected WS execute their allocated tasks ac-
cording to their actual ru value (with failure 1 − ru). The
estimated WS criterion r̂u is then updated by exponential
smoothing, according to Eq.6. In Eq.6, r̄u equals 1 if wu

is successful at executing the task it has been allocated, 0
otherwise. Estimated costs are of course updated in terms
of the r̂u and each time a complete allocation occurs, the
probability distributions of choosing a WS are updated ac-
cording to Eq.5. 10,000 complete allocations were simu-
lated for exploration rates 20%, and 30%.

Results. The RRL is compared to two other standard explo-
ration methods, ε-greedy and naive Boltzmann (see [3] for
details), while tuning their parameters to ensure the same
exploration level as for RRL. The success rate is defined as
the proportion of services that are successfully completed
(i.e., all tasks composing the service are allocated and ex-
ecuted successfully) and is displayed in Figures 2 and 3 in
terms of the run number (one run corresponding to one com-
plete assignment of tasks, criterion estimation and proba-
bility distribution update). Figures 2 and 3 show the RRL
behaves as expected. It converges almost to the success rate

of the RRL in which all actual r are known from the outset
(i.e., need not be estimated)—and indicate that exploration
clearly helps by outperforming the allocation system with-
out exploration (which has a constant 75% success rate).
Fig.4 compares the three exploration methods by plotting
the average absolute difference between actual ru and esti-
mated r̂u criterion values for a 30% exploration rate. Ex-
ploration is therefore clearly helpful when the environment
changes with the appearance of new agents—i.e., explo-
ration is useful for directing MWS behavior in dynamic,
changing, and open architectures, i.e., in the SCA.

5 Related Work

Regarding task allocation, closest to the present work
is the generalization of the Semi-Markov Decision Process
(SMDP) [23] model which provides a representation of the
mediator decision problem. Abdallah and Lesser [1] formu-
late the mediator decision problem by extending the original
SMDP formulation to account for randomly available ac-
tions and allow concurrent task execution. With regards to
prior effort (e.g., [13]), they advance the matter by avoiding
only serial task execution, homogenous agents, and deter-
ministic action availability, while the reported experiments
indicate their approach outperforms the original SMDP and
the Concurrent Action Model [19]. In another paper, Ab-
dallah and Lesser [2] suggest an algorithm for coordinating
work between mediators: in a distributed architecture, me-
diators observe only part of what other mediators can ob-
serve, so that optimal task allocation accross pooled agents
can be represented as a game with incomplete information.
While coordination across mediators is outside the scope of
the present paper, it can be noted that the learning mech-
anism employed by the cited authors does not involve ex-
ploration, only exploitation. The RRL allows the execu-
tion of potentially complex processes (but without concur-
rency, see §6) while assuming that the set of available WS
is changing. One distinctive characteristic the MWS’s be-
havior suggested in the present paper is that the algorithm
accounts for a vector of criteria when allocating tasks, in-
cluding QoS, service provision deadline, provision cost, ex-
plicit user preferences, and agent reputation. Maximilien
and Singh [17] propose service selection driven by trust
values assigned to service providing agents. Trust is ex-
tracted from user-generated reports of past service perfor-
mance over qualities defined by a system-specific QoS on-
tology. Level of trust depends on the degree to which rep-
utation and quality levels advertised by the provider match.
By basing selection on trust only and generating levels of
trust from advertised and user-observed behavior, Maxim-
ilien and Singh’s approach involves learning driven by ex-
ploitation of historical information, without exploration.

Tesauro and colleagues [25] present a decentralized ar-
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chitecture for autonomic computing where tasks are allo-
cated according to the ability of agents to execute them. Al-
location is utility-driven, whereby each resource has an as-
sociated and continually updated function which provides
the value to the application environment of obtaining each
possible level of the given resource. Information on the me-
diation process is very limited, seemingly indicating that
no empirical data on actual agent quality is employed—
i.e., it seems assumed that advertised behavior is the ac-
tual behavior, thus undermining the appropriateness of the
given arhitecture for an open system. Shaheen Fatima and
Wooldridge [11] suggest an architecture in which perma-
nent agents associated to the system are provided alongside
agents that can enter and leave. Their focus is on mini-
mizing the number of tasks that cannot be executed by the
system because of overload. No QoS considerations are ac-
counted for in task allocation and it appears that no learning
occurs, the former undermining realistic application, while
the latter harms adaptability. Tasks are queued based on
priority values. Klein and Tichy [16] focus on ensuring re-
liability and availability through automatic reconfiguration.
Agents are self-interested and selection proceeds by reward
for accomplishing a task. There are no QoS considerations
and no explicit learning based on observed behavior.

6 Conclusions and Future Work

In response to the need for architectures for open, dis-
tributed, service-oriented systems capable of dynamic adap-
tation in response to the changing operating conditions, we
propose the combination of the SCA and the RRL. The
MWS in SCA use a reinforcement learning algorithm—i.e.,
the RRL—combining exploitation with exploration to en-
sure both the use of acquired knowledge about the actual
quality of web services and the anticipated quality of newly
available WS. Composition is dynamic, and is driven by
multiple criteria, including QoS, deadline, reputation, cost,
and additional explicit user preferences. The reported ex-
periments show the algorithm outperforming standard ex-
ploration strategies, ε-greedy and naive Boltzmann. Future
work focuses on experimentation of the architecture and the
extension of service graph specifications, to allow, e.g., task
concurrency, so as to move closer to using the architecture
and the algorithm in actual application settings where few
limitations on service graphs are acceptable.
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