
Finding Incremental Solutions for Evolving Requirements

Neil A. Ernst
Department of Computer Science

University of Toronto
nernst@cs.toronto.edu

Alexander Borgida
Department of Computer Science

Rutgers University
borgida@cs.rutgers.edu

Ivan Jureta
FNRS & Information Management

University of Namur
ijureta@fundp.ac.be

Abstract—This paper investigates aspects of the problem
of software evolution resulting from top-level requirements
change. In particular, while most research on design for
software focuses on finding some correct solution, this ignores
that such a solution is often only correct in a particular, and
often short-lived, context. Using a logic-based goal-oriented
requirements modeling language, the paper poses the problem
of finding desirable solutions as the requirements change.
Among other possible criteria of desirability, we consider
minimizing the effort required to implement the new solution,
which involves reusing parts of the old solution. In general, the
solution of requirements problems is viewed as an exploration
using a “requirements engineering knowledge base” (REKB),
whose specification is formalized. The paper reports on expe-
rience implementing the REKB on top of a so-called “reason-
maintenance system”, and provides evidence that incremental
solution finding is indeed more efficient.

Keywords-Requirements; evolution; incremental; knowledge-
level.

I. INTRODUCTION

Many requirements problems must be solved in the con-
text of existing, so-called “brownfield systems”. Systems
which were assumed to last for only a few years are
now decades old. And it has long been known that the
maintenance phase of a software system’s lifecyle consumes
the lion’s share of the resources, while consisting mostly of
adaptive rather than corrective changes. Apart from strictly
practical reasons (e.g., corporate inertia or the challenge
of legacy systems updates), there are other good reasons
why working with existing requirements is important. For
many projects a common way to elicit requirements is by
reusing requirements from previous projects, which is asso-
ciated with lower requirements volatility [1]. Furthermore,
a large amount of engineering effort is devoted to planning
requirements for new software releases. To support re-use
and planning, we must maintain requirements, their existing
implementations, and domain assumptions throughout the
software’s lifecycle. We need a way to solve requirements
problems not as one-off challenges, but as evolving and
context-dependent problems.

The objective of this paper is to re-consider the problem
of finding a solution to the requirements problem in a goal-
oriented requirements modeling and analysis framework,
when the requirements and domain assumptions are under-

going change. In particular, we start with the key aspects
of the Techne approach to requirements [2], where solutions
are specified as minimal sets of tasks that achieve goals (of
various kinds) based on domain knowledge, including rules
for goal decomposition into subgoals and tasks that achieve
them.

We distinguish the problem this paper addresses, that of
evolving requirements, from that of adaptive requirements.
The main difference is that in adaptive requirements frame-
works such as [3] and our own paper [4], one makes the
assumption that the overall set of requirements ∆, including
goals, decompositions, possible solution tasks and domain
knowledge do not change; monitoring is however taking
place, and alternate valid solutions are selected, choosing
among existing correct alternatives, when failures of some
requirements are detected. For example, if a washing ma-
chine is turned off unexpectedly, we can adapt by restarting
the machine, filling it with clothes, etc., so long as these
countermeasures exist and are already known to the system.

Evolving requirements, on the other hand, are the result
of unanticipated changes. Such situations are of course
common in requirements. One major source are the changes
introduced by new legislation, such as the U.S. healthcare
privacy legislation (HIPAA), or the Sarbanes-Oxley financial
reporting act. Other sources of changes are requests for
enhancements by current users. These are all changes to
the original requirements ∆, and cannot be modeled a
priori. One might argue that in this case the default action
is to take the requirements model ‘offline’ and recompute
possible new solutions. However, this is almost certainly a
duplication of effort. What we may want instead is a suitable
repair/modification to the existing requirements model that
will re-use as much of the old solution as possible, and min-
imize the number or cost of new implementations. Finding
these incremental repairs is the focus of this paper.

In particular, this paper makes the following contributions:
• States explicitly and formally for the first time, to

our knowledge, that what appear to be suboptimal
solutions to a requirements problem (RP) might in fact
be preferred, if the problem was the result of modifying
a previous RP, for which a solution has already been
adopted and implemented.

• Identifies a variety of criteria for preferring certain

978-1-4577-0924-1/11/$26.00 © 2011 IEEE

2011 IEEE 19th International Requirements Engineering Conference Research Paper

15

solutions to the modified requirements problem. These
criteria can be based on the degree to which they reuse
elements of the previous solution.

• Introduces a workbench metaphor for the solution of
goal-based RPs, especially after problem evolution.
Finding solutions is an exploration carried out by users
with the support of a requirements engineering knowl-
edge base (REKB), and specifies its operators at the
logical knowledge-level (rather than the implementation
level), according to principles advocated by Levesque
[5].

• Implements an REKB on top of a Reason Maintenance
System1 as back-end, which, among others, is designed
to work in an incremental manner.

• Provides experimental evaluation of the proposed im-
plementation, including evidence that it indeed solves
problems incrementally in ways that are more efficient
than starting from scratch.

The remainder of the paper introduces in Section II the re-
quirements problem, the Techne version of it, and the details
of the requirements evolution problem in its context. Section
III introduces the REKB, specifying its core operations and
illustrating their use. Section IV briefly mentions algorithms
for implementing the operations and the complexity of the
problems they try to solve, while Section V discusses the
manner in which the ATMS reason maintenance system
can be used to implement the REKB. Section VI concerns
experimental evaluation, while Section VII considers related
and future work, followed by our conclusions.

II. ASPECTS OF THE REQUIREMENTS PROBLEM

Requirements engineering for software elicits the desired
characteristics of a machine (specification S) that will bring
about some desired properties (the requirements R) in an
environment or world W. Finding this specification is the
requirements problem, formalized by Zave and Jackson [7]
as satisfying the condition:

W,S ` R (1)

where W ∪ S is consistent, and ` is some form of logical
deduction relationship. Note that a final, running system,
achieving the requirements R, is obtained when the specifi-
cations S are actually implemented.

Subsequent research [8], [9] demonstrated the need to
expand on this relationship. First, given W and R, there
can be many possible specifications S which solve the
requirements problem. Therefore, provisions should be made
for exploring the space of solutions and comparing them. In
our case, this will be a “workbench” metaphor based on
a requirements database. Second, requirements are not all
alike, and include, among others, ones that are mandatory

1While commonly known as truth-maintenance systems, this is not ‘truly’
reflective of what such systems do [6].

(“must-have”) and others which are optional, those the
stakeholders either consider “nice to have”, or prefer to
other requirements. Additional requirements emerge during
analysis and serve to structure the problem space using
refinements.

A. The variant of the requirements problem in Techne

To address these deficiencies, [10] describes an ontology
for requirements engineering called CORE, which is based
in part on: goals G of various kinds and attitudes to them;
tasks T referring to behaviours of the system-to-be or in
its environment; and domain assumptions D which are
conditions believed to hold, and which help operationalize
goals into tasks achieving them. This was used as a basis
for a new requirements modeling language, Techne [2]. In
this paper we use a simplified version of Techne, where
we ignore some variants of goals (e.g. soft vs hard) as
well as “quality constraints” because they do not affect our
solutions.

Example II.1. Our objective is to build a software sys-
tem for an online music service (such as Pandora.com).
Our elicitation with the stakeholders has produced a set
of communications sorted into tasks T , goals G, domain
assumptions D, including:

• GGenRev: The system shall generate revenue. (A
mandatory goal.)

• GAds: The system shall display text ads.
• GSub: The system shall charge users a subscription to

listen.
• TTarget: Target text ads based on profiles.
• TAcct: Enable account-free login.
• TGoogAd: Leverage Google Ads to serve advertising.
• TRestrict: Restrict the music player to subscribers.
• TSecure: Encrypt user payment page with SSL. �

A key part of solving requirements problems is finding
ways to refine requirements using other requirements, to
further refine certain requirements into tasks, and to record
conflicts between requirements, giving rise to refinement and
conflict relations. The existence of individual relations is
considered to be part of D in Techne.

Example II.2. The previous example must be augmented
with refinements and conflicts connecting goals, tasks, etc.:

• i1: Satisfying GSub satisfies GGenRev .
• i2: Satisfying GAds satisfies GGenRev .
• c1: TSecure and TAccnt are in conflict (we cannot si-

multaneously allow open access and also secure access
to subscribers).

• i3: Doing TRestrict and TSecure satisfies GSub.
• i4: Doing TAccnt and TTarget and TGoogAd satisfies
GAds.

Fig. 1 shows a sample REKB represented graphically,
using the stakeholder communications from above. �

16

I I

II

G GenRev

AdsG SubG

GoogAdTargetAccntSecureTT TTRestrict

⊥
i4

i 2

i 3

i 1

TT TTTT

Figure 1. A simple REKB showing goals, tasks, refinements and conflicts.

Example II.3. What sets of tasks, if implemented, will
satisfy the mandatory goal GGenRev? There are two alter-
natives for accomplishing GGenRev , and so the acceptable
solutions are precisely those tasks which satisfy these al-
ternatives. Therefore S1 : {TRestrict, TSecure}, and S2 :
{TAccnt, TTarget, TGoogAd}. �

In Techne, the requirements problem is re-stated (approx-
imately here) as the search for a subset S of the known tasks
T , and refinements in D, which together explain how one
can achieve a subset Ǵ of goals G, such that all mandatory
requirements are present in S ∪ Ǵ ∪D, and ideally also as
many attractive requirements as possible. This implies that
we require

D,S ` Ǵ

and that D∪S be consistent. Since it does not make sense to
have extraneous steps/tasks in such sets S, we expect them
all to be minimal, although there may be many solutions S.

Techne balances a reasonably simple representation of
requirements with support for automated reasoning. The
closer one is to the start of the RE process, the more im-
portant it is to keep representations of requirements simple,
since requirements are often vague and ambiguous at this
point. This avoids wasted effort in subsequent revisions and
changes. Representation of requirements in a propositional
formalism such as Techne does not harm this aim; at the
same time, it allows automated reasoning to be used to
answer questions of interest in the very early structuring and
exploration of the requirements problem and solution space.
In a propositional formalism, natural language statements
of requirements remain as they are, and thereby readable
to any stakeholder: what is formalized are some specific
relations between these statements, and it is by looking
at these relations that automated reasoning is performed
(rather than by looking ”into the content” of natural language
statements). The formalization thereby introduces no burden
on the modeler, other than that which the modeler has
whenever she uses a visual language, in which modeling
involves adding nodes (i.e., requirements) and edges (i.e.,
relations between requirements) to a model of requirements.

B. The Requirements Evolution Problem

Suppose now that we have acquired and solved a require-
ments problem RP1. “Solved” here means we selected a

particular collection of tasks S0 among the ones specified
above, and have a running solution, consisting of some
implementation for the tasks in S0. As we argued earlier,
we are likely to encounter unanticipated changes to the
problem, which include changes to all aspects of RP1,
including the goals, tasks, and various forms of knowledge
about refinement. Suppose this results in a new requirements
problem RP2. Formally, the obvious path to follow in this
case would be to view RP2 as a completely new problem,
and simply search for a new solution. However, this view
is unrealistic in the real wold: for example, one does not
throw away an entire software system and start design from
scratch, when a new feature is desired. Instead, the solution
is likely to be incremental: start from the current solution
and try to move towards one that meets the problem captured
in RP2.

A key goal of this paper is to explore this evolutionary
aspect of the requirements problem. It can be restated semi-
formally as:

Problem statement: Given (i) goals G, do-
main knowledge D, and (ii) some chosen exist-
ing solution S0 of tasks (i.e., one that satisfies
D,S0 ` G), as well as (iii) modified requirements
(δ(G),δ(D),δ(T)) that include modified goals, do-
main knowledge and possible tasks, produce a sub-
set of possible specifications Ŝ to the changed re-
quirements problem (i.e., δ(D), Ŝ ` δ(G)) which
satisfy some desired property Π, relating Ŝ to S0

and possibly other aspects of the changes.
Note that Ŝ is no longer required to be minimal.

We present below some plausible alternative properties Π
for choosing solutions, together with illustrative examples
based on a case where: S0 = {a, b, c, d, e} was the initial
solution (the set of tasks that were implemented); and
S1 = {f, g, h}, S2 = {a, c, d, f} and S3 = {a, b, c, d, f}
are minimal sets of tasks identified as solutions to the new
requirements:

1) The standard solutions: this option ignores the fact
that the new problem was obtained by evolution, and
looks for solutions in the standard way. In the exam-
ple, one might return all the possible new solutions
{S1, S2, S3}, or just the minimum size one, S1.

2) Minimal change effort solutions: These approaches

17

look for solutions Ŝ that minimize the extra effort
Ŝ − S0 required to implement the new “machine”
(specification). In our view of solutions as sets of
tasks, Ŝ − S0 may be taken as “set subtraction”,
in which case one might look for (i) the smallest
difference cardinality | Ŝ−S0 | (S2 or S3 each require
only one new task to be added/implemented on top of
what is in S0); or (ii) smallest difference cardinality
and least size | Ŝ | (S2 in this case).

3) Maximal familiarity solutions: These approaches look
for solutions Ŝ that maximize the set of tasks used in
the current solution, Ŝ ∩ S0, while implementing the
current machine. One might prefer such an approach
because it preserves most of the structure of the current
solution, and hence maximizes familiarity to users and
maintainers alike. In the above example, S3 would be
the choice here.

4) Solution reuse over history of changes: Since the
software has probably undergone a series of changes,
each resulting in newly implemented task sets
S1
0 , S

2
0 , ..., S

n
0 , one can try to maximize reuse of

these (and thereby even further minimize current extra
effort) by using

⋃
j S

j
0 instead of S0 in the earlier

proposals.
The above list makes it clear that there is unlikely to be a
single optimal answer, and that once again the best we can
hope for is to support the analyst in exploring alternatives.

III. THE FUNCTIONAL REKB APPROACH

Returning to the original requirements problem, the ex-
ample in Section II-A omitted one communication from the
stakeholder: p1: It is preferable to display text ads (GAds)
rather than charging subscriptions (GSubs). Our current
methodology [2] suggests that preferences should be dealt
with by humans in choosing between acceptable solutions
T1 and T2 to the original requirements problem, and hence
preferences will henceforth not be explicitly discussed as
part of the requirements. However, they further motivate the
need to enumerate multiple solutions.

This leads us to a view where we support a requirements
engineering knowledge base (REKB), which is used by the
problem solver as a tool for: (i) storing the information
acquired during requirements acquisition and domain mod-
eling, as well as justifying problem decomposition; and (ii)
asking a variety of questions that can help them compute
and compare alternative solutions. We emphasize that what
the problem solver does with the basic kinds of answers
received, i.e., which solutions it chooses, remain separate.
Solving the requirements problem is not the same as oper-
ations on the REKB, and answers from the REKB may, or
may not, be relevant to solutions.

To fill out this schema, we must provide details of the
capabilities of the REKB. We follow Levesque’s seminal
account of knowledge bases (KBs) [11], which starts with

an abstract data type view of KBs that hides implementation
details. We must therefore provide a) a list of operations
with their syntactic signatures, and b) an implementation-
independent specification of the effect of each operation. Of
course, this must be completed by an implementation.

As stated in [11], “the capabilities of a KB are strictly
a function of the range of questions it can answer and
assertions it can accept.” Therefore we must specify query
answering based on what has been told. The “knowledge
level” approach to specification, advocated by Levesque, is
to use logical formulas as key languages to interact with
REKB, and model theory to specify question answering. The
advantage of this approach is that to solve the requirements
evolution problem, we can choose repair engines according
to various independent criteria (e.g., speed, cost, complete-
ness), as long as they achieve the specification.

A. Operators for REKB

More precisely, when working with requirements, two
abstract families of operations are necessary: ones for
adding/modifying information of any form listed in the
requirements problem definition above; and extracting infor-
mation in the form of solutions to our problem. This requires
(several) TELL operators/languages and ASK operators and
associated languages:

TELL : REKB × Ltell → REKB
ASK : REKB × Lask → Lanswer

The basic logical language we use to express requirements
(Ltell) is quite simple: propositional Horn logic built up from
atoms. Its syntax is captured by

formula ::= atom |
(
∧n

i=1 atomi)→ atom |
(
∧n

i=1 atomi)→ ⊥

Horn clauses are sufficient for our purposes, as they
can represent Techne concepts of AND/OR decomposition
and refinement, as well as the notions of conflict. We
distinguish 3 kinds of formulas, using values from the
domain SORT = {goal, task, domain assumption}. (We
will use GOAL, TASK and DA for the set of formulas of
the respective sort.) Formulas become well-formed (wff) by
first assigning each atom a unique value from SORT, and
then, if our REKB should respect a given methodological
view, specifying how sorted implications (which are in DA)
can be assembled (e.g., no goals may imply tasks).

Finally, in order to make it easier to refer to wffs, and
represent requirements as graphs, we will attach labels λ in
front of formulas ψ, to obtain labelled wffs λ : ψ.

B. TELL operations

As usual in logic, one needs to introduce the atoms
allowable in the language. For this, we distinguish a symbol
table REKB.ST in the REKB from the collection of formulas

18

REKB.TH in it, and provide an operation for declaring new
atoms:
Operation 1 — DECLARE ATOMIC
Domain: REKB × ATOM × SORT × LABEL
Co-Domain: REKB
Effect: Add the atom to the symbol table REKB.ST, with the
appropriate sort and label.
Throws: Raise exceptions if the atom is already declared or
the label used.2

Note that a declaration just introduces a symbol – it is
not the same as asserting it to be true. The later is achieved
for any formula by:
Operation 2 — ASSERT FORMULA
Domain: REKB × WFF × SORT × LABEL
Co-Domain: REKB
Effect: Add the labelled formula to the theory REKB.TH
Throws: Gives a warning if REKB.TH becomes an inconsis-
tent theory.3

Finally, we need to be able to distinguish formulas (es-
pecially, but not exclusively goals) that are mandatory, etc.,
using
Operation 3 — ASSERT ATTITUDE
Domain: REKB × WFF LABEL × {mandatory, optional}
Co-Domain: REKB
Effect: Add to the (label of the) formula an indication of its
optative nature in the symbol table.
Throws: Raise exception if the label already has an opposite
attitude asserted.
For example, we could introduce GGenRev in Example II.1
by executing:
DECLARE ATOMIC(‘‘The system shall generate

revenue.", goal, GGenRev);

ASSERT ATTITUDE(GGenRev,mandatory);

C. UNTELL operations

As part of evolution, clearly one needs inverse operators
for DECLARE ATOMIC and ASSERT ATTITUDE, to be called
UNDECLARE and RETRACT ATTITUDE, in order to revise the
symbol table appropriately. In the case of assertions, we
only allow retracting formulas that have been previously
explicitly asserted (and hence labelled), using operation
RETRACT FORMULA(LABEL).

D. ASK operations

In any practical situation one would want to retrieve
information stored about atoms and formulas in the symbol
table REKB.ST. These operations are too numerous and
simple to warrant description.

2Exceptions leave the REKB unchanged, and provide a cleaner way to
specify special error cases than return values. We omit trivial exceptions
henceforth.

3This could be an exception if we want a particularly simple and efficient
subcase where the entire set of actions is a (non-minimal) solution.

The next two operations are meant to support standard
requirements problem solution. First, we may want to know
whether a goal can be achieved using some set of tasks based
on the domain knowledge/refinements accumulated so far in
the REKB. We use ℘(V) to represent the set of subsets of
V.

Operation 4 — ARE GOALS ACHIEVED FROM
Domain: REKB × assumeT :℘(GOAL ∪ TASK)×

concludeG :℘(GOAL)
Co-Domain: Boolean
Effect: returns true iff REKB.TH ∪ assumeT |=∧
concludeG

Throws: throws exceptions if assumeT or concludeG are
inconsistent in the sense that REKB.TH ∪ assumeT or
REKB.TH ∪ concludeG entail ⊥.

This operation supports a fine-grained exploration of what
can be achieved using specific actions or from certain sub-
goals. By itself, it does not solve the requirements problem,
but on the other hand it has a much lower computational
complexity for our DA language.

Example III.1. Using example II.2 from before,
a sample call for this operator might be
ARE GOALS ACHIEVED FROM({TRestrict, TSecure}, GGenRev),
to which the answer is TRUE. �

Operation 5 — MINIMAL GOAL ACHIEVEMENT
Domain: REKB × concludeG :℘(GOAL)
Co-Domain: ℘(℘(TASK))
Effect: returns a set that contains all sets S of tasks such
that REKB.TH∪S |=

∧
concludeG, no subset of S has this

property, and REKB.TH ∪ S is consistent.
Throws: throws exception if concludeG is inconsistent with
REKB.TH.

These answers are essentially abductive explanations of
how the goals can be achieved from the tasks[12]. In the case
when concludeG contains all mandatory goals, this provides
“candidate solutions” to the requirements problem according
to the terminology in [2].

Example III.2. A call to this operator might be MINI-
MAL GOAL ACHIEVEMENT({GGenRev}), to which the answer
is {{TTarget, TAcct, TGoogAd}, {TRestrict, TSecure}}. Which
set to choose to implement is not determined by the operator.
For example, we may choose the set with fewer members,
or we may use a cost function to determine the less costly
set. �

The above operations could have variants such as de-
faulting to the set of all tasks if assumeT is omitted, or
always including mandatory goals in concludeG. We could
also define additional operations such as ones to maximally
satisfy “attractive” requirements, or optimizing the solution
sets using objective functions such as cost or implementation
effort. Space does not permit us to treat these in sufficient

19

depth.

E. ASK operations for evolution

The following generalized operator is intended to help
find solutions to a subset of problems in incremental evolu-
tion. The distance function DIST FN could be one of the
properties Π described in Section II-B.
Operation 6 — GET MIN CHANGE TASK ENTAILING
Domain: REKB × goalsG :℘(GOAL)×

originalSoln :℘(TASK)× DIST FN
Co-Domain: ℘(℘(TASK))
Effect: Return the set of task sets S which solve REKB.TH, S
|= goalsG, and which minimize DIST FN(S, originalSoln).

Example III.3. Assume our music service implemented
{TRestrict, TSecure} from Example III.2. Some of the users
of the music service have asked for the ability to have
third-party applications (such as iTunes) connect to an
API (GAPI). To do so we must continue to exclude non-
subscribers (GSub), limit the rate of all API calls (TRate)
to minimize server load, and add a field to the database to
add API access permission (TDB).

We update our REKB with this new information: declare
atoms GAPI , TDB , TRate; assert wffs representing the re-
finement of GAPI by the two tasks, and GSub by GAPI . Fig-
ure 2 reflects the new REKB. A call for this operator might
be GET MIN CHANGE TASK ENTAILING({{GGenRev}},
{{TRestrict, TSecure}},minChange), to which the answer
is {TRestrict, TSecure, TDB , TRate}, since this solution in-
volves implementing just two new tasks, versus three for
the solution based on GAds. Other distance functions might
return different results, of course. �

All the alternatives discussed in Section II-B can ob-
viously be covered by appropriate set-theoretic distance
functions.

IV. ALGORITHMS AND COMPLEXITY

We mention briefly the most straightforward implemen-
tations (as upper bounds) and known complexity results (as
lower bounds) for implementing these operations.

The TELL and UNTELL operations are just book-keeping
ones, while ASSERT FORMULA checks whether the addition
of its argument results in REKB.TH being inconsistent.
Although in general this is an NP-complete problem, it is
well-known [13] that for Horn clauses this can be done in
time linear in the size of REKB.TH.

The ARE GOALS ACHIEVED FROM operation could again
be implemented as propositional theorem proving, but using
a proof by refutation, the ability to achieve a single goal can
be found by testing the consistency of a Horn theory, which
once again can be performed in linear time.

The MINIMAL GOAL ACHIEVEMENT operator is no longer
a propositional entailment question, since we are looking for
minimal sets of tasks that entail a goal. This is the abduction

problem. It is is much more difficult because there may be
exponentially many solutions, and even if there is only one
solution, it is known to be NP-complete to find it even for
Horn clauses (see [14] for a good summary of propositional
abduction complexity). While our experiments (below, in
§VI) show that this worst-case limit is rare, it is possible to
construct pathological examples which render the reasoning
intractable. More empirical experience will provide further
insight into the viability of the approach.

The GET MIN CHANGE TASK ENTAILING operation can be
implemented by finding all ordinary solutions (using MINI-
MAL GOAL ACHIEVEMENT), and then filtering them through
the condition DIST FN(,X0). Its cost is therefore the same
order of magnitude as MINIMAL GOAL ACHIEVEMENT since
the tests are set-theoretic operations which take polynomial
time.

V. IMPLEMENTATION

We are interested in obtaining incremental
implementations of the core problematic function,
MINIMAL GOAL ACHIEVEMENT(concludeG). We want an
incremental implementation so that the complexity of the
calculations is not repeated more than is necessary. In the
evolving requirements problem, we anticipate opportunities
for re-use of previous calculations, particularly if the change
was limited.

Our representation of REKB as sets of nodes with Horn
clauses linking them to form a graph is exactly the structure
underlying a truth maintenance system (TMS) [15], [16]. In
particular, we chose the A(ssumption-based)TMS of DeK-
leer [16]. If an explanation is a minimal set of tasks that
refine a given goal, the advantage of ATMS is that it a) pro-
vides (all) explanations for why a particular goal is believed;
b) ATMS inherently works with minimal explanations for a
given goal; c) ATMS automatically eliminate explanations
containing inconsistencies, and d) ATMS can incrementally
compute new explanations for newly added atoms or wffs.
By way of contrast, the CAKE reasoner that formed part of
the Requirements Apprentice [17] was based on the TMS of
[15]; while supporting incremental reasoning, CAKE does
not handle minimal explanations.

In an ATMS each node has associated a set of possible
explanations, in which that node is :IN (interpreted as
derivable). Explanations are the sets of assumptions which
ultimately justify that node (i.e., from which that node can
be derived from assumptions via definite Horn-rules called
justifications.) The label for a given node N will take one
of three values: if there is no justification for N , the label
is said to be empty; if the node is always :IN, i.e., it is an
assumption (in our case, a task), then the label has an empty
explanation; finally, in all other cases, the node is labelled
with explanations: all sets of assumptions for which it can
be derived :IN. Most importantly, these sets are minimal –
no nodes can be removed from such an explanation without

20

I

APIG

DBTTRateTT

i5

I i 6

I I

II

G GenRev

AdsG SubG

GoogAdTargetAccntSecureTT TTRestrict

⊥
i4

i 2

i 3

i 1

TT TTTT

Figure 2. The revised REKB from Figure 1 showing added elements.

losing the full justifications, and the sets are consistent in
the sense that no contradictions (⊥) can be derived from
them. We encode atoms in the REKB as ATMS nodes;
atoms with sort TASK become assumptions, and refinements
or contradictions become justifications and contradictions,
respectively, with a special CONTRADICTION node added
as necessary.

The ATMS provides low-level operations, for which we
leveraged existing code from [18]. However, alone it cannot
implement all operations we described in §III. We extended
the ATMS module with a module which implements the
operations we desire which are not supported in the ATMS
itself, such as consistency checks, retraction and distance
metrics between sets.

Given a call MINIMAL GOAL ACHIEVEMENT(concludeG), if
we created a super-node representing the conjunction of the
goals in concludeG, an ATMS would allow us to simply read
off the answers required. Short of that, we have to perform
operations outside the ATMS which combine the explana-
tions of the desired goals, and test them for consistency.

One problem with ATMS is that they do not normally
support retraction. Therefore, when a leaf node (task) t
is retracted, the program using the ATMS must filter out
explanations that contain t. We simulate this by storing a
Techne rule such as λ : a ∧ b → c as λ ∧ a ∧ b → c, i.e.,
by including its label as a conjunct. Then, once again, when
answering questions based on the solution provided by the
ATMS, we must filter the explanations being returned to
remove all those that contain the label of retracted rules
(since they can no longer be derived). This could cause
performance problems since the ATMS calculations seems
to grow exponentially with the number of assumptions,
and such labels act as assumptions. However, they are not
assumptions in the full sense: there is no need to minimize
their occurrence or eliminate duplicate labels in explana-
tions; also, such labels do not participate in inconsistencies.
If we therefore modify the ATMS implementation to split
explanations into two sets: one with tasks and one with rule
labels, the operations on the second sets (actually bags) are
much cheaper.

Finally, we implemented the distance mea-
sures described in §II-B in order to support
GET MIN CHANGE TASK ENTAILING.

A. Alternative implementations to consider

An ATMS is not the only implementation we could use
for the REKB.

Two additional approaches suggest themselves. One
is to implement GET MIN CHANGE TASK ENTAILING using
pseudo-Boolean minimization [19], which allows weights
to be assigned to boolean formulas, and then looks for
satisfying assignments that are maximal/minimal. This re-
quires translating the problem into full propositional logic
(capturing that the only way a goal can be true is if one
of the rules makes it true), and then allows us to request
minimal-cost assignments, corresponding to abduced sets,
by weighing task atoms.

Unfortunately, the complexity of this problem may be
even higher, and practical success depends on the precise
form of the formulas encountered.

A different, approximate approach to solutions would to
leverage the recent progress on SATisfiability testing (e.g.,
[20]), and try to find minimum-cost SAT assignments by re-
peated calls to SAT with random starts. Some SATisfiability
solvers provide mechanisms for incremental reasoning, but
stumble badly in the face of inconsistency, nor do they give
explanations for a particular set of goals.

Finally, one could forego guarantees of global optimums
in favour of speed by using search heuristics, as we reported
in [21]. In that paper we used a Tabu search approach to
identify locally optimal solutions, but without reference to
incremental changes between solutions.

VI. EVALUATION

We evaluated the ATMS implementation on large, ran-
domly generated requirements models. We examine two
empirical questions. The first concerns the size of model
this approach can tackle. The second concerns the benefits
to using an incremental algorithm for updates, to support
requirements model revision.

We first define what we consider to be reasonable perfor-
mance. Achieving consensus on this question is a perennial
problem in requirements research. Models mean different
things to different people, and there is a tension between
scaling to models with thousands of elements that are used
in some industrial settings, such as automotive product lines,
and models that are used in academic settings.

Our position is that a formal reasoning tool must handle
early requirements models with an upper size ranging in

21

the hundreds of nodes. One reason for this limit is that
comprehension of such large models is very difficult. For
example, in the industrial case study described in [22], the
models ranged in size from 100-200 nodes. Reports from the
study indicated that even at these sizes, models were very
difficult to work with. Industrial experience with the KAOS
methodology reports model sizes that were, on average,
540 goals and requirements [23]. Early requirements mod-
els are complex, and more decision- and analysis-oriented
than specification models. Working on models beyond this
range requires modularization and separation of concerns,
as argued in [24]. It would be useful to define some sample
models and model metrics for comparison purposes. Models
should be characterized in terms of overall size, branching
complexity (e.g. out-degree), number of alternatives, number
of inputs, and so on.

The source code for our experiments is available at
github.com/neilernst/Techne-TMS. The experiments were
run using (primarily) Clozure Version 1.5-r13651 on a
Macbook Pro 2.4 Ghz, with 4 GiB of RAM. There are
several opportunities for optimizing the code which we have
not yet undertaken. We created our models using a growing
network attachment model [25], where each new node is
added to an existing node with a certain probability based
on the number of existing attachments to that node. This
produced a digraph where each node had out-degree of one.
Since this seems unrealistic in a requirements model (where
lower-level requirements might refine multiple higher-level
requirements), we randomly added new edges between the
nodes. Finally, we classified some of the edges in the tree
as either alternatives or contradictions.

Nodes Tasks Contrad. Connectivity Load Time

50 30 10 5.00% 0.05s
100 66 20 2.70% 0.07s
150 100 30 1.70% 0.19s
200 131 40 1.20% 0.46s
250 162 10 0.95% 0.32s
250 166 50 0.95% 0.33s
300 200 12 0.79% 4.02s
300 195 60 0.79% 2.59s
400 265 80 0.59% 8.23s
500 335 20 0.46% 63.4s
600 398 12 0.33% 110.0s

Table I
LABEL CALCULATION TIMES FOR REQUIREMENTS MODELS USING

ATMS. CONNECTIVITY MEASURES THE MEAN PERCENTAGE OF THE
MODEL TO WHICH A NODE IS IMMEDIATELY CONNECTED.

Table I shows our experimental results on random model
permutations. There are three constraints on reasoning time.
The first is obviously the overall size of the model, in
terms of the number of nodes. The second is the number
of assumptions, or tasks, which are used. The final con-
straint is the number of connections between nodes. Our
results reflect this, with excellent performance for models

with a few hundred nodes, and declining performance as
more nodes are added. There does not seem to be any
meaningful relationship between number of contradictions
and evaluation time. Instead, the constraint is the number of
nodes and their connectivity.

We expect our reasoner to take a lengthy period of time
to initialize the model. This is a deliberate trade-off with
the benefit of being able to quickly calculate incremental
changes to the model. Consider the scenario presented in
§II-B, regarding updates to an existing requirements problem
(RP1). We show that a) adding new information to RP1 is
handled quickly; b) generating new solutions for RP2 and
comparing them to the old solutions from RP1 is quick. Our
tool therefore supports some degree of model exploration
and scenario analysis.

We evaluated our tool on three scenarios. We start with
a 400-node model, and then apply the changes described in
the scenarios. Our scenarios are:

• high-level: new mandatory goals and refinements are
added. This example has 4 new mandatory goals with
8 refinements;

• new-task: new tasks are available. Consists of 10 new
operationalizations;

• conflict: stakeholders identify more contradictions.
This example contains 15 new contradictions.

We then evaluated the performance of two operations with
these scenarios. The first operation measures how long it
takes to load the new model, either starting again or incre-
mentally; the second concerns how long it takes to answer
MINIMAL GOAL ACHIEVEMENT for some set of mandatory
goals. Here, stakeholders might be asking whether the new
updates can still produce a viable solution.

Table II shows our results. Our numbers suggest that the
incremental algorithm constitutes a clear improvement on
starting from scratch. For example, looking for alternative
solutions can be done nearly instantly, allowing stakeholders
to use our tool as a workbench for solution identification.
While the naive algorithm (adding new changes to the REKB
and re-calculating the labels) is not terribly slow, there is a
large relative difference we expect to see in larger models
as well.

The timing results for finding minimal new changes are
also nearly-instant, allowing the REKB to support interactive
decision-making.

VII. RELATED WORK

Evolving requirements models in order to handle unantic-
ipated changes can be considered requirements management.
The typical approach to manage evolution is to treat it as
the addition of new requirements, and re-calculate any eval-
uation algorithms from scratch, rather than incrementally, as
we do. A common approach is impact analysis, which can
be used to workbench different scenarios: this is used in the
AGORA tool [26].

22

Scenario Naive add (s) Incremental add (s) Min Goal Achieve (s)

high-level 1.89 0.070 0.029
new-task 2.49 0.620 0.130
conflict 1.91 0.048 0.023

Table II
INCREMENTAL OPERATIONS ON A LARGE REQUIREMENTS MODEL (N=400). NAIVE ADD IS THE TIME TAKEN TO EVALUATE THE SCENARIO PLUS THE

ORIGINAL MODEL; INCREMENTAL ADD USES INCREMENTAL SUPPORT IN THE ATMS; MIN GOAL ACHIEVE IS THE TIME IT TAKES TO IDENTIFY
THE MINIMAL TASKS TO SATISFY MANDATORY GOALS.

Traceability refers to the ability to describe and follow the
life of a requirement [27]. The approach to the evolution of
requirements described in this paper distinguishes itself from
the research on requirements traceability by its focus on
the evolution of the requirements problem and its solutions.
Applications of operators that change the REKB can be
recorded, and these recordings act as traces of changes to
the requirements problem and its solutions.

Working with existing requirements has been studied
under the domain of software product lines and feature
modeling. Evolving a single set of requirements over time
is somewhat analogous to maintaining several sets of re-
quirements for different products. There has been a number
of papers looking at the problem of automated reasoning
with feature models [28]. Most of this work is consistency
checking, that is, determining whether a given configuration
is satisfiable, and not at enumerating all solutions, like we
do here. Tun et al. [29] use problem frames to incrementally
model sets of features for a product line. Temporal logic is
used to minimize feature interaction. The chief difference
between product line approaches and our approach is our
insistence on minimizing the distance between subsequent
solutions, permitting incremental reasoning over existing
configurations.

Previous work on requirements models and abduction
has focused on using abduction for diagnosis (a related
problem), in order to derive repairs to inconsistent models
(such as [30]). Our approach leverages the ability of an
abductive framework to manage incremental updates to the
models, which are themselves consistent. Thus, we are
checking the implication relation D,T ` G and not just
the internal consistency of the requirements. Zowghi and
Offen [31] deal with evolving requirements using a revision
operator to maintain a consistent set of requirements. Re-
visions are chosen using several postulates, one of which,
like us, prefers minimal changes, and another, epistemic
entrenchment, which partially orders formulas in the REKB.
Our knowledge-level representation captures several aspects
of this while remaining agnostic, as they do, about specific
mechanisms for partially ordering formulas. Finally, we
implement and evaluate our approach using a large-scale
example.

VIII. CONCLUSIONS

The paper first recapitulated the specification of the goal-
oriented approach to stating requirements, and for judging
solutions to the requirements problem, introduced in [2].
The paper then concentrated on solving the requirements
evolution problem, when one is given an original require-
ments problem and a particular (presumably already imple-
mented) solution, as well as a new, modified version of the
requirements problem. This requirements evolution problem
focuses on reusing/modifying the previous solution. Thus
one novelty was allowing the conceptual possibility that the
solution to the new problem was no longer an (optimal)
solution in the original sense of [2]. Second, we provided a
list of intuitively reasonable potential metrics for preferring
changed solutions, showing that in fact the problem is not
likely to have a domain-independent solution. We therefore
believe that exploring the space of possible solutions to
the RE evolution problem is best done by humans with
tool support. As a result, we provided the precise formal
specification of a rather minimal (but functionally complete)
REKB to be used for this purpose. Given this specification,
the REKB we presented admits various implementations. We
then described how it was implemented on top of a reason
maintenance system (ATMS) [16], which supports desirable
features such as incrementality, removal of inconsistent
sets of actions and especially finding minimal support for
implementing goals. Since ATMS does not handle removal
of formulas, we described a technique for simulating this,
which need not impose exorbitant cost. Finally, we carried
out experiments, which showed that this implementation
does indeed find incremental solutions more efficiently.

IX. ACKNOWLEDGEMENTS

We are very grateful to John Mylopoulos for suggesting
and clarifying at crucial points the fundamental notion of
requirements evolution explored in with this paper.

REFERENCES

[1] S. Ferreira, D. Shunk, J. Collofello, G. Mackulak, and
A. Dueck, “Reducing the risk of requirements volatility:
findings from an empirical survey,” Journal of Software
Maintenance and Evolution: Research and Practice, pp. n/a–
n/a, Oct. 2010.

23

[2] I. J. Jureta, A. Borgida, N. A. Ernst, and J. Mylopoulos,
“Techne: Towards a New Generation of Requirements Mod-
eling Languages with Goals, Preferences, and Inconsistency
Handling,” in International Conference on Requirements En-
gineering, Sydney, Australia, Sep. 2010.

[3] L. Baresi, L. Pasquale, and P. Spoletini, “Fuzzy goals for
requirements-driven adaptation,” in International Conference
of Requirements Engineering, Sep 2010.

[4] I. Jureta, A. Borgida, and N. A. Ernst, “Mixed-
variable requirements roadmaps and their role in the
requirements engineering of adaptive systems,” Tech.
Rep. arXiv:1102.4178, Feb 2011. [Online]. Available:
http://arxiv.org/abs/1102.4178

[5] H. J. Levesque, “A formal treatment of incomplete knowledge
bases,” Ph.D., University of Toronto, 1981.

[6] J. Doyle, “The ins and outs of reason maintenance,” in
International Joint Conference on Artificial Intelligence, Karl-
sruhe, 1983, pp. 349–351.

[7] P. Zave and M. Jackson, “Four Dark Corners of Requirements
Engineering,” ACM Transactions on Software Engineering
and Methodology, vol. 6, pp. 1–30, 1997.

[8] L. Chung, J. Mylopoulos, and B. A. Nixon, “Representing
and Using Nonfunctional Requirements: A Process-Oriented
Approach,” Trans. Soft. Eng., vol. 18, pp. 483–497, 1992.

[9] E. Letier and A. van Lamsweerde, “Reasoning about partial
goal satisfaction for requirements and design engineering,” in
International Conference on Foundations of Software Engi-
neering. Newport Beach, CA: ACM Press, 2004, pp. 53–62.

[10] I. J. Jureta, J. Mylopoulos, and S. Faulkner, “Revisiting the
Core Ontology and Problem in Requirements Engineering,”
in International Conference on Requirements Engineering,
Barcelona, Sep. 2008, pp. 71–80.

[11] H. Levesque, “Foundations of a functional approach to knowl-
edge representation,” Artificial Intelligence, vol. 23, no. 2, pp.
155–212, Jul. 1984.

[12] H. J. Levesque, “A knowledge-level account of abduction,”
in International Joint Conference on Artificial Intelligence,
1989, pp. 1061–1067.

[13] W. Dowling and J. Gallier, “Linear-time algorithms for testing
the satisfiability of propositional horn formulae,” Journal of
Logic Programming, vol. 1, no. 3, pp. 267–284, 1984.

[14] T. Eiter and G. Gottlob, “The complexity of logic-based
abduction,” Journal of the ACM, vol. 42, no. 1, pp. 3–42,
Jan. 1995.

[15] J. Doyle, “A truth maintenance system,” Artificial Intelli-
gence, vol. 12, no. 3, pp. 231–272, Nov. 1979.

[16] J. de Kleer, “An assumption-based TMS,” Artificial Intelli-
gence, vol. 28, no. 2, pp. 127–162, Mar. 1986.

[17] H. Reubenstein and R. Waters, “The requirements apprentice:
automated assistance for requirements acquisition,” Trans.
Soft. Eng., vol. 17, no. 3, pp. 226–240, Mar 1991.

[18] K. D. Forbus and J. de Kleer, Building problem solvers.
Cambridge, MA: MIT Press, 1993.

[19] E. Boros and P. L. Hammer, “Pseudo-boolean optimization,”
Discrete Applied Mathematics, vol. 123, no. 1-3, pp. 155–225,
2002.

[20] E. Di Rosa, E. Giunchiglia, and M. Maratea, “Solving sat-
isfiability problems with preferences,” Constraints, vol. 15,
no. 4, pp. 485–515, Jul. 2010.

[21] N. A. Ernst, J. Mylopoulos, A. Borgida, and I. J. Jureta,
“Reasoning with Optional and Preferred Requirements,” in
International Conference on Conceptual Modelling, Vancou-
ver, Nov. 2010, pp. 118–131.

[22] S. M. Easterbrook, E. S. Yu, J. Aranda, Y. Fan, J. Horkoff,
M. Leica, and R. A. Qadir, “Do viewpoints lead to better
conceptual models? An exploratory case study,” in Interna-
tional Conference on Requirements Engineering, 2005, pp.
199–208.

[23] A. van Lamsweerde, “Goal-oriented requirements enginering:
a roundtrip from research to practice,” in International Con-
ference on Requirements Engineering, 2004, pp. 4–7.

[24] A. Fuxman, L. Liu, J. Mylopoulos, M. Roveri, and
P. Traverso, “Specifying and analyzing early requirements in
Tropos,” Requirements Engineering J., vol. 9, pp. 132–150,
2004.

[25] P. Krapivsky and S. Redner, “Organization of growing random
networks,” Physical Review E, vol. 63, no. 6, p. 066123, May
2001.

[26] D. Tanabe, K. Uno, K. Akemine, T. Yoshikawa, H. Kaiya,
and M. Saeki, “Supporting requirements change management
in goal oriented analysis,” in International Conference on
Requirements Engineering, Barcelona, 2008, pp. 3–12.

[27] O. Gotel and A. Finkelstein, “An analysis of the require-
ments traceability problem,” in International Conference on
Requirements Engineering, Colorado Springs, 1994, pp. 94–
101.

[28] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated
analysis of feature models 20 years later: A literature review,”
Information Systems, vol. 35, no. 6, pp. 615–636, Sep. 2010.

[29] T. T. Tun, T. Trew, M. Jackson, R. Laney, and B. Nuseibeh,
“Specifying features of an evolving software system,” Soft-
ware: Practice and Experience, vol. 39, no. 11, pp. 973–1002,
2009.

[30] T. Menzies, S. M. Easterbrook, B. Nuseibeh, and S. Waugh,
“An empirical investigation of multiple viewpoint reasoning
in requirements engineering,” in International Conference on
Requirements Engineering, Limerick, Ireland, Jun. 1999, pp.
100–109.

[31] D. Zowghi and R. Offen, “A logical framework for modeling
and reasoning about the evolution of requirements,” in Inter-
national Conference on Requirements Engineering, 1997, pp.
247–257.

24

