
M. Kolp et al. (Eds.): AOIS 2005, LNAI 3529, pp. 184 – 199, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Formalizing Agent-Oriented Enterprise Models

Ivan Jureta1, Stéphane Faulkner1, and Manuel Kolp2

1 Information Management Research Unit, University of Namur,
8 Rempart de la vierge, B-5000 Namur, Belgium

{ivan.jureta, stephane.faulkner}@fundp.ac.be
2 Information System Research Unit, University catholic of Louvain,

1 Place des doyens, B-1348 Louvain-la-Neuve, Belgium
kolp@isys.ucl.ac.be

Abstract. This paper proposes an agent-oriented metamodel that provides
rigorous concepts for conducting enterprise modelling. The aim is to allow
analysts to produce an enterprise model that precisely captures the knowledge
of an organization and of its business processes so that an agent-oriented
requirements specification of the system-to-be and its operational corporate
environment can be derived from it. To this end, the model identifies constructs
that permit capturing the intrinsic characteristics of an agent system such as
autonomy, intentionality, sociality, identity and boundary, or rational self-
interest; an agent being an organizational actor and/or a software component.
Such an approach of the concept of agent allows the analyst to have a holistic
perspective integrating human and organizational aspects to gain better
understanding of business system inner and outer modelling issues. The
metamodel has roots in both management theory and requirements engineering.
It helps to bridge the gap between enterprise and requirements models
proposing an integrated framework, comprehensive and expressive to both
managers and software (requirements) engineers.

1 Introduction

Business analysts and IT managers have advocated these last fifteen years the use of
enterprise models to specify the organizational and operational environment (outer
aspects of the system) in which a corporate software will be deployed (inner aspects
of the system) [1]. Such a model is a representation of the knowledge an organization
has about itself or of what it would like this knowledge to be. This covers knowledge
about functional aspects of operations that describe what and how business processes
are to be carried out and in what order; informational aspects that describe what
objects are to be processed; resource aspects that describe what or who performs these
processes according to what policy; organizational aspects that describe the
organizational architecture within which processes are to be carried out; and, finally,
strategic aspects that describe why processes must be carried out. The specification
of these key aspects of the core business of an enterprise is an effective tool to
consider for gathering and eliciting software requirements. It may be used to [2, 3]:

 Formalizing Agent-Oriented Enterprise Models 185

− analyse the current organizational structure and business processes in order to
reveal problems and opportunities;

− evaluate and compare alternative processes and structures;
− achieve a common understanding and agreement between stakeholders (e.g.

managers, owners, workers) about different aspects of the organization;
− reuse knowledge available in the organization.

This paper proposes an integrated agent-oriented metamodel for enterprise
modelling. The agent paradigm is a recent approach in software engineering that
allows developers to handle the lifecycle of complex distributed and open systems
required to offer open and dynamic capabilities in the latest generation enterprise
software (see e.g. [4]).

The proposed metamodel takes inspiration from research works in requirements
engineering frameworks (see e.g. [5-6]), management theory concepts found to be
relevant for enterprise modelling (see e.g. [7-9]) and agent-oriented software
engineering (see e.g. [4]). It leads to the reduction of the semantic gap between
enterprise and requirements representations, providing a modelling tool that integrates
the outer specification of the system together with its inner specification. Our
proposal implicitly suggests a holistic approach to integrate human and organizational
issues and gain better understanding of the representation of business processes and
organizations representation. To this end, we introduce new concepts to enterprise
modelling, related to authority, power and interest.

The rest of this paper is organized as follows. Section 2 describes the main
concepts of our metamodel. Sections 3 and 4 detail some elements of the metamodel
using the Z specification langage and discuss their relevance for enterprise modelling.
Section 5 gives an overview of related works and Section 6 summarizes the results
and points to further work.

2 An Agent-Oriented Enterprise Metamodel

The motivation of our proposal is to understand precisely the semantics of the
organizational environment of the system and to produce an agent-oriented
requirements specification for the software to build. The framework described in this
section provides modelling constructs that permit the representation of the autonomy,
intentionality, sociality, identity and boundary, as well as the rational self-interest of
actors, i.e. agents in the real world and/or software agents. Actors are autonomous as
their behaviour is not prescribed and varies according to their dependencies, personal
goals and capabilities. They are intentional since they base their actions and plans on
beliefs about the environment, as well as on goals they have to achieve. Being
autonomous, actors can exhibit cooperative behaviour, resulting from similar goals
and/or reciprocal dependencies concerning organizational roles they assume. The
dependencies can either be direct or mediated by other organizational roles. Actors
can have competing goals, which lead to conflicts that may result from competing use
of resources. Actors have varying power and interest in the ways in which
organizational goals contribute to their personal ones. Boundary and identity are
closely related to power and interest of actors. We model variations in boundary and

186 I. Jureta, S. Faulkner, and M. Kolp

identity as resulting from changes in power and interest since these vary with respect
to the modifications in the roles an actor assumes and the dependencies involving
these roles. Actors can act according to their self-interest, as they have personal goals
to achieve. They have varying degrees of motivation to assume organizational roles,
according to the degree of contribution to personal goals these roles have in achieving
organizational ones. Actors apply plans according to the rationale described in terms
of personal, organizational goals and capabilities. The rationale of our actors is not
perfect, but bounded [10-11], since they can act based on beliefs that are incomplete
and/or inconsistent with reality. We provide constructs such as AndOr relationships,
non-functional requirements [4] etc. to evaluate alternative deployments of the
software in the organizational environment.

Actor
Cooperate

with

0:N

0:N

Belief

Follow

Object

IsA

Organizational
Role

Occupy

1:N

1:N

0:N

0:N

CapabilityPossess

Authority on

1:N

1:N

1:N 1:N

Require

Dependum

Organizational
Goal

 ResponsibleControl

1:N

1:N

0:N

1:N

IsA

Depend

1:N

0:N

Resource

Assign to

IsA

0:N

1:1

Legal Entity

IsA

Software Agent

IsA

Personal Goal

Pursue

1:N

1:N

Plan
1:N

Action

1:N

Output

Input
1:N 1:N

1:N 1:N

Event

Is
A

Operational
Goal

Softgoal

Fulfil Contribute

0:N

0:N
0:N

0:N

Goal

Is
A

IsA

IsA

IsA

Refine

0:N

0:N

IsA

IsA

Requirement Expectation

IsA

Is
A

Conflict

Concern

0:N
0:N

0:N

0:N

Authorization

IsA
Resolve

0:N

0:N

Concern

: Binary relationship

: IsA relationship

: AndOr relationship

Legend

: Composition relationship

Fig. 1. The agent-oriented metamodel

 Formalizing Agent-Oriented Enterprise Models 187

Fig. 1 introduces the main entities and relationships of our metamodel. For clarity,
we have subdivided it into five sub-models:

• Organizational sub-model, describing the actors of the organization, their
organizational roles, responsibilities and capabilities.

• Goals sub-model, describing enterprise and business process purposes, i.e. what the
actors are trying to achieve and why.

• Conflict sub-model, indicating inconsistencies in the business process.
• Process sub-model, describing how actors achieve or intend to achieve goals.
• Objects sub-model, describing non-intentional entities and assumptions about the

environment of the organization and the business processes.

Due to a lack of space, the paper only details the organizational and goal sub-
models, their integration and discusses their relevance for enterprise modelling. We
first sketch the metamodel from the point of view of system developers and of
organization managers.

2.1 Information System Development Perspective

The metamodel provides widely-used constructs for specifying the architecture of an
agent-oriented information system: Actors are agents of the system. They possess
Capabilities composed of Plans, each Plan representing a sequence of atomic
Actions. When applying Plans, Actors fulfil or contribute to system Goals. Actors
follow Beliefs which represent assertions about aspects of the organization and/or its
environment. Actions can take Objects as input from the system or its environment.
New Objects can be produced or existing ones modified by carrying out Actions, i.e.
they can be output from Actions. Objects represent any thing of interest for the
system: Resources, Beliefs, Authorizations or Events.

2.2 Management Perspective

The metamodel provides common terms used to describe an organization.
Organizational Roles are responsible of Organizational Goals, which may be either
Operational (i.e. can be actually fulfilled) or Softgoals (such as e.g. broadly specified
business objectives). Organizational Roles can depend on one another for the
provision of Dependums - Actions, Objects, or Organizational Goals. An Actor, being
a Human Actor or a Software Agent, can occupy Organizational Roles, as long as it
possesses the required Capabilities to do so. Actors exhibit intentional behaviour
since they act according to Goals and Beliefs about their environment. Since Beliefs
may be incoherent, and as they pursue Personal Goals, Actors can exhibit competitive
behaviour. They will exhibit cooperative behaviour when they are responsible of
identical Organizational Goals. Actors execute Plans, composed of Actions, in order
to fulfil and contribute to Goals. By doing so, they comply with the responsibilities of
Organizational Roles they occupy. As a matter of organizational policy, Resources in
the organization are assigned to Organizational Roles. The allocation of Resources is
determined by both authority among Organizational Roles and Authorizations that
may be input or output of specific Actions.

188 I. Jureta, S. Faulkner, and M. Kolp

Common ground between both points of view resides in the sense that the
information system can be developed to automate some (part of) business processes
(e.g. administrative tasks) or to radically modify ways in which Goals are fulfilled
(e.g. reorganizing customer relationship management by deploying e-commerce
facilities). The model provides an unambiguous representation serving both software
staff and organization strategic management.

Primitives of our framework are of different types: meta-concepts (Goal, Actor,
Object etc.), meta-relationships (possess, require, pursue etc.), meta-attributes
(Power, Interest, Motivation etc.) and meta-constraints (e.g. “an actor occupies a
position if that actor possesses all the capabilities required to occupy it”).

All meta-concepts, meta-relationships and meta-constraints have the following
mandatory meta-attributes:

− Name, which allows unambiguous reference to the instance of the meta-concept
(e.g. “European Commission” for the Actor meta-concept).

− Description, which is a precise and unambiguous description of the corresponding
instance of the meta-concept. The description should contain sufficient information
so that a formal specification can be derived for use in requirements specifications
for a future information system.

Fig.1 shows only meta-concepts and meta-relationships. Meta-attributes and meta-
constraints are specified in the next sections using the Z state-based specification
language [12, 13]. We use Z since it provides sufficient modularity, abstraction and
expressiveness to describe in a consistent, unified and structured way an agent-
oriented IS and the wider context in which it is used. It has a pragmatic approach to
specifications by allowing a clear transition between specification and implementation
of software [13]. In addition, it is widely accepted in the software development
industry and has been used in large-scale projects.

3 Organizational Sub-model

The Organizational sub-model is used to identify the relevant Actors of the
organization, the Organizational Roles they occupy, the Capabilities they possess and
the Dependum for which Actors depend on one another.

3.1 Actor

Fig. 2 shows the Z formal specification of the Actor concept. The first part of the
specification represents the definition of types. A given type defines a finite set of
items. The Actor specification first defines the type Name (which represents the Name
attribute) by writing [Name]. Such a declaration introduces the set of all names,
without making assumptions about the type (i.e. whether the name is a string of
characters and numbers, or only characters, etc.). Note that the type Actor_Type is
defined as being either a Human_Actor or a Software_Agent. Defining types in such way
indicates either that further detail about the type would not add significant descriptive
power to the specification or that a more elaborate internal representation is not
required.

 Formalizing Agent-Oriented Enterprise Models 189

More complex and structured types are defined with schemata. A schema groups a
collection of related declarations and predicates into a separate namespace or scope.
The schema in Fig. 2 is entitled Actor and is partitioned by a horizontal line into two
sections: the declaration section above and the predicate section below the line. The
declaration section introduces a set of named, typed variable declarations. The
predicate section provides predicates that constrain values of the variables, i.e.
predicates are used to represent constraints. In order to clarify the Z formal
specifications of the concepts, we will refer in the text to specific Z schema predicates
by using identifiers placed left of the schema in the form e.g. “(c1)” to refer to
predicate, i.e. constraint (c1) of the schema.

 [Name]
[Informal_Definition]
[Actor_Type]:= Human_Actor | Software_Agent
[Organizational_Role]
[Goal]
[Interest_Value]
[Power_Value]

Actor

 name : Name

description : Informal_Definition
isa : Actor_Type
occupy : set Organizational_Role
possess : set Capability
has : set Belief
own : set Resource
pursue : set Goal
interest : Interest_Value
power : Power_Value

(c1)

(c2)

(occupy ≠ ∅) ∧ (possess ≠ ∅) ∧ (pursue ≠ ∅)

(∀ act: Actor) act.isa = Human_Actor ⇒ act.interest ≠ ∅ ∧ act.power ≠ ∅

Fig. 2. Formal specification of the Actor concept

An Actor applies Plans (which are part of his Capabilities) to fulfil and/or
contribute to Organizational Goals for which the Organizational Role he/she
occupies is responsible and Personal Goals he/she pursues (i.e. wishes to achieve).
As the Actor exists in a changing environment, it follows Beliefs about the
environment in order to adapt its behaviour to environmental circumstances.

An Actor is either a Human Actor or a Software Agent. A Human Actor is used to
represent any person, group of people, organizational units or other organizations that
are significant to the organization we are modelling, i.e. that have an influence on its
resources, its goals etc. A Software Agent is used to represent a software component

190 I. Jureta, S. Faulkner, and M. Kolp

of an information system(-to-be). An Actor can cooperate with another Actor to fulfil
and/or contribute to Organizational Goals common to the Organizational Roles that
each of these Actors occupies.

Besides standard meta-attributes, a Human Actor is characterized with two specific
meta-attributes: Interest and Power. Interest is the degree of satisfaction of an actor to
see Organizational Goals positively contributing to its Personal Goals. Power is the
degree to which the actor is able to modify the objectives of the organization or its
business processes through its Capabilities. For instance, when automating a business
process, the values of Interest and Power meta-attributes of Human Actors change: in
the new configuration of the process, some actors will gain decision power while
maintaining the same level of interest; others that previously benefitted from high
power in the initial process structure might become less powerful. It is crucial to take
these changes into account when eliciting software requirements. It may lead
otherwise to introducing Goals not identified during the initial requirements analysis,
and/or changing Priority of already specified Goals. Interest and Power help to find
Human Actors that will play a crucial role in the software-to-be. For example, focus
in some business process might shift to Human Actors that were not considered very
significant during the inception phase and whose needs were not specified in depth.
This would result in that these now crucial processes would not be fully exploited and
would lead to the overall failure of the requirements specification efforts.

3.2 Organizational Role

An Organizational Role is an abstract characterization of expected behaviour of an
Actor within some specified context of the organization. An Actor can occupy
multiple roles and a role can be occupied by multiple Actors.

From an agent orientation perspective, Organizational Roles provide the building
blocks for agent social systems and the requirements by which agents interact. The
concept of Organizational Role is important to abstractly model the agents in multi-
agent systems and helpful to manage its complexity without considering the concrete
details of agents (e.g. implementation architectures and technologies).

Fig. 3 shows the Z formal specification of the Organizational Role concept. Each
Organizational Role requires a set of Capabilities to fulfil or contribute to
Organizational Goals for which it is responsible. An Actor can occupy the
Organizational Role only if it possesses the required Capabilities (c4)1. In addition to
entering Organizational Roles, Actors should be able to leave roles at runtime. The
attribute Leave Condition is used to specify the Belief that has to be true in order for
the Actor to leave the Organizational Role (c5).

Organizational Roles are responsible for Organizational Goals (c6) and can
control their fulfilment. In case an Organizational Goal has been fulfilled, the Actor,
occupying the Organizational Role that controls that Goal, executes a Plan in which
an Action outputs a new Belief to mark the goal fulfilment (c7). This control
procedure requires that a single Actor can never occupy distinct Organizational Roles
that are responsible of and control the fulfilment of the Organizational Goal (c8).

1 To clarify the formal specifications, we embed the comments on predicates between two “//”

signs.

 Formalizing Agent-Oriented Enterprise Models 191

 [Goal_Control_Status]:= Fulfilled | Unfulfilled
[Belief]

 Organizational Role

 name : Name

description : Informal_Definition
require : set Capability
leave_condition: set Belief
responsible : set Goal
control : set (Organizational_Goal, Goal_Control_Status)
authority_on : set Organizational_Role

(c3)

 (c4)

(c5)

(c6)

 (c7)

 (c8)

 (require ≠ ∅) ∧ (leave_condition ≠ ∅) ∧ (responsible ≠ ∅)

(∀ act: Actor; r: Organizational_Role)
r ∈ act.occupy ⇒ r.require ⊂ act.possess

//An Actor act that occupies the Organizational Role r possesses the Capabilities
required by the Organizational Role r.//

(∀ act: Actor ; r: Organizational_Role)

act.has ⊂ r.leave_condition ⇒ r ∉ act.occupy
//If the Leave Condition is true, than the Actor act no longer occupies the
Organizational Role r.//

(∀ r: Organizational_Role ; g: Goal)

 g ∈ r.responsible ⇒ g.sec_isa = Organizational_Goal
//If Organizational Role r is responsible of Goal g, then g is an Organizational
Goal.//

(∀ r: Organizational_Role; g: Goal)
(g.prim_isa = Operational_Goal ∧ g.sec_isa = Organizational_Goal
∧ g ∈ r.control ∧ g.status = Fulfilled)
⇒ (∃ b!: Belief) (g.status = Fulfilled) ∈ b.term ∧ (g, Fulfilled) ∈ r.control)

//If an Organizational Operational Goal g is fulfilled, then the Organizational Role r
which controls the fulfilment of g outputs a new Belief b which indicates that the
Goal g has been fulfilled.//

(∀ r1, r2: Organizational_Role ; g: Goal ; a1, a2: Actor)
(g.sec_isa = Organizational_Goal ∧ g ∈ r1.responsible ∧ g ∈ r2.control ∧ r1 ≠
r2 ∧ r1 ∈ act.occupy ∧ r2 ∈ act.occupy) ⇒ a1,≠ a2
//There can be no Actor a which occupies both the Organizational Role r1 which is
responsible for Organizational Goal g, and the Organizational Role r2 which controls
the fulfilment of Organizational Goal g.//

Fig. 3. Formal specification of the Organizational Role concept

Organizational Roles can have different levels of authority. Consequently, an
Organizational Role can have authority on other Organizational Roles. The authority
on relationship specifies the hierarchical structure of the organization. For instance, in
the context of multi-agent systems, it can be used to define security policies that differ
according to authority attributed to software agents.

192 I. Jureta, S. Faulkner, and M. Kolp

3.3 Capability

A Capability specifies the behaviours that Organizational Roles should have in order
to be responsible for or to control their Organizational Goals. An Actor possesses
Capabilities. The formal specification in Fig. 4 shows that a Capability can be
structured as a set of Plans and/or other Capabilities. This increases system
modularity since libraries of capabilities can be built up and then combined to provide
complex functionalities.

When exploring possible alternative business processes or organizational
structures, newly identified Organizational Roles can require Capabilities that no
Actor possesses. These Capabilities have to be confronted to those available in the
organization (Capabilities that the Actors possess, see (c10)), in order to evaluate the
proposed alternatives with respect to the current Roles and the way they use existing
Capabilities. This is significant to determine which and how the proposed Capabilities
and Roles will be finally introduced through the system-to-be. The availability of a
Capability is formally expressed through the availability attribute, as indicated in the
Capability schema.

 [Cap_Atom]:= Plan | Capability
[Cap_Availability]:= Available | Unavailable

 Capability

 name : Name

description : Informal_Definition
composed_of : set Cap_Atom
availability : Cap_Availability

(c9)

 (c10)

 composed_of ≠ ∅

(∀ cap: Capability)
∃ act: Actor ; cap ∈ act.possess ⇒ cap.availability = available
//If there is some Actor act that possesses Capability cap, then cap is available.//

Fig. 4. Formal specification of the Capability concept

3.4 Dependum

An Organizational Role depends on another Organizational Role for a Dependum, so
that the latter may provide the Dependum to the former. A Dependum can be an
Organizational Goal, an Object or an Action. In the depend meta-relationship, the
Organizational Role that depends on is called the depender and the Organizational
Role being depended upon is called the dependee.

We define the following dependency types:

• Organizatonal Goal-dependency: the depender depends on the dependee to fulfil
and/or contribute to an Organizational Goal. The dependee is given the possibility
to choose Plans through which it will fulfil and/or contribute to the Organizational
Goal.

 Formalizing Agent-Oriented Enterprise Models 193

• Action-dependency: The depender depends on the dependee to accomplish some
specific Action.

• Object-dependency: The depender depends on the dependee for the availability of
an Object.

 [Dependum_Type]:= Organizational_Goal | Object | Action

 Dependum

 name : Name

description : Informal_Definition
type : Dependum_Type
depender : set Organizational_Role
dependee : set Organizational_Role

(c11)

 (c12)

(c13)

(c14)

 (type ≠ ∅) ∧ (depender ≠ ∅) ∧ (dependee ≠ ∅)

(∀ d: Dependency ; dpd: Dependum ; r1, r2: Organizational_Role)
r1≠ r2 ∧ (d ≡ r1 × dpd × r2) ⇒ (depender = r2 ∧ dependee = r1)

(∀ d: Dependency ; dpd: Dependum ; r1, r2: Organizational_Role) r1≠ r2 ∧
(d ≡ r1 × dpd × r2) ∧ (dpd.type = Authorization) ⇒ r1 ∈ r2.authority_on
//If the Dependum is an Authorization, then Dependee r2 has authority on Depender
r1.//

(∀ obj: Object ; a1, a2: Actor ; cap1, cap2: Capability ; pl1, pl2: Plan ; actn1,
actn2: Action ; r1,r2: Organizational_Role)
(a1 ≠ a2 ∧ cap1 ≠ cap2 ∧ pl1 ≠ pl2 ∧ actn1 ≠ actn2 ∧ (actn1 ∈ pl1.composed_of
∧ pl1 ∈ cap1.composed_of ∧ cap1 ∈ a1.possess) ∧ (actn2 ∈ pl2.composed_of
∧ pl2 ∈ cap2.composed_of ∧ cap2 ∈ a2.possess) ∧ obj ∈ actn1.postcondition
∧ obj ∈ actn2.input ∧ r1 ∈ a1.occupy ∧ r2 ∈ a2.occupy ∧ {r1,r2} ∉ {a1.occupy ∩
a2.occupy}) ⇔ (∃ dm: Dependum ∧ dm.type = Object ∧ dm.name =
obj.name ∧ dm.depender = r2 ∧ dm.dependee = r1)
//Suppose that there are two different Actors a1 and a2 that respectively occupy two
different Organizational Roles r1 and r2. These Actors possess respectively two
different Capabilities cap1 and cap2, which respectively contain distinct Plans pl1
and pl2. These plans enable them to execute respectively the distinct Actions actn1
and actn2. If Action actn1 has Object obj in its postcondition, and Action actn2
outputs obj, then Organizational Role r2 depends on the Organizational Role r1 to
provide the Object obj.//

Fig. 5. Formal specification of the Dependum concept

Object dependency allows us to represent any specialization of the Object concept as
a Dependum. For example, an Organizational Role r1 might depend on another
Organizational Role r2 for an Authorization. This has implications on the authority on
relationship, as this dependency means that r2 must have authority on r1 (c13).

The constraint (c14) in Fig. 5 shows that the existence of an Object Dependum
among Organizational Roles has implications on the Input and Postcondition of
Actions accomplished by Actors that occupy these Organizational Roles. This

194 I. Jureta, S. Faulkner, and M. Kolp

constraint provides a mapping rule between depend and input/output relationships. Its
interest (c14) is twofold:

• If we know Object dependencies existing among several organizational roles, we
can derive the activity diagram and the collaboration diagram (such as the ones in
UML) without difficulties: actions that are related by dependencies (through their
respective inputs/outputs) can be either sequential or parallel, which is sufficient
to define the activity diagram. In addition, we know the actors that need to execute
actions, as we know the organizational roles involved in dependencies.

• If we know the sequence of activities in a process, we can derive the dependencies
among roles that participate in the realization of the process. Dependencies can
then be analysed for vulnerabilities and alternative process structures can be
evaluated.

This is an important difference of our approach compared to i* [5]: we can use the
link established between dependencies and actions in e.g. analyzing simultaneously
the dependencies among organizational roles and the behavioural aspects of the
process being analysed in terms of sequence of actions that compose it. This
constraint makes it possible to combine the strengths of the i* dependency
representation, notably in terms of strategic dependency analysis among the process’
organizational roles, with the analysis of the realization of the process as a series of
sequential and/or parallel actions, that can be realized using e.g. UML activity and
collaboration diagrams or scenario-based approaches.

4 Goals Sub-model

A Goal describes a desired or undesired state of the environment. The environment is
the context in which actors live and interact with other actors. A state of the
environment is described through the states of Objects (Beliefs, Resources etc.).

In addition to standard attributes, a Goal is characterized by the optional Priority
attribute [14], which specifies the extent to which the goal is optional or mandatory.
The values and the measurement of priority are domain specific.

To support qualitative and formal reasoning about goals, we classify them along
two axes: Operational Goals vs. Softgoals and Organizational Goals vs. Personal
Goals. In addition, we use patterns to specify the temporal behaviour of Goals. These
classifications are treated in more detail below.

Operational Goal vs. Softgoal. An Operational Goal describes a desired or undesired
state of the environment that can be achieved by applying Plans. An Operational Goal
has been fulfilled if the state of the environment described by the Operational Goal has
been achieved by a Plan. An Operational Goal has State and Status optional attributes
(see Fig. 6). State describes the state of the environment in which the Operational Goal
is fulfilled (c15). Status indicates whether the State of the Operational Goal has been
achieved, i.e. whether the Goal has been fulfilled or not (c16).

A Softgoal also describes a desired or undesired state of environment, but its
fulfilment criteria (i.e. how to achieve the desired state) may not be formally
specified. A consequence of this is that Plans that are otherwise applied to fulfil

 Formalizing Agent-Oriented Enterprise Models 195

 [Primary_Goal_Type]:= Operational_Goal | Softgoal
[Secondary_Goal_Type]:= Organizational_Goal | Personal_Goal
[Org_Goal_Type]:= Requirement | Expectation
[Goal_Pattern]:= Achieve | Cease | Maintain | Avoid
[Object]:= Resource | Authorization | Belief | Event
[Goal_Status]:= Fulfilled | Unfulfilled
[Refinment_Alternative]
[Priority_Value]

 [Conflict]

 Goal

 name : Name

description : Informal_Definition
prim_isa : Primary_Goal_Type
sec_isa : Secondary_Goal_Type
org_isa : Org_Goal_Type
pattern : Goal_Pattern
state : set Object
status : Goal_Status
refined_by : set Refinement_Alternative
priority : Priority_Value
resolve : set Conflict

(c15)

(c16)

(c17)

(c18)

 (c19)

(c20)

(∀ g: Goal) g.prim_isa = Operational_Goal ⇒ g.state ≠ ∅
//If Goal g is an Operational Goal, then g must have a specified state, i.e. the
environment in which g is fulfilled must be specified as a set of Objects.//

(∀ g: Goal) g.prim_isa = Operational_Goal ∧ ∃ oset = {ob1,…,obn : Object} ∧
g.state ⊆ oset ⇒ g.status = Fulfilled
//If there is a set of Objects oset, such that the state of Goal g is a subset of oset,
then g is fulfilled.//

(∀ g: Goal) g.sec_isa = Organizational_Goal ⇔ g.org_isa ≠ ∅
//If the Goal g that is an Organizational Goal, then g must be either a Requirement
or an Expectation.//

(∀ g: Goal; r: Organizational_Role ; act: Actor)
(g.sec_isa = Organizational_Goal ∧ r ∈ act.occupy ∧ g ∈ r.responsible ∧
act.isa = Software_Agent) ⇒ g.org_isa = Requirement
//An Organizational Goal g is a Requirement if there is some Software Agent Actor
act which occupies the Organizational Role r which in turn is responsible for g.//

(∀ g: Goal; r: Organizational_Role ; act: Actor)
(g.sec_isa = Organizational_Goal ∧ r ∈ act.occupy ∧ g ∈ r.responsible ∧
act.isa = Human_Actor) ⇒ g.org_isa = Expectation
//An Organizational Goal g is an Expectation, if there is a Human Actor act which
occupies an Organizational Role r which in turn is responsible for g.//

(∀ g: Goal) g.sec_isa ≠ Organizational_Goal ⇒ g.resolve = ∅
//If Goal g is not an Organizational Goal, then g cannot resolve Conflicts.//

Fig. 6. Formal specification of the Goal concept

196 I. Jureta, S. Faulkner, and M. Kolp

Operational Goals can only contribute (positively or negatively) to Softgoals. For
example, “increase customer satisfaction” and “improve productivity of the
workforce” are Softgoals.

Organizational Goal vs. Personal Goal. An Organizational Goal describes the state
of the environment that should be achieved by cooperative and coordinated behaviour
of Actors. An Organizational Goal is either a Requirement or an Expectation (c17). A
Requirement is an Organizational Goal under the responsibility of an Organizational
Role occupied by a Software Agent (c18). An Expectation is an Organizational Goal
under the responsibility of an Organizational Role occupied by a Human Actor (c18).
This distinction between a requirement of the information system and the expectation
of its human users contributes to the successful accomplishment of a process that
generally involves interaction among them. Organizational Goals can solve Conflicts
(c20) by specifying the state of the environment in which the Conflicts cannot be true.

A Personal Goal describes the state of the environment that an Actor pursues
individually (i.e. without cooperative and coordinated behaviour). It can require
competitive behaviour with other Actors.

We distinguish what is expected from the participation of the Actor in the process
(through the Organizational Role it occupies) from what the Actor expects from its
participation in the process (fulfilment of or contribution to its Personal Goals). In
reality, consistency between the Organizational Goals and Personal Goals is not
necessarily ensured. Consequently, it is important to reason about Conflicts that may
arise between Personal and Organizational Goals, as well as about the degree to
which an Organizational Goal assists in the pursuit of Personal Goals.

Temporal Behaviour of Goals. A behavioural pattern is associated with each Goal.
The possible patterns are: achieve, cease, maintain and avoid [6]. For example,
organizations tend to avoid “conflict of interest” (Softgoal) and achieve “replenish
stock” (Operational Goal). When we associate a pattern to a Goal, we restrict the
possible behaviour of the Actors concerning the Goal: achieve and cease generate
behaviour, whereas maintain and avoid restrict behaviour.

5 Related Works

Process-oriented approaches such as Activity Diagrams, DFDs, IDEF0, workflows
(see e.g. [11, 15-17]) describe an enterprise’s business processes as sets of activities.
Strong emphasis is put on the activities that take place, the order of activity
invocation, invocation conditions, activity synchronization and information flows.
Among these approaches, workflows have received considerable attention in the
literature. In such a process-oriented approaches, agents have been treated as a
computational paradigm, with a focus on the design and implementation of agent
systems, not on the analysis of enterprise models.

Actor-oriented approaches emphasize the analysis and specification of the role of
the actors that participate in the process [18]. The i* modelling framework [5] has
been proposed for business process modelling and reengineering. Processes, in which
information systems are used, are viewed as social systems populated by intentional

 Formalizing Agent-Oriented Enterprise Models 197

actors that cooperate to achieve goals. The framework provides two types of
dependency models: a strategic dependency model used for describing processes as
networks of strategic dependencies among actors and the strategic rationale model
used to describe each actor’s reasoning in the process, as well as to explore alternative
process structures. The diagrammatic notation of i* is semi-formal and has proved
useful in requirements elicitation (see e.g. [8, 19-20]). In this context, actor-oriented
approaches provide significant advantages over other approaches: agents are
autonomous, intentional, social etc. [4], which is of particular importance for the
development of open distributed information systems in which change is ongoing.
However, actors have served mostly as requirements engineering modelling
constructs for real-world agents, without assuming the use of agent software as the
implementation technology nor the use of organizational actors for enterprise
modelling.

Goal-oriented approaches focus on goals that the information system or a business
process should achieve. Frameworks like KAOS [6, 21] provides a formal
specification language for requirements engineering, an elaboration method and meta-
level knowledge used for guidance while the method is applied [22]. The KAOS
specification language provides constructs for capturing the various types of concepts
that appear during requirements elaboration. The elaboration method describes steps
(i.e. goal elaboration, object capture, operation capture etc. [22]) that may be followed
to systematically elaborate KAOS specifications. Finally, the meta-level knowledge
provides domain-independent concepts that can be used for guidance and validation in
the elaboration process.

Enterprise Knowledge Development (EKD) [18] is used primarily in modelling of
business processes of an enterprise. Through goal-orientation, it advocates a closer
alignment between intentional and operational aspects of the organization and links
re-engineering efforts to strategic business objectives. EKD describes a business
enterprise as a network of related business processes, which collaboratively realize
business goals. This is achieved through several sub-models: an enterprise goal sub-
model (expressing the causal structure of the enterprise), an enterprise process sub-
model (representing the organizational and behavioural aspects of the enterprise) and
an information system component sub-model (showing information system
components that support the enterprise processes) [18]. Agents appear in the EKD
methodology but without explicit treatment of their autonomy and sociality [4]. In
KAOS, agents interact with each other non-intentionally, which reduces the benefits
of using agents as modelling constructs.

6 Conclusion

Modelling the organizational and operational context within which a software system
will eventually operate has been recognized as an important element of the
engineering process (e.g. [1]). Such models are usually founded on primitive concepts
such as those of actor and goal. Unfortunately, no specific enterprise modelling
framework really exists for engineering modern corporate IS. This paper proposes an
integrated agent-oriented metamodel for enterprise modelling. Moreover, our
approach differs primarily in the fact that it is founded on ideas from in requirements

198 I. Jureta, S. Faulkner, and M. Kolp

engineering frameworks, management theory concepts found to be relevant for
enterprise modelling and agent oriented software engineering.

We have only discussed here the concepts that we consider the most relevant at this
stage of our research. Further classification of, for instance, goals is possible and can
be introduced optionally into the metamodel. For example, goals could be classified
into further goal categories such as Accuracy, Security and Performance. We also
intend to define a strategy to guide enterprise modelling using our metamodel as well
as to define a modelling tool à la Rational Rose to visually represent the concepts.

References

1. Castro J., Kolp M. and Mylopoulos J.: Towards Requirements-Driven Information
Systems Engineering: The Tropos Project. In Information Systems (27), Elsevier,
Amsterdam (2002)

2. Koubarakis M., Plexousakis D.: A formal framework for business process modelling and
design. Information Systems 27 (2002). 299-319

3. Bernus P.: Enterprise models for enterprise architecture and ISO9000:2000. Annual
Reviews in Control 27 (2003) 211–220

4. Yu E.: Agent-Oriented Modelling: Software Versus the World. Proceedings of the Agent-
Oriented Software Engineering AOSE-2001 Workshop, Springer Verlag (2001)

5. Yu E.: Modelling Strategic Relationships for Process Reengineering. Ph.D. thesis, Dept. of
Computer Science, University of Toronto (1994)

6. Dardenne A., van Lamsweerde A., Ficklas S.: Goal-directed requirements acquisition. Sci.
Comput. Programming 20 (1993) 3-50

7. Brickley J.A., Smith C.W., Zimmerman J.L.: Managerial Economics and Organization
Architecture. McGraw-Hill Irwin 2nd ed. (2001)

8. Faulkner S., Kolp M., Coyette A., Tung Do T.: Agent-Oriented Design of E-Commerce
System Architecture. Proceedings of the 6th International Conference in Enterprise
Information Systems Engineering, Porto (2004)

9. Simon H. A.: Rational Decision Making in Business Organizations. The American
Economic Review, 69(4) (1979), 493-513

10. Johnson G., Scholes K.: Exploring Corporate Strategy, Text and Cases. Prentice Hall
(2002)

11. Mentzas G., Halaris C., Kavadias S.: Modelling business processes with workflow
systems: an evaluation of alternative approaches. International Journal of Information
Management, 21 (2001) 123-135

12. Spivey J. M.: The Z Notation: A Reference Manual. 2nd Edition, Prentice Hall
International (1992)

13. Bowen J.: Formal Specification and Documentation using Z: A Case Study Approach
(1994)

14. Simon H.A.: Administrative Behavior : A Study of Decision-Making Processes in
Administrative Organization. New York: The Free Press 3rd ed. (1976)

15. Kamath M., Dalal N.P., Chaugule A., Sivaraman E., Kolarik W.J.: A Review of Enterprise
Process Modelling Techniques. In Prabhu V., Kumara S., Kamath M.: Scalable Enterprise
Systems: An Introduction to Recent Advances. Kluwer Academic Publishers, Boston
(2003)

 Formalizing Agent-Oriented Enterprise Models 199

16. Elmagarmid A., Du W.: Workflow Management: State of the Art Versus State of the
Products. In Dogac A., Kalinichenko L., Tamer Ozsu M., Sheth A.: Workflow
Management Systems and Interoperability. NATO ASI Series, Series F: Computer and
Systems Sciences, 164, Springer Heidelberg (1998)

17. Sheth A.P., van der Aalst W., Arpinar I.B.: Processes Driving the Networked Economy.
IEEE Concurrency, 7, (1999) 18-31

18. Kavakli V., Loucopoulos P.: Goal-Driven Business Process Analysis Application in
Electricity Deregulation, Information Systems, 24 (1999) 187-207

19. Liu L., Yu E.: Designing information systems in social context: a goal and scenario
modelling approach. Information Systems, 29 (2004) 187–203

20. Briand L., Melo W., Seaman C., Basili V.: Characterizing and Assessing a Large-Scale
Software Maintenance Organization. In Procedings of the 17th International Conference
on Software Engineering, Seattle, WA (1995)

21. van Lamsweerde A., Darimont R., Letier E.: Managing Conflicts in Goal-Oriented
Requirements Engineering. IEEE Transactions on Software Engineering, Special Issue on
Managing Inconsistency in Software Development (1998)

22. van Lamsweerde A.: The KAOS Metamodel –Ten Years After. Technical report, (2003).

	Introduction
	An Agent-Oriented Enterprise Metamodel
	Information System Development Perspective
	Management Perspective

	Organizational Sub-model
	Actor
	Organizational Role
	Capability
	Dependum

	Goals Sub-model
	Related Works
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

