
On Pronouncements of Requirements Oracles

Ivan J. Jureta
FNRS & Louvain School of Management

University of Namur
ivan.jureta@fundp.ac.be

Alex Borgida
Dept. Computer Science

Rutgers University
borgida@cs.rutgers.edu

Abstract—A requirements database contains the information
elicited or otherwise collected, used, and produced during
requirements engineering. From a requirements database, the
requirements oracle selects information relevant for the reso-
lution of the requirements problem, such as which goals are
satisfied, which domain assumptions are violated or maintained,
which tasks cannot be executed together. Implemented oracles
should enable the resolution of the requirements problem to
become an interactive process, in which the oracle provides
feedback about the effects of the changes in the requirements
database on the candidate solutions to the requirements prob-
lem. We give a definition of the pronouncements of require-
ments oracles by formally defining their desirable properties.

Keywords-decision support, knowledge base, requirements
oracle

I. INTRODUCTION

Suppose that we have a database of requirements (denote
it ∆) for an ecommerce web application and that it includes
the following pieces of information:

t(p1): Display a link to the shopping cart on every screen of
the web application.

k(p2): If the link to the shopping cart is displayed on every
screen, then the user can view the summary of the
shopping cart at any time.

We use the label t() on the proposition p1 to say that p1
refers to a task, i.e., to display a link to the shopping cart
on every screen of the web application is a task that needs
to be executed. The label k() says that p2 is an assumption
that we make when engineering the requirements of such a
system.

While ∆ does record these requirements, it alone tells
us nothing useful regarding how close we are to finding a
solution to the requirements problem, i.e., finding tasks and
assumptions that need to be executed and maintained by the
system-to-be in order for it to satisfy its goals and quality
constraints. This makes it difficult to know what we should
add to, or remove from ∆.

If the database ∆ is combined with a program that can
compute logical consequences from the database, and since
we can write k(p2) as t(p1)→ g(p), then the program can
derive the following:

g(p): The user can view the summary of her shopping cart at
any time during her use of the web application.

The program deduces the goal g(p), and we can informally
interpret this as saying that the database contains information
about how to satisfy the goal g(p). Knowing this, we could
choose that our next task be to update ∆ to ensure that it
satisfies another goal.

The program allows us to distinguish between two sets of
information: the requirements database and the information
derivable from the requirements database, and used to inform
the design and identification of candidate solutions to the
requirements problem that the database defines. Design,
because given goals and quality constraints, we need to define
ways of satisfying them; identification, because there will be
different ways to satisfy goals and quality constraints, and
some combinations of these ways will be feasible and will
be called candidate solutions to the requirements problem,
others not.

By distinguishing the database from the oracle, the
design and identification of candidate solutions can proceed
through an interactive process: after every change to the
requirements database, consult the oracle to see – through its
pronouncement – what changed in the candidate solutions,
and use that feedback to decide what to change next. The
better the program tolerates deficient inputs and the more
informative the oracle, the more relevant this process is.

It may seem at this point that all an oracle pronouncement
should be is the set of all logical consequences of a require-
ments database. This is not the case, mainly because the
requirements database can be inconsistent and/or incomplete.

Consider inconsistency first. Suppose we find out that
the user should not be able to change the contents of her
shopping cart after she has started the checkout. This conflicts
with t(p1), as the system should not display the link to the
shopping cart on the screens for the checkout. To record this
into ∆, we add g(p3) and k(p4) to ∆.

g(p3): The user should not be able to change the contents of
her shopping cart after she has started the checkout.

k(p4): It is not possible to show the link to the shopping cart on
every screen and to ensure that the user cannot change
the contents of her shopping cart during checkout. That
is: k(t(p1) ∧ g(p3)→ ⊥).

The database ∆′ = ∆ ∪ {k(p3), k(p4)} is inconsistent.
What should the program deduce from the inconsistent ∆′,
i.e., what should be in the oracle of ∆′? Clearly, a program

that allows an inconsistent requirements database as its input
is more interesting than one which works only on consistent
requirements databases. The latter requires us to decide how
to resolve every inconsistency before consulting the oracle,
which obviously reduces the benefit of working with an oracle
in the first place: the oracle should inform our decisions to
resolve inconsistencies.

Consider incompleteness. Suppose that we have a require-
ments database ∆′′ = {g(p3)}. Should we let g(p3) in
the pronouncement of the oracle? If we see the oracle’s
pronouncement as the set of all logical consequences, and
if we – as many do (e.g., [1], [2], [9], [10], [8], [3]) –
use classical logic to compute these consequences, then the
pronouncement should include g(p3), since the classical
consequence relation ` is reflexive. This, however, leads to
misleading conclusions: g(p3) in the pronouncement would
mean that g(p3) is satisfied, yet there are no tasks related to
that goal in ∆′′. The requirements database is incomplete:
while g(p3) is not involved in inconsistencies, this is not
evidence enough that it is satisfied, since the database says
nothing on how to satisfy it.

The program that computes oracles should tolerate both
inconsistency and incompleteness of requirements databases.
The resulting oracles should help us find inconsistencies
that need to be resolved, as well as ways in which we can
improve the completeness of the requirements database.

The purpose of this paper is to define a set of desirable
properties of pronouncements of requirements oracles, and
thereby characterize the information that we want to find in
pronouncements of consistent or inconsistent, and complete
or incomplete requirements databases. The properties can be
understood as general requirements that any decision support
system should satisfy in order to assist the requirements
engineer in the design of solutions to requirements problems.

The definition of properties comes out of, and renders
precise intuitions about the role of requirements databases in
requirements engineering (hereafter RE). Two intuitive ideas
act, in this paper, as principles that guide the definition of
the properties of oracle pronouncements:

1) Pronouncement on inconsistent requirements databases
should constructively tolerate inconsistency. Two ways
of not being constructive (i.e., being unhelpful) must
be avoided. Firstly, if, in case ∆ is inconsistent, its
oracle’s pronouncement Ω(∆) is empty, then this is
useful only to the extent that it signals that ∆ is
inconsistent. It is not constructive, since not everything
in ∆ may participate in the inconsistency, and it
would be interesting to know what is not involved
in the inconsistency. The second obvious way to be
unconstructive is to allow every expression in Ω(∆)
when ∆ is inconsistent, and thereby follow the ex falso
quodlibet proof rule, that anything can be deduced
from an inconsistency. Such a case, again, tells us only
that there is an inconsistency in ∆.

2) Ontological classification of some φ ∈ ∆ and the
relations in which φ stands to other members of ∆
should influence whether φ is in Ω(∆). E.g., some
information in the requirements base will state goals to
achieve, others domain assumptions to maintain, and
some will be tasks to execute in order to satisfy goals.
These kinds of information are specified in an ontology
for requirements, and that ontology should be taken
into account when defining what goes in and stays out
of a pronouncement of a requirements oracle.

It will become clear throughout the paper exactly how
these principles influence the choices of the properties of
requirements oracles.

The rest of the paper is organized as follows. We first
define the concepts and relations used for the classification
of requirements in the requirements database (§II). We then
present the formalism in which we define the properties (§III)
and use the formalism to define the requirements problem
and candidate solution concepts (§IV). The properties are
then defined (§V). We overview related work (§VI), and
close the paper with a discussion of contributions and of
open issues (§VII).

II. ONTOLOGY

The ontology for requirements performs the classification
of bits and pieces of information elicited or otherwise ob-
tained in the early steps of RE, and stored in the requirements
database. The most abstract concepts and relations used below
come from the core ontology for requirements [5], [6], others
are specializations thereof.

A. Concepts

Each piece of information that is collected is taken to be
an expression, and is represented by a pair of the form

(instantiated concept symbol, expression symbol). (II.1)

The expression symbol refers to the actual piece of informa-
tion, and the instantiated concept symbol refers to the concept
from the ontology, which is instantiated by the expression.

The ontology for requirements defines the set of concepts
that are instantiated in order to categorize the collected
information. The set of concepts comes with a set of
symbols, one for each concept, and used to label expressions.
Below are the informal definitions of the concepts, with the
corresponding labels on the left-hand side.

k: Domain assumptions: an expression is an instance of
the Domain assumption concept if it refers to conditions
that are believed to hold.

g: Goals: an expression is an instance of the Goal concept
if it refers to conditions, the satisfaction of which is de-
sired, binary, and verifiable (e.g., desired functionalities
of the system-to-be).

q: Quality constraints: an expression is an instance of the
Quality constraint concept if it refers to conditions that

constrain the desired values of non-binary measurable
properties or behaviors (e.g., the number of users that
can be logged on concurrently, the response time of
servers).

s: Softgoals: an expression is an instance of the Softgoal
concept if it refers to a vague condition that constrains
desired values of (potentially) not directly measurable
properties or behaviors (e.g., software should respond
quickly, interface should be usable).

t: Tasks: an expression is an instance of the Task concept
if it refers to behaviors of the system-to-be and/or within
its operating environment (e.g., find, transform, produce
data, manipulate objects).

Given an expression, we use the definitions of the concepts
to categorize that expression, and associate a label to it to
make its categorization explicit. The ontology thereby gives
a total function, called the sorting function.

Definition II.1. Sorting function is the total function:

Sort : L −→ O, (II.2)

where L is the set of all instances of the Domain assumption,
Goal, Quality constraint, Softgoal, Task concepts; and

O def
= {k, g, q, s, t} (II.3)

is the set of labels, each corresponding to a concept in the
ontology.

Remark II.2. We use lowercase Greek letters to denote
individual labeled expressions. Uppercase Greek letters
denote sets of labeled expressions. We index or prime these
symbols as needed. When we want to emphasize the label
of an expression (e.g., φ), we write the label along with the
symbol of the expression (e.g., if Sort(φ) = g, then we write
g(φ)). �

B. Relations

We use six relations between expressions:
∧ denotes the binary conjunction relation.
→ denotes the implication relation, taken here to refer to

the conditional relation, i.e., φ→ ψ abbreviates “if φ
then ψ”.

→ ⊥ denotes the n-ary conflict relation, where the left-hand
side of the implication is a conjunction. The conflict
relation of the form φ ∧ ψ → ⊥ abbreviates “φ and ψ
cannot be satisfied together.”

� denotes the binary and irreflexive preference relation,
such that if φ � ψ, then not ψ � φ. φ � ψ states that
ensuring that φ holds is strictly more desirable than
ensuring that ψ holds.

φM denotes the unary is-mandatory relation which indicates
that φ must be satisfied.

φO denotes the unary is-optional relation which indicates
that it is more desirable to satisfy φ than to violate it,
but that violating it is allowed.

The is-optional and is-mandatory relations allow us to
specialize every concept onto three concepts. For example,
we distinguish three kinds of domain assumptions:
kM: Strict domain assumptions: an expression is an in-

stance of Strict domain assumption if it is an instance
of Domain assumption and is mandatory, i.e., it must
be satisfied (e.g., laws of physics, legal norms).

kO: Defeasible domain assumptions: an expression is an
instance of Defeasible domain assumption if it is an
instance of Domain assumption and is optional, i.e., it
can be violated, but it is more desirable to satisfy it than
to violate it (e.g., assumptions about the availability of
resources).

k: Ordinary domain assumptions an expression is an
instance of Ordinary domain assumption if it is an
instance of Domain assumption and is neither optional
nor mandatory, i.e., it refers to conditions that can be
violated, and we are indifferent if these conditions are
violated or satisfied.

Remark II.3. Why is the class of every concept not partitioned
onto only optional and mandatory instances? I.e., why are
some instances called ordinary and thereby are neither
mandatory, nor optional? We need the ordinary instances for
cases when there is indecision about an instance’s mandatory
or optional status, or if there is no need to make that decision.
We have the former case, indecision, when we simply choose
not to have either of these two relations on an instance. The
latter case, when the decision is unnecessary, occurs for so-
called intermediary instances: e.g., if we say that to satisfy
a goal g(φ)M, we could execute either task t(ψ1) or task
t(ψ2), but that we cannot do both of these tasks (i.e., they
are in conflict), then we should state that one of these tasks
is mandatory only if we want to ensure that the other task
is not executed. If we do not want to exclude alternatives in
this way, then there is no need to decide on which of the
alternative tasks must be executed, and thus the two tasks
are neither mandatory nor optional. �

Each concept referred to by symbols in O can be
specialized along the same approach onto its instances which
are mandatory, optional, or ordinary.

The expressions stating the is-optional, is-mandatory,
preference, and quantification relations on members of L
are themselves outside L. We further distinguish three sets
in L: La is the set of atomic facts in which no expression
states a relation between atomic facts, L→ in which every
expression gives conjunction and implication relations (but
not the conflict relation) on atomic facts, L⊥ where every
expression states a conflict relation on atomic facts. The full
language is thus:

Lf def
= La ∪ L→ ∪ L⊥ ∪ L� ∪ LM ∪ LO, (II.4)

where every member of LM and LO states, respectively, an
is-mandatory or is-optional relation on an expression in L,

and every member of L� a preference relation between two
members of L. We partition the language onto the sets in
Equation II.4, so that

∀X,Y ∈ {La,L→,L⊥,L�,LM,LO}, X ∩ Y = ∅, (II.5)

with L = La ∪ L→ ∪ L⊥.

III. FORMALISM

We assume that the information elicited or otherwise
acquired during RE is stored in a requirements database. We
view this database as a subset of the language, ∆f ⊆ Lf .

Definition III.1. A requirements database, denoted ∆f , is
a set of expressions from Lf : ∆f ⊆ Lf .

We restrict the language only to the expressions in L, and
we are thus interested only in the part of the requirements
database ∆ ⊂ ∆f such that ∆ ⊆ L.

Definition III.2. The language L is a finite nonempty set
of expressions, in which every expression φ ∈ L satisfies the
following BNF specification:

a ::=k(p) | g(p) | q(p) | s(p) | t(p) (III.6)
b ::=a | aO | aM (III.7)

c ::=

(
n≥1∧
i=1

bi

)
→ b |

(
n≥2∧
i=1

bi

)
→ ⊥ (III.8)

φ ::=b | k(c) | k(c)O | k(c)M, (III.9)

where p in a is a proposition, and every labeled proposition,
i.e., every a generated by the BNF specification above is a
member of La and is called an atomic fact.

We define the consequence relation for the fragment L of
Lf as follows.

Definition III.3. Consequence relation |vτ is such that, for
Π ⊆ L, φ ∈ L and x ∈ {φ,⊥}:
• Π |vτ φ if φ ∈ Π, or
• Π |vτ x if ∀1 ≤ n, Π |vτ φi and k(

∧n
i=1 φi → x)y ∈ Π,

for y ∈ {“empty”, O, M}.

Remark III.4. The consequence relation |vτ is sound with
regards to standard entailment ` in classical propositional
logic, but is incomplete in two ways: it only considers
deducing positive atomic facts, and no ordinary proofs
based on arguing by contradiction go through, thus being
paraconsistent. �

We use specific sets and the operationalization function
in the definition of the Requirements problem and Candidate
solution concepts.

Definition III.5. Useful sets: Let Π ⊆ L, we define:

CON(Π) ={Φ ⊆ Π | Φ 6|vτ ⊥} (III.10)
INC(Π) ={Φ ⊆ Π | Φ |vτ ⊥} (III.11)
MC(Π) ={Φ ∈ CON(Π) | ∀Ψ ∈ CON(Π), Φ 6⊂ Ψ}

(III.12)
MI(Π) ={Φ ∈ INC(Π) | ∀Ψ ∈ CON(Π), Ψ 6⊂ Φ}

(III.13)

Rules(Π) =Π ∩ (L→ ∪ L⊥) (III.14)
AtF(Π) =Π ∩ La (III.15)

MIyx(Π) ={Φ ∈ MI(Π) | ∀φ ∈ AtF(Φ), xφy} (III.16)

AtFy
x(Π) ={φ ∈ AtF(Π) | xφy} (III.17)

Xy(Π) ={φ ∈ Π | xφy} (III.18)

where x ∈ {k, g, q, s, t} and y ∈ {“empty”, O, M}.
CON(Π) is the set of all consistent subsets of Π; INC(Π)

is the set of all inconsistent subsets of Π; MC(Π) is the set
of all maximally consistent subsets of Π; and MI(Π) is the
set of all minimally inconsistent subsets of Π.

Every member of MIyx(Π) is a minimally inconsistent set in
which all atomic facts are instances of a particular concept:
e.g., MIg(Π) gives all minimally inconsistent sets in which
every atom is a goal (be it mandatory, optional, or neither),
while MIM

g(Π) gives all minimally inconsistent sets in which
every atomic fact is a mandatory goal.

Every member of AtFy
x(Π) is an atomic fact in Π that has

the sort x and unary relation y. E.g., AtFM
g(Π) is the set of

all mandatory goals in Π.
Every member of Xy(Π) is a member of Π that has the

sort x and unary relation y. E.g., KM(Π) is the set of all
strict domain assumptions in Π.

Definition III.6. The operationalization function, for ∆ ⊆
L, x, y ∈ {“empty”, O, M}, Z ∈ {G,Q,S}, and W ∈ {K,T}:

Op :
⋃
Z,x

Zx(∆) −→ ℘(℘(
⋃
W,y

Wy(∆))) (III.19)

is defined as follows, for a ∈ {g(φ)x, q(φ)x, s(φ)x}:

Op(a)
def
={Π ∈ CON(∆) | Π |vτ a

and Π \ {a} ⊆ Wy(∆),

and 6 ∃Φ ⊂ Π, Φ |vτ z}. (III.20)

Every member of the set Op(z) is a minimal consistent
set of tasks and domain assumptions that is sufficient to
operationalize the goal, quality constraint, or softgoal a.
Informally, Op(z) tells us all ways in (i.e., subsets of) ∆ of
satisfying a goal, quality constraint, or softgoal.

IV. PROBLEM AND CANDIDATE SOLUTION CONCEPTS

The general definition of the requirements problem differs
from earlier ones as it dispenses with the stating of properties
of solutions. Rather, the challenge is to find candidate

solutions and compare them on the basis of is-optional, is-
mandatory, and preference relations on their ingredients, so
as to choose one candidate as the solution to the requirements
problem. This transfers the properties of solutions into the
candidate solution concept.

Definition IV.1. The requirements problem: Given a re-
quirements database ∆f ⊆ Lf , find candidate solutions in
∆f and compare them on the basis of preference, is-optional,
and is-mandatory relations, in order to select one candidate
as the solution to the requirements problem.

Remark IV.2. The requirements problem definition does not
say how to use the preference, is-optional, and is-mandatory
relations to compare candidate solutions. This is intentional,
as any such comparison can involve trade-offs, for which no
domain- and/or project-independent rule of resolution applies.
How to resolve tradeoffs, e.g., how to lead stakeholder
negotiations to that aim thereby remains outside of the
problem definition. �

Definition IV.3. A candidate solution S to the requirements
problem given by a requirements database ∆f is a set

S ⊆
⋃
X,y

Xy(∆), X ∈ {K,T}, y ∈ {“empty”, O, M} (IV.21)

of domain assumptions and tasks, which satisfies the follow-
ing conditions:

1) Consistency: S 6|vτ ⊥;
2) Achievement: ∀φ ∈ ZM(∆), Z ∈ {G,Q,S}, we have

that S |vτ φ;
3) Conformity: KM(∆) ∪ TM(∆) ⊆ S;
4) Dominance: 6 ∃S ′ such that S ′ is a candidate solution

and ∃XO(∆) = S ′ \ S, such that XO(∆) 6= ∅ and
X ∈ {K,T};

5) Minimality: 6 ∃S ′ such that S ′ is a candidate solution
and S ′ ⊂ S.

The Achievement condition requires that a candidate
solution satisfies all mandatory goals, quality constraints,
and softgoals. Satisfaction is formalized by entailment, so
that we assume a goal, quality constraint, or softgoal is
satisfied if we can derive it from S. It is not difficult to
see, from Definitions III.6 and IV.3, that S is required to
include an operationalization of every mandatory goal, quality
constraint, and softgoal.

The Conformity condition asks that all strict domain
assumptions are not violated and all mandatory tasks are
executed. The Achievement and Conformity conditions
ensure that the candidate solution satisfies all that must be
satisfied.

According to the Dominance condition, every candidate
solution will be maximal with regards to optional require-
ments. This condition formalizes the idea of the is-optional
relation, as holding on requirements which are desirable to
satisfy, but can be violated. A candidate solution will thus

include as many defeasible domain assumptions and as many
optional tasks, up to the point at which adding any further
defeasible domain assumptions and/or optional tasks violates
the Consistency, Achievement, Conformity, or Minimality
conditions.

The Minimality condition requires that a candidate solution
includes only the domain assumptions and tasks which are
needed to satisfy exactly the Consistency, Achievement,
Conformity, and Dominance conditions.

V. PROPERTIES OF ORACLE PRONOUNCEMENTS

The purpose of oracle pronouncements is to help us
identify candidate solutions starting from an incomplete
and/or inconsistent requirements database. The properties
should therefore ensure that there is an oracle pronouncement
for every candidate solution. However, since an oracle
pronouncement can be such that it can become a candidate
solution only by further updates of the requirements database,
not every pronouncement will include a candidate solution.
Remark V.1. We denote ΩI an oracle in this first case of basic
properties, while ΩI(∆) denotes the set of pronouncements
of that oracle, given the requirements database ∆. �

Definition V.2. An oracle pronouncement is a set of
formulas P ⊆ L which satisfies the properties Con, Cl,
M, KM, TM, KD, and TO.

As we require the pronouncement to include a potential
candidate solution, it should be consistent.

Con: ∀P ∈ ΩI(∆), P 6|vτ ⊥.

The pronouncement should say if its members satisfy goals,
quality constraints, or softgoals, and more generally, include
all logical consequences of the requirements that it includes.
Such a pronouncement helps us decide,m e.g., which goals
to further refine in the requirements database, when these
goals are absent from all pronouncements.

Cl: ∀P ∈ ΩI(∆), P = {φ | P |vτ φ}.
The is-mandatory relation states that a requirement it

applies to must be satisfied. It follows that, if there are in-
consistencies between only between mandatory requirements,
the oracle should remain silent, until these inconsistencies
have been resolved.

M: ΩI(∆) = ∅ if ∃Π ⊆ MI(∆) s.t. Π ⊆ XM(∆),
where X ∈ {K,G,Q,S,T}.

All pronouncements should include mandatory domain
assumptions and tasks, since every candidate solution should
include them.

KM: ∀P ∈ ΩI(∆), KM(∆) ⊆ P .

TM: ∀P ∈ ΩI(∆), TM(∆) ⊆ P .

Pronouncements which include as many as possible of
the defeasible domain assumptions from ∆ are the most
interesting.

KD: ∀P ∈ ΩI(∆), 6 ∃P ′ ∈ ΩI(∆) s.t. P ′ \ P = KO(∆)
and KO(∆) 6= ∅.

Same applies to pronouncements in relation to optional
tasks.

TO: ∀P ∈ ΩI(∆), 6 ∃P ′ ∈ ΩI(∆) s.t. P ′ \ P = TO(∆)
and TO(∆) 6= ∅.

We want pronouncements to include all goals, quality
constraints, and softgoals that they operationalize.

G: ∀P ∈ ΩI(∆), if ∃Π ∈ Op(g(φ)x)
s.t. x ∈ {“empty”, O, M} and Π ⊆ P ,
then g(φ)x ∈ P .

Q: ∀P ∈ ΩI(∆), if ∃Π ∈ Op(q(φ)x)
s.t. x ∈ {“empty”, O, M} and Π ⊆ P ,
then q(φ)x ∈ P .

S: ∀P ∈ ΩI(∆), if ∃Π ∈ Op(s(φ)x)
s.t. x ∈ {“empty”, O, M} and Π ⊆ P ,
then s(φ)x ∈ P .

Proposition V.3. Properties G, Q, and S are derived from
properties Con and Cl.

Proof: Obvious, from Definition III.6.
The following result relates oracle pronouncements to

candidate solutions.

Theorem V.4. For every candidate solution S of the require-
ments problem stated by the requirements database ∆, there
is an oracle pronouncement P ∈ ΩI(∆) such that S ⊆ P .

Proof: (By contradiction.) Assume the opposite, that
there is a candidate solution S of the requirements problem
stated by the requirements database ∆, such that ∀P ∈ ΩI(∆),
S 6⊆ P .

For the assumption to hold, every P ∈ ΩI(∆) should
violate at least one of the conditions other than Minimality in
the definition of the candidate solution concept (cf., Definition
IV.3). We consider the consequences of this being the case:

1) If P violates Consistency, then it violates Con and is
not a pronouncement of the oracle, which contradicts
the assumption that P ∈ ΩI(∆).

2) If P violates Achievement, then there is a mandatory
goal, quality constraint, and/or softgoal which is not
in P . This can be the case only if P does not
operationalize that goal, quality constraint, and/or
softgoal. If every P ∈ ΩI(∆) violates Achievement,
then there are mandatory goals, quality constraints, and
softgoals in ∆ which are not satisfied, and there are
therefore no candidate solutions in ∆.

3) If P violates Conformity, it violates KM or TM, which
contradicts that P ∈ ΩI(∆).

4) If P violates Dominance, then it violates KD or TO,
which contradicts that P ∈ ΩI(∆).

5) If P violates Minimality, then P can still include a
candidate solution.

Theorem V.5. There can exist P ∈ ΩI(∆) such that there
is no S ⊆ P and that S is also a candidate solution of the
requirements problem stated by the requirements database
∆.

Proof: There is no property which requires that every
P ∈ ΩI(∆) includes all mandatory goals. An P ∈ ΩI(∆)
which does not include all mandatory goals violates Achive-
ment, yet is still an oracle pronouncement.

VI. RELATED WORK

From the theoretical standpoint, this is a paper about
properties of knowledge bases that are useful in requirements
engineering. The ontology provides the classification of
information in a database, and the oracle processes the
database to filter out what is useful to the requirements
engineer. The properties formalize the ideas stated by the
ontology for requirements, thereby giving a clear role to the
ontology, beyond the usual notion of using it to organize a
specification. We are not aware of work that has had this same
aim, or that has offered an analysis of desirable properties
of knowledge bases for the resolution of the requirements
problem.

From the engineering perspective, the properties of oracle
pronouncements are themselves requirements that need to be
satisfied by tools for requirements representation and analysis.
Tool-support for RE has received considerable attention.
Software has been developed to support the modeling
activities, as well as various analysis activities. The survey
of goal-oriented requirements engineering, from Kavakli
& Loucopoulos [7] points to various tools available for
modeling goals and reasoning about goal models, including,
e.g., Objectiver [11] and T-Tool [3]. Tools support animation,
consistency checks, possibility checks (to check for over-
specification), and assertion checks (to check for under-
specification). Apart from the idea that the tool should help
us check if one or more goals are satisfied, an ontology for
requirements does not relate in other ways to the use of
the tool. The properties introduced here suggest how the
ontology suggests questions to ask from the tool.

VII. DISCUSSION AND CONCLUSIONS

This paper continues our previous work towards a general
definition of the requirements problem through an ontology of
core concepts in RE [5], [6], and the subsequent definition of a
simple but abstract formalism, Techne, for the representation
of requirements problems and candidate solutions [4] during
the early steps of RE. In this paper, we show how candidate
solutions satisfy some normally unrelated, but intuitively
appealing properties which are often adopted by default in
RE research: e.g., that the requirements specification of a

system design must operationalize goals, that the specification
must say how to satisfy all mandatory requirements, and so
on. Formalization of the properties gives an idea of how they
come together and relate to the candidate solutions sought
in relation to a requirements problem.

REFERENCES

[1] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-
directed requirements acquisition. Sci. Comput. Program.,
20(1-2):3–50, 1993.

[2] A. C. W. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and
B. Nuseibeh. Inconsistency handling in multiperspective
specifications. IEEE Trans. Softw. Eng., 20(8):569–578, 1994.

[3] A. Fuxman, L. Liu, J. Mylopoulos, M. Roveri, and P. Traverso.
Specifying and analyzing early requirements in Tropos. Re-
quirements Eng., 9(2):132–150, 2004.

[4] I. J. Jureta, A. Borgida, N. A. Ernst, and J. Mylopoulos.
Techne: Towards a New Generation of Requirements Mod-
eling Languages with Goals, Preferences, and Inconsistency
Handling. In 18th IEEE Int. Requirements Eng. Conf., 2010.

[5] I. J. Jureta, J. Mylopoulos, and S. Faulkner. Revisiting the
core ontology and problem in requirements engineering. In
16th IEEE Int. Requirements Eng. Conf., pages 71–80, 2008.

[6] I. J. Jureta, J. Mylopoulos, and S. Faulkner. A core ontology
for requirements. Applied Ontology, 4(3-4):169–244, 2009.

[7] E. Kavakli and P. Loucopoulos. Goal Modeling in Require-
ments Engineering: Analysis and Critique of Current Methods.
In J. Krogstie, T. Halpin, and K. Siau, editors, Information
Modeling Methods and Methodologies. IGI, 2005.

[8] W. N. Robinson, S. D. Pawlowski, and V. Volkov. Require-
ments interaction management. ACM Comput. Surv., 35(2):132–
190, 2003.

[9] A. van Lamsweerde, R. Darimont, and E. Letier. Managing
conflicts in goal-driven requirements engineering. IEEE Trans.
Software Eng., 24(11):908–926, 1998.

[10] A. van Lamsweerde and E. Letier. Handling obstacles in
goal-oriented requirements engineering. IEEE Trans. Software
Eng., 26(10):978–1005, 2000.

[11] Axel van Lamsweerde. Goal-oriented requirements enginering:
A roundtrip from research to practice. In RE, pages 4–7. IEEE
Computer Society, 2004.

