
Product Portfolio Scope Optimization Based on Features
and Goals

Joseph Gillain
University of Namur

jgillain@fundp.ac.be

Stephane Faulkner
University of Namur

sfaulkner@fundp.ac.be

Patrick Heymans
University of Namur

phe@info.fundp.ac.be
Ivan Jureta

University of Namur
ijureta@fundp.ac.be

Monique Snoeck
Katholieke Universiteit Leuven
monique.snoeck@econ.kuleuven.be

ABSTRACT
In this paper we propose a mathematical program able to
optimize the product portfolio scope of a software product
line and sketch both a development and a release planning.
Our model is based on the description of customer needs
in terms of goals. We show that this model can be instan-
tiated in several contexts such as a market customization
strategy or a mass-customization strategy. It can deal with
Software Product Line development from scratch as well as
starting from a legacy software base. We demonstrate its
applicability with an example based on a case study.

Categories and Subject Descriptors
D.2.13 [Reusable Software]: Domain engineering

General Terms
Economics

Keywords
Software product line; scoping optimization; product port-
folio; release planning

1. INTRODUCTION
Even if it provides customized software products, Software

Product Line Engineering (SPLE) is currently regarded as
an efficient approach to achieve large scale reuse. By adopt-
ing SPLE, an organization can help achieve different objec-
tives, e.g., reduce their cost, provide adapted solutions for a
variety of customers or decrease the time-to-market of soft-
ware products.

A software product line (SPL) is described as a set of soft-
ware-intensive systems sharing a common, managed set of
features that satisfy the specific needs of a particular market
segment or mission and that are developed from a common

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPLC ’12 , September 02 - 07 2012, Salvador, Brazil
Copyright 2012 ACM 978-1-4503-1094-9/12/09 ...$15.00.

set of core assets in a prescribed way [1]. When developing a
SPL, one of the main factors impacting the previously cited
objectives is the SPL scope. As described by P. Clements,
scoping is defined as the “activity that bounds a system or
set of systems by defining those behaviors or aspects that are
in and those behaviors or aspects that are out” [2]. Deter-
mining the scope is mainly a trade-off question. On the
one hand, if the scope is too large (i.e. the SPL includes
many products which cover a large set of different markets),
product members vary too much and the commonality is
reduced. Consequently, economies of scales eventually drop
and the time-to-market reduction cannot be achieved. On
the other hand, if the scope is too narrow, the core asset base
(i.e. the common part) does not satisfy the needs of enough
customers and the return on investment never materializes.

According to Schmid [3], there are three types of scoping.
Product portfolio scoping aims at identifying the particular
products that should be developed as well as the features
they should provide. Domain scoping is the task of bound-
ing the domains that are relevant to the SPL. Asset scoping
aims at identifying functional parts of the SPL that should
be developed in a reusable manner. Three goal levels for
each scoping type can be distinguished: identification, eval-
uation and optimization of scope. As highlighted by recent
reviews, current scoping methods fail in providing optimiza-
tion methods. Some provide optimization for the product
portfolio scope but there are no domain or feature optimiza-
tion methods yet [4][5].

In this paper we present a mathematical model based on
the joint use of goals and features. We show how this ap-
proach can help to optimize the SPL scope, especially prod-
uct portfolio and assets scoping. We suggest that during
scoping, identification and evaluation of the three types of
scoping can be performed separately. Nonetheless, finding
a global optimum for the SPL scope requires that the op-
timization of the three scoping types are performed in an
integrated model. Deciding which features will be included
in each product, determining which features will be reusable
and selecting domains are tasks that cannot be executed in-
dependently. Otherwise the optimization would likely return
a local optimum.

In order to integrate those three considerations into a sin-
gle model we decided to use both goals and features in a
SPL life cycle profit optimization. The reasoning behind
such an approach is that the purpose of all SPL objectives
is to increase profits. Moreover, we assume the customers’
willingness-to-pay (WTP) for a system-to-be is function of

161

the utility it provides and this utility is function of the sat-
isfied goals and not of the provided features. Indeed, some
features have value only when used with others, e.g., be-
cause of feature interactions. Goal models are thus used
as a problem-oriented approach while features are solution-
oriented aspects. The proposed scoping method optimizes
the matching between both aspects. This approach has to be
considered as a complementary method with other current
approaches such as PuLSE-Eco [3].

The next section covers the use of both goals and fea-
tures and we discuss the profit maximization objective. The
mathematical model is presented in Section 3. In Section 4,
we underline that further commonality and variability anal-
ysis is required. The adaptation of the model to different
contexts is described in Section 5. In Section 6, we show
that this model is particularly useful in iterative develop-
ment. We then illustrate the applicability of our model by
applying it on the market maker case study from [6]. We
finally discuss related work and conclude in Section 8 and 9.

2. FEATURES AND GOALS FOR SCOPE
OPTIMIZATION

As highlighted by K. Schmid [3] and D. Nazareth et al. [7],
advantages resulting from software reuse in SPLE can take
several forms. It is important to highlight that such advan-
tages are mainly raised by economic considerations rather
than technical factors. These potential reuse benefits are:

• reduction in development cost,

• reduction in time-to-market,

• increase in programmer productivity,

• improvement in software quality,

• improvement in maintainability,

• improvement in project planning.

Determining the scope of the product portfolio will have
an impact on those benefits. However, assessing and predict-
ing those benefits is difficult since varying the scope can have
different effects on those benefits. Determining an optimal
scope regarding all those advantages could require the use
of multiple objectives decision framework. However, such
process raises several difficulties such as expressing the pref-
erences between those objectives.

Our method is based on the assumption that all the above
objectives are driven by the same general purpose: profit
maximization. For example, reducing the time-to-market
aims at getting revenue earlier and benefit from market op-
portunities. Considering only this single objective allows to
design a mathematical model taking into account the pre-
viously cited considerations. Generally speaking, the SPL
profit is the difference between its revenue and its cost. The
SPL scope is an important factor influencing profit. By in-
creasing the scope, an organization can increase its revenue
since the set of potential customers will increase due to a
larger set of products. However, as discussed in Section 1,
it will increase the variability and decrease the commonal-
ity between product members implying a reduction of the
economies of scale on the side of the development cost.

As discussed above, identification and evaluation of SPL
scopes have to performed before optimization. Regarding

our model, identification will result in a set of goal models
for different customers or domains, a set of relevant features
to be included in the future products and an identification
of reusability of these features. The second step, namely
the evaluation phase, will consist in assessing the value of
goals, costs of features and costs of reuse. The final step
is the optimization of the SPL scope on the basis of the
previously identified and evaluated artifacts. We briefly dis-
cuss the identification and evaluation steps in this section
but a complete description of those first two steps is out of
the scope of this paper. We will focus on the third step of
scoping in the next section of this paper.

2.1 Software Product Line Revenue
In order to generate revenue (e.g. by being sold), products

from a SPL have to satisfy customers’ requirements. Before
deciding which product will be part of the SPL, we need to
know what are the requirements of potential customers. In
this context, goal models present two advantages compared
to other requirements methods such as object-oriented re-
quirements modeling. Firstly, it allows us to analyze al-
ternative ways to satisfy the same requirements. E.g., two
customers from different domains can have several alterna-
tive solutions satisfying their requirements, two of which are
satisfiable with a common SPL. Comparing alternative solu-
tions makes it possible to find the largest possible core asset
base for the planned SPL. Secondly, goal models capture the
purpose of the software, not the way it will be implemented.
Those requirements are more stable which is important be-
cause determining the scope needs to be performed on quite
stable considerations. Indeed, it is more difficult to modify
the scope than a feature.

Moreover, as previously discussed, goals are good utility
indicators. Customers are willing to pay for a system which
satisfies their goals, as this is how the client can understand
the value of the system-to-be, rather than considering the
specific features. For example, financial organizations intrin-
sically do not care if aggregated financial data are aggregated
by the system or received from an external source, as long as
they are effectively aggregated. Which of the features will be
selected will depend on softgoals (i.e., nonfunctional goals),
which may require data to be reliable or privacy of the data
recipient to be ensured. Thus, the requirements problem
can be stated as follows: finding a set of tasks (i.e., ways of
achieving goals) such that under some domain assumptions,
stakeholders goals are satisfied [8].

Using the CORE ontology for requirements engineering
[8], the requirements problem can be formulated as: “Given
the elicited domain assumptions, goals, quality constraints,
softgoals and tasks, some of which being optional or manda-
tory, the engineer has to find tasks and domain assumptions
which satisfy all mandatory goals, quality constraints, and
ideally also satisfy at least some of the optional goals and
quality constraints.” This is expressed by the following for-
malization: K,T |∼ G,S,Q, where the symbols respectively
stand for the sets of domain assumptions, the tasks, the de-
feasible consequence relation, the goals, the softgoals and the
quality constraints. Given a requirements problem, SPL en-
gineers are interested in finding a product (i.e. a valid set of
features) able to realize tasks of the requirements problem,
formally K′, p |∼ T where K′ states the conditions of tasks
realization by the product and p ∈ P(F)1. Consequently,
1P(F) is the powerset of a set of features F

162

the extended requirements problem for a particular customer
becomes K′′, p |∼ G,S,Q where K ∪ K′ = K′′. Then, the
process of developing a SPL consists in finding a SPL such
that for a given set of n customers with i = (0 . . . n), there
is a product pi satisfying K′′

i , pi |∼ Gi, Si, Qi with pi being
a product member of the SPL.

As highlighted by Müller, methods such as the conjoint
analysis can be used to evaluate a customer’s WTP [4]. How-
ever, further considerations about the identification process
of customer needs and the method to be used in order to
evaluate them is out of the scope of this paper.

2.2 Software Product Line Cost
In this paper, we consider that a product member from

a SPL is defined by the set of features F it is made of.
This description requires a clear definition of what a feature
is. Among the different feature definitions [9], our model
is compliant with Batory’s definition which states that a
feature is an increment of product functionalities [10]. Those
features will be used to model the software variability which
refers to the ability of a software system or artifact to be
efficiently extended, changed, customized or configured for
use in a particular context [11].

We influence the scope by deciding which features we in-
clude. They are a means to realize tasks, and thereby as-
sess the cost of a SPL needed to satisfy a particular set
of tasks. Developers can more easily give an estimation of
the development cost of a feature than of the cost to sat-
isfy a goal since the latter can have alternative solution.
On the contrary, they are no good measurements for cus-
tomers’ WTP customers regarding a product. For reasons
mentioned above, we see goals as a better means than fea-
tures to evaluate revenue that can be generated. When eval-
uating a software product, customers will not assess features
in an isolated way, but rather how features can help to sat-
isfy their requirements, i.e. their goals, softgoals and quality
constraints.

For assessing a SPL cost, we have to underline that SPLE
consists of two main processes, namely domain engineer-
ing and application engineering. The former is the process
of SPLE in which the commonality and the variability of
the SPL are defined and realized while the latter is the
process in which the applications of the SPL are built by
reusing domain artifacts and exploiting the SPL variability
[12]. Böckle et al. introduce a cost function for SPLs based
on this distinction [13].

Corg + Ccab +
i=1∑

n

Cunique(pi) +
i=1∑

n

Creuse(pi) (1)

where Corg is the cost to an organization for adopting SPLE.
Ccab is the cost to develop a core asset base (CAB) suited to
support the planned SPL. Cunique(pi) is the cost to develop
the unique software part of the product pi that is not in the
core asset base while Creuse(pi) is the cost to reuse the core
assets for the product pi.

Since the core asset base and the products are described
in terms of features, assessing the above cited costs in our
framework will require that we evaluate features’ cost. We
assume that Corg does not depend on the scope of the consid-
ered SPL and we therefore do not use it in our optimization.
Ccab is the cost for developing the set of features which can
be reused as part of the SPL. Developing a feature as part of

Table 1: Description of decision variables.

Indices

m goal models m = (1, . . . ,M)
k features k = (1, . . . ,K)
t periods t = (1, . . . , T)

Parameters

πam revenue from goal am
ck effort for developing feature k as a unique feature ex-

pressed in required development “man-weeks”
∆ cost factor for generic development
δ cost factor for CAB feature reuse
cw cost of a development man-week
r discount rate

Decision variables

Goal Model
gam,t is equal to 1 if the goal a from goal model m with

am = 1, . . . , Am is satisfied during the period t, it is 0
otherwise

ibm,t is equal to 1 if the inference node b from goal model m
with bm = 1, . . . , Bm is satisfied during the period t, it
is 0 otherwise

tcm,t is equal to 1 if the task c from goal model m with
cm = 1, . . . , Cm is realized during the period t, it is 0
otherwise

Software Product Line
fk,m,t is equal to 1 if the feature k is used in goal model m

during the period t, it is 0 otherwise
fcab
k,t is equal to 1 if the feature k has been integrated to the

CAB during the period t, it is 0 if not
f r
k,m,t is equal to 1 if the feature k was reused from the CAB

for the product satisfying the goal model m during the
period t, it is 0 otherwise

fu
k,m,t is equal to 1 if the feature k was uniquely developed

for the product satisfying the goal model m during the
period t, it is 0 otherwise

wt represents the number of development weeks allocated
during period t

the CAB introduces extra costs for making it more generic
or putting it in a register.

2.3 Limited Resources and Discount Rate
The development of a SPL is a long term process. Due

to limited resources, this development would likely take sev-
eral years. Taking into account the cost of time and the
limited resource is of primary importance to determine the
SPL scope but more specifically to determine priorities in
the development and release planning.

To take into account the cost of time, we suggest to dis-
count revenues and costs with the weighted average cost of
capital (WACC). This rate calculates an organization’s cost
of capital in which each category of capital is proportion-
ately weighted. It is often used to discount cash flows and
determine the net present value (NPV) of a project.

Regarding the limited resources, we assume that the main
resource of a SPL provider is its development team.

3. OPTIMIZING THE SPL SCOPE
In this section we describe the mathematical model for

finding the optimal scope of a SPL. We showed in Section 2.1
that the requirements engineering problem of SPLs formu-
lated with CORE consists of three steps. Firstly, we have to
determine who the relevant customers (from different possi-

163

ble domains) are and what their needs are. This requires the
identification and evaluation of Ki, Ti |∼ Gi, Si, Qi for differ-
ent customers. The second step is defining what the prod-
ucts are constituted of. Answering this question implies that
we need to identify and evaluate a set of features F which can
be used to derive product members, i.e. p ∈ P(F). Thirdly,
we need to identify conditions for the product to realize the
tasks, i.e. K′. The description of our model follows this dis-
tinction. After presenting the objective function, we discuss
the constituting features. Then, we deal with goal models
to describe customer needs. Finally, we state constraints
modeling conditions of tasks realization. The whole set of
indexes, parameters and decision variables are described in
Tab.1.

3.1 The Product Line
Equation (2) is the objective function maximizing the

profit which is the difference between the revenue result-
ing from satisfied goals and the development costs which is
evaluated by salary charge. Equation (3) states the develop-
ment is allocated to either domain engineering or application
engineering following the cost function previously discussed.
A feature used in a product for a particular segment will
have to be reused from the CAB or developed exclusively
for this product. This is stated in equation (4). However
before reusing a feature, it has to be integrated in the CAB
(5).

max
T∑

t=1

(
M∑

m=1

Am∑

am=1

πamt

rt
gam,t −

cw
rt

wt

)
(2)

s.t.

∀t :
K∑

k=1

∆ckf
cab
k,t

+
M∑

m=1

K∑

k=1

(
ckf

u
k,m,t + δckf

r
k,m,t

)
≤ wt (3)

∀m, k, t : fk,m,t ≤
t∑

j=1

(fu
k,m,j + f r

k,m,j) (4)

∀m, k, t : f r
k,m,t ≤

t∑

j=1

f cab
k,j (5)

Additional considerations about features need to be stated.
Feature dependencies and interactions are important con-
straints when developing a SPL. We can identify some pat-
terns when considering feature dependencies. On the one
hand, we can identify common features which are features
belonging to all product members from the SPL. On the
other hand, variable features fall into three categories: al-
ternative, OR and optional features [14]. Moreover, there
are some dependencies among features. These can take sev-
eral forms such as “include” or “exclude” links. Due to some
operational dependencies, some of those dependencies and
interactions have to be identified since they will have signif-
icant implications in the development of systems. Here we
present the instantiation of some feature interactions into
linear constraints.

The “exclude” constraint expresses that some features can
not be active at the same time. E.g., consider a security
system. Because of some interferences between waves, radar

motion detectors can not work at the same time as wireless
networks. In terms of linear constraints, we have to express
that a set of features indexed with X ⊆ {1, . . . ,K} can not
be used in the same product. Then, if we consider that we
have j such sets:

∀j, t,m :
∑

x∈Xj

fxmt ≤ 1 (6)

We can also model the “mutually required” constraint be-
tween sets of features

∀j, t,m : fz,m,t −
1

|Xj \ z|
∑

x∈Xj\z

fx,m,t = 0 (7)

where z ∈ Xj .
If a feature fi requires the set of features X to be part

of the product while the features from X can be selected
independently from fi, we can model this constraint as fol-
lowing:

∀t,m : fi,m,t −
1
|X|

∑

x∈X

fx,m,t ≤ 0 (8)

3.2 Goal Models
We assume that requirements are formalized as in Techne

[15]. We use this goal-oriented requirements modeling lan-
guage because firstly it provides simple reasoning rules and
secondly, as it is based on the CORE ontology for require-
ments it is compatible with other goal-oriented requirements
modeling languages. In Techne, a requirement is:

• a domain assumption, if it states a belief of stakehold-
ers,

• a goal if the proposition expresses a desire, i.e., it states
a property that we want to see holding; e.g., “Order
books are traded”,

• a quality constraint if it places a constraint on desirable
values of a quantifiable property,

• a softgoal if it refers to a desirable value of a property
in such a way that it is not possible to identify exactly
which value, or range of values of that property it refers
to; e.g., “Trading is reliable”,

• a task if the proposition in it says what to do; e.g.,
“Aggregate financial data”.

An example of a goal model is depicted in Fig.1. Require-
ments can be in three binary or n-ary relations. The triangle
I in Fig.1 refers to the inference relation where incoming ar-
rows are linked to the premises and the outcoming to the
conclusion: for example, since we allow modus ponens in
Techne, we can deduce g1 from either {g2, g3, g4} or {g5, g6}.
Such construction models goal refinement.

Inference nodes can be model into a linear program as
follows. Consider a set of inference nodes ix (with x =
(1 . . . X)) refining a goal g, the premises being noted as pjx
(with jx = (1 . . . Jx) and the conclusion being written as c
(i.e. the goal). The inference nodes are then modeled as two
sets of constraints:

164

Figure 1: Example of a goal refinment

c ≤
X∑

x=1

ix (9)

(∀x)ix ≤ 1
Jx

Jx∑

jx=1

pjx (10)

Actually, this constraints structure is used for goal refine-
ment, goal operationalization (i.e., decomposition of goals
into tasks) and tasks realization (i.e. realization of tasks
thanks to particular features). Consequently, the conclusion
c can be instantiated by a goal or a task and the premises
can be goals, tasks or features. In order to illustrate those
constraints, consider the following constraints instantiating
the goal refinement from Fig.1.

g1 ≤ i1 + i2 (11)

i1 ≤ (g2 + g3 + g4)/3 (12)

i2 ≤ (g5 + g6)/2 (13)

A requirement can be mandatory, optional, or neither. A
mandatory goal means that it must be satisfied while an
optional goal means that it is more desirable that it is sat-
isfied, than not, but we will still accept a system which fails
to satisfy it. Consequently, additional constraints have to
be applied to each goal model. E.g., we assume that a prod-
uct will be relevant to a customer if all mandatory goals
are satisfied. This is expressed by the following constraint.
Consider that a goal model is composed of a set of manda-
tory goals gi with i ∈ Y and where Y is the set of indices of
mandatory goals, then the constraint is equal to:

gj −
1

|Y \ j|
∑

i∈Y \j

gi = 0 (14)

with j ∈ Y . Then, optional goals can be satisfied only if
all mandatory ones have been satisfied:

∀o ∈ O : go ≤ gj (15)

where O is the set of indices of optional goals and gj is any
mandatory goal. We need to define this constraint with only
one mandatory goal as they are mutually required because
of (14).

3.3 Tasks realization
Modeling task realizations follows the same pattern as goal

refinement. For example modeling the following task real-
ization (f1 ∧ f2)∨ (f1 ∧ f3) → t1 (which states that the task
t1 will be realized either with the features f1 and f2 or with
f1 and f3) will use the following equations:

Figure 2: Example of various feature diagram defi-
nitions

t1 ≤ or1 + or2 (16)

or1 ≤ (f1 + f2)/2 (17)

or2 ≤ (f1 + f3)/2 (18)

where ori variables are introduced to represent disjunc-
tions.

4. FURTHER COMMONALITY AND VARI-
ABILITY ANALYSIS

The output of the mathematical model consists among
others of different sets of features satisfying each market seg-
ment. The model determines if those features are developed
during domain whether application engineering.

Actually, the software products satisfying the different
market segments (i.e. goal models) could not be members
of the SPL for two reasons. Firstly, they can include fea-
tures developed exclusively for these market segment. Con-
sequently, the product has more features than possible SPL
members have. Secondly, it is not mandatory to base the
feature constraints definition of the SPL on the strict inter-
pretation of the model output. For example, assume that
the model determines the four following products: p1 =
{f1, f2, f3, f6}, p2 = {f1, f2, f4, f6}, p3 = {f1, f2, f5} and
p4 = {f1, f2, f4, f7}. Moreover, it considers that {f1, f2, f4,-
f6} ⊆ CAB. A strict definition of the SPL described in a fea-
ture diagram could be one such as in Fig.2(a). However, SPL
engineers could decide to eventually design a SPL such as in
Fig.2(b) which also allows the definition of px = {f1, f6, f4}.
While the features and the features constraints identified

before the optimization described the software variability,
the different decisions taken about the feature constraints
in this commonality and variability analysis (as well as pos-
sible feature aggregation, addition of feature compound...)
will result in the definition of the Software Product Line vari-
ability which describes the variation between the systems
that belong to a SPL in terms of properties and qualities.
This analysis is required to disambiguate the two types of
variability [16]. Acher et al. suggested a method able to
extract feature diagrams from products description [17] and
consequently able to support this analysis.

5. CONTEXT-AWARE CONSIDERATIONS
In this section, we describe how to adapt the mathemat-

ical model to various SPLE situations. First, we make a
distinction between market strategies. Then, we describe

165

how to take into account the clear separation between do-
main and application engineering teams. Finally, we show
that our model can, to some extent, introduce legacy com-
ponents considerations.

5.1 Mass-Customization or Mass-Markets
K. Schmid identified two product strategies: the mass-

customization and the mass-markets [18]. Depending on
the strategy, constraints of the mathematical model will be
different.

In a mass-market situation, the product is mainly defined
by the producing organization in order to sell the product
in a market segment to a large number of customers during
a certain span of time. Consequently, if goal values are an
annual expected revenue, revenues from the model can be
added each year. Moreover, this product can be improved
with new features and a new release can be sold to this
segment. This product strategy is the default situation in
our mathematical model. Each goal model represents the
aggregated needs of a particular market segment and goal
values are prediction of yearly sells.

In a mass-customization situation, each product is de-
signed for the specific needs of a customer. Consequently,
a product is sold only once and estimated revenue can be
obtained only once. It means that each goal model captures
the needs of a particular customer, which implies that it
can be satisfied only once. However, we can distinguish two
situations. In the first case, once a product is derived and
deployed customer needs are considered as satisfied and no
more changes will be accepted. We will then add these sets
of constraints:

∀m, am :
T∑

t=1

gam,t ≤ 1 (19)

∀m, am :
T∑

t=1

gam,t ≤ pm,t (20)

∀m :
T∑

t=1

pm,t ≤ 1 (21)

where pm,t is equal to 1 if a product for the market m is
delivered at time t and (19) states that a goal can be satisfied
only once through the whole set of considered periods and
(20) and (21) state that there is one single release of the
product dedicated to the customer m.

In the second situation, a product can be updated and a
new release can be deployed. In this case, we can consider
that unsatisfied goals can still be satisfied later in time. In
this case we have to add only the set of equations (19).

5.2 Separation of Domain and Application En-
gineering Teams

Organizations can for various reasons [6] decide to sep-
arate or merge domain and application engineering teams.
Those distinct situations can be integrated in our mathe-
matical model. Merged teams is the default situation where
wt in (3) represents the available development resources for
one period dedicated to both domain and application engi-
neering.

In order to make a distinction between domain engineering
and application engineering, we have to replace the decision

variables wt by wD
t and wA

t which represent respectively
development weeks for domain engineering and application
engineering. Then, (3) has to be replaced by:

∀t :
K∑

k=1

∆ckf
cab
k,t ≤ wD

t (22)

∀t :
M∑

m=1

K∑

k=1

(
ckf

u
k,m,t + δckf

r
k,m,t

)
≤ wA

t (23)

Further situations can also be modeled, e.g. two ba-
sis team dedicated to domain and application engineering
helped by a flexible team which could be working on both
domain and application engineering.

5.3 Encapsulation of Legacy Systems
Developing a SPL on the basis of legacy systems by wrap-

ping some components is a common situation in SPLE. For
instance, as described by F. van der Linden, a legacy com-
ponent can be first wrapped and integrated to a SPL before
it will be replaced by a new component [6].

This situation is modeled by adjusting the cost of integrat-
ing a feature to the CAB. For example, consider a financial
calculation module which was present in a legacy system.
We can then consider two features realizing the same tasks
where f1 is the legacy module and f2 is a similar module
developed from scratch. Then we can deduce the cost to
integrate f1 to the CAB will be lower than the cost to inte-
grate f2. We also have to fix the variable fu

1,m,t = 0 since
the legacy module can not be developed only for a single
product.

Nonetheless, a comprehensive approach of this context
should consider extra maintenance cost introduced by legacy
components in the CAB. Those extra costs have to be inte-
grated in the cost function.

6. CHANGE AND ITERATIVE DEVELOP-
MENT

We advocate to apply this model in an iterative and in-
cremental development process and not in a predictive way.
Since all products will not be developed at once and since
the CAB will incrementally grow as new products are devel-
oped, it would be useful to frequently reevaluate the scope.

This results from two facts. First, developing a SPL is
a long term process and the SPL life cycle is often largely
longer than for a simple software product. So all products
can not be developed at the same time. Secondly, it is im-
possible to exactly predict and evaluate customer needs sev-
eral years in advance. Environment changes are frequent
and can affect previously stated customer needs. Addition-
ally the probability that changes occur is a function of the
considered time span. Considering a too long time will ob-
viously result in unexpected change.

Our suggested method can not be considered as an exact
predictive method to be applied in the early phase of a SPL
life cycle without any later changes. It has to be used in an
iterative development process and results have to be consid-
ered as a sketch for further investigation. Those considera-
tions justify our use of goal models since they allow to model
high-level requirements (which are less likely to change). In-
stantiated with an incremental and iterative development
method, our model can help to control the development and
release planning since we can integrate environment changes

166

in goal models and we can model the development progress
of the CAB. E.g. a feature already developed and integrated
to the CAB can get a zero development cost and a positive
reuse cost.

7. EXAMPLE OF APPLICATION ON A CA-
SE STUDY

In this section, we apply our method to the case study
of market maker Software AG [1, 6]. In the first part of
this section, we present the organization and we state both
problem and mathematical model. In the second part, we
present the result of the SPL scope optimization.

7.1 Problem Statement
market maker is an organization providing applications

able to collect, display and manage financial data. At the
end of 2004, the SPL development team consisted of around
25 people and the annual revenue was e 5 million per year.
For this organization, SPLE was regarded as a key strategic
element in addressing new market segments. In 1999, “when
markets were boiling and the demand for innovative products
was immense”, they started the development of a SPL for
web-based applications, called i*ProductLine nearly from
scratch. This SPL aimed at developing web-applications
able to collect, validate, store, analyze, aggregate, repack-
age and distribute financial data. We show in the remainder
of this section how our mathematical model can be applied
to the market marker case study and how it can determine
the SPL scope as well as sketching a development and a
release planning.

In 2004, i*ProductLine was instantiated for various mar-
kets: information systems for asset managers in banks, mar-
ket data servers integrated in brokerage systems for on-line
ordering, specialized data display services for metal traders
and grains and oilseed traders and, content provisioning for
financial web portals. A small goal model is depicted for
each market segment in Fig.3. For the rest of this exam-
ple, we assume some potential annual revenue for each goal.
Those revenues are presented in thousands of Euro near each
related goal. Mandatory goals have bold circles.

On the basis of the case study description, we identified a
set of 13 coarse-grained features able to realize tasks identi-
fied in each goal models. They are described in Tab.2. We
did not consider legacy systems. The CAB integration cost
and the reuse cost were calculated by applying respectively
a design-for-reuse factor and a design-with-reuse factor on
the traditional development cost. We assumed those fac-
tors to be respectively ∆ = 1.5 and δ = 0.2. Some feature
dependencies were identified before the optimization of the
product portfolio. Firstly, we expressed that requesting fi-
nancial data from various xignite web services, i.e. features
f9,f10,f11 and f12, required that the feature f8, a data im-
port module, was present in the product. In a propositional
logic statement, it is expressed as f9 ∨ f10 ∨ f11 ∨ f12 → f8.
We also add the following constraint: f4∨f5∨f6 → f3. Sec-
ondly, we stated that if the interface is designed using Java
Servlets (i.e. f2), and that the product uses a database (i.e.
f3), then the product needs to use the feature f13 which is
JDBC. This constraint was formalized as follows:

∀m, t : f2,m,t + f3,m,t ≤ 1 + f13,m,t (24)

Additional constraints had to be considered. Indeed, the

Table 2: Description of identified features and re-
lated effort required for unique development in
terms of development weeks

Feature Cunique

f1 HTML Interface 150
f2 Java Servlet Interface 250
f3 DataBase 400
f4 Portfolio Module 300
f5 User Management Module 300
f6 Data Storage 250
f7 Data Processing 450
f8 Data Import 300
f9 xignite metals 50
f10 xignite commodities 50
f11 xignite stocks real-time 50
f12 xignite stocks delayed 50
f13 JDBC 150

management demanded that a first product would had been
developed within the first 12 months. They also decided to
create a complete new team dedicated to the SPL develop-
ment. There was no team separation between domain and
application engineering.

The selected discount rate was the weighted average cost
of capital (WACC), that is the rate that a company is ex-
pected to pay on average to all its security holders to finance
its assets. Due to really high variation of the WACC in the
software industry [19], we applied an average WACC calcu-
lated for small-medium organizations from 1996 to 2006. It
is equal to 17.14% [19].

Once goals and features were identified and evaluated, we
had to express how those features could realize the tasks
from the goal models. Such assessment is depicted in Tab.3.

In this problem, we consider 6 years of concern. Devel-
opment was allocated to the first 4 years and revenues of
the 5th and 6th year were a discounted projection of the 4th

year.

7.2 Results Presentation
The entire model was written and resolved with the GNU

Linear Programming Kit2 (GLPK). Results are depicted in
Tab.4, Fig.4 and Fig.5.

During the first period, the model plans to develop prod-
ucts for trading market and web portal market. They con-
sist respectively of features {f2, f8, f9, f10} and {f2, f8, f9}.
Features {f2, f8, f9} will integrate to the CAB. Those prod-
ucts satisfy goals g1, g2, g3, g4 of traders and goal g1 of web
portals.

During the second period, the CAB will be extended with
the feature f3. This feature will be reused for starting the
development of the banks product. It is also planned to
reuse it in order to extend the trader product. This product
will be further extended with features f6 and f13 (developed
uniquely for this product). This new release should satisfy
goals g5 and g6.

In the third period, it is planned to develop f13 again
and integrate it to the CAB. This feature will be used in
products for web portal and brokers. The feature f4 will
also be integrated into the CAB and it will extend products
for web portals and banks. Finally, the product for banks is
released (after starting its development in the second period)

2http://www.gnu.org/software/glpk/

167

Figure 3: The 4 goal models used to design market maker customer segments

Table 3: Task realization description

Web Portals Commodity Traders Brokers Banks

(f2 → t1) (f9 → t1) (f8 → t1) (f11 → t1)
(f6 → t2) (f1 ∨ f2 → t2) ((f4 ∧ f5 ∧ f6) → t2) ((f5 ∨ f6) → t2)
((f9 ∨ f10 ∨ f11 ∨ f12 → t3) (f6 → t3) ((f1 ∨ f2) → t3) (f7 → t3)
(f1 ∨ f2 → t4) (f2 → t4) (f2 → t4) (f12 → t4)
((f4 ∧ f5) → t5) (f10 → t5) (f7 → t5) (f4 → t5)

and it should satisfy goal g3.
The last period of development is dedicated to complete

the product for brokers. f2, f3, f4 and f8 are reused from
the CAB while f5, f6 and f7 are uniquely developed for this
product.

We see in Fig.5 that break even is reached during the third
period. The expected discounted operating profit over the 6
periods is about e 12.300.000 and the expected discounted
revenue of the last period is about e 4.200.000.

Fig.4 shows a possible feature diagram for describing the
SPL variability after an analysis of the variability and com-
monality between products. Two compound features were
added (i.e. i* and data).

8. RELATED WORK
Although several SPL scoping methods have been designed,

few address the optimization goal of the product portfolio
scoping on the basis of the profitability concern.

Recently, J. Müller suggested a mathematical program to
optimize the product portfolio on the basis of a profit maxi-
mization objective [4]. His model is based on previous work
in product lines (i.e. not software) and on conjoint anal-
ysis. Although the idea to use a mathematical program to
optimize the SPL scope is similar to ours, the underlying as-
sumptions of the two models are different. First, he assumes
a SPL and all its valid configuration products and it opti-
mizes the selection of the product-segment pair given that a
configuration products can be implemented by a various set
of asset components. His method allows to determine the

Figure 4: A possible feature diagram for
i*ProductLine

optimal price and take competitors into account. However,
it does not introduce any time considerations what prevents
any possibility of setting development priorities or release
planning which is however a primary concern in SPLE and
assume an a priori complete SPL specification.

Several survey of Software Product Line Scoping have
been performed. In their survey [5], I. John and M. Eisen-
barth identify 16 scoping approaches but they highlight that
scoping optimization has only been partially addressed. More-
over none of them integrate the optimization of the three
types of scoping.

168

Table 4: The product portfolio planning - Increments between periods are bolded, r = reuse, u = uniquely developed

Per. Segment Satisfied goals
Product composition

CAB
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13

1

traders {g1, g2, g3, g4} r r r u

{f2, f8, f9}
web {g1} r r r
banks ∅
brokers ∅

2

traders {g1, g2, g3, g4, g5, g6} r r u r r u u

{f2, f3, f8, f9}
web {g1} r r r
banks ∅ r
brokers ∅

3

traders {g1, g2, g3, g4, g5, g6} r r u r r u u

{f2, f3, f4, f8, f9, f13}
web {g1, g2} r r r u r r r
banks {g3} r r
brokers ∅

4

traders {g1, g2, g3, g4, g5, g6} r r u r r u u

{f2, f3, f4, f8, f9, f13}
web {g1, g2} r r r u r r r
banks {g3} r r
brokers {g1, g2, g3, g4} r r r u u u r r

0

5000

10000

15000

20000

25000

1 2 3 4 5 6

Period

Cash out Cash in

Figure 5: Expected discounted cumulated cash flows

Regarding the five methods addressing the product port-
folio analysis [20, 21, 12, 22, 23] only [20] also addresses asset
scoping. Moreover as highlighted by J. Müller none of those
five methods integrate market and cost perspectives which
prevents any profitability consideration.

The Quality Function Deployment Product Portfolio Plan-
ning suggested by Helferich [21] elicits required features of
products of a SPL and asks engineers about technical feasi-
bility. It also allows to identify customer segments. However
it does not consider revenue and cost aspects and there-
fore cannot be used for profit maximization. However, this
method can usefully be regarded as complementary to ours
since it identifies features and can be used to match them
with goal models.

Niehaus et al. present a Kano model which allows to de-
sign customer-oriented SPL [12]. It is focused on the product
portfolio planning but does not consider any asset scoping.

The issue of a SPL release planning is addressed by sev-
eral authors but they do not address neither composition of
product portfolio nor asset scoping [22, 23]. In single soft-
ware engineering, Denne et al. already highlighted the im-
portance of “optimizing the time at which value is returned
to the customer, instead of concentrating only on control-
ling risk and cost. [24]” They suggest a method to decom-

pose the system into Minimum Marketable Features (i.e.
units of customer-valued functionality) and determine the
sequence of incremental release which optimizes the NPV
of the system. Their research results are complementary to
our method.

9. CONCLUSION AND FURTHER WORK
In this paper we suggested that when scoping, identifica-

tion and evaluation of the three scope types (i.e. product
portfolio, domain and assets scoping) can be performed sep-
arately but the optimization of those scopes has to be per-
formed in an integrated model. Consequently, we proposed
a mathematical program able to optimize the SPL scope
and to sketch both a development and a release planning.
Our method is based on the assumption that all SPL objec-
tives are eventually driven by profit maximization. Revenue
is a function of the customer satisfied needs and cost is a
function of the feature development effort.

Our model is based on the description of customer needs
in terms of goals. This use is justified because firstly, we
showed that goals are better than features to capture the
customer’s WTP and secondly, they are able to capture the
alternative solutions of a requirements problem what is use-
ful to find large commonalities between market segments.
More precisely, we use Techne because it allows automated
reasoning and it is compatible with other goal-oriented re-
quirements language.

We show that our mathematical model can be instan-
tiated in several contexts such as a market customization
strategy or a mass-customization strategy. It can deal with
SPL development from scratch as well as from the basis of
legacy software. The output of our model is a good basis
for further commonalities and variabilities analysis. We also
demonstrated its applicability with an example based on the
market maker case study.

In further work we will consider the following extensions.
Firstly, we estimated revenue on the WTP of satisfied goals.
However, this assumption constraints the applicability of our
model to monopoly setting. Further work should integrate
customer decision in presence of competitors products. Sec-
ondly, we will study implications and difficulties of using
conjoint analysis with goals instead of features. Thirdly,
we limited our definition of features to Batory’s definition

169

which allows to simplify the relation between feature and
cost. However, a more complete feature definition would re-
quire to take into account the non-monotonicity between fea-
tures and SPL cost function. Then, we need to integrate in
our model both risk management (e.g. with stochastic mod-
els) and maintenance cost which should impact the CAB size
and legacy components integration. Finally, we also started
the development of a tool to support the application of this
model that we intend to extend with a real case study.

10. REFERENCES
[1] P. Clements and L. Northrop, Software Product Lines:

Practices and Patterns. Addison-Wesley, 2002.
[2] P. Clements, “On the importance of product line

scope,” in Software Product-Family Engineering
(F. van der Linden, ed.), vol. 2290 of Lecture Notes in
Computer Science, pp. 102–113, Springer Berlin /
Heidelberg, 2002.

[3] K. Schmid, “A comprehensive product line scoping
approach and its validation,” in Proceedings of the
24th International Conference on Software
Engineering, ICSE ’02, (New York, NY, USA),
pp. 593–603, ACM, 2002.

[4] J. Müller, “Value-based portfolio optimization for
software product lines,” in Proceedings of the 15th
International Software Product Line Conference,
SPLC ’11, (Washington, DC, USA), pp. 15–24, IEEE
Computer Society, 2011.

[5] I. John and M. Eisenbarth, “A decade of scoping: a
survey,” in Proceedings of the 13th International
Software Product Line Conference, SPLC ’09,
(Pittsburgh, PA, USA), pp. 31–40, Carnegie Mellon
University, 2009.

[6] F. J. v. d. Linden, K. Schmid, and E. Rommes,
Software Product Lines in Action: The Best Industrial
Practice in Product Line Engineering. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2007.

[7] D. L. Nazareth and M. A. Rothenberger, “Assessing
the cost-effectiveness of software reuse: A model for
planned reuse,” Journal of Systems and Software,
vol. 73, no. 2, pp. 245 – 255, 2004.

[8] I. J. Jureta, J. Mylopoulos, and S. Faulkner,
“Revisiting the core ontology and problem in
requirements engineering,” IEEE International
Requirements Engineering Conference, pp. 71–80,
2008.

[9] A. Classen, P. Heymans, and P.-Y. Schobbens,
“What’s in a feature: a requirements engineering
perspective,” in Proceedings of the Theory and practice
of software, 11th international conference on
Fundamental approaches to software engineering,
FASE’08/ETAPS’08, (Berlin, Heidelberg), pp. 16–30,
Springer-Verlag, 2008.

[10] D. Batory, D. Benavides, and A. Ruiz-Cortes,
“Automated analysis of feature models: challenges
ahead,”Commun. ACM, vol. 49, pp. 45–47, December
2006.

[11] M. Svahnberg, J. van Gurp, and J. Bosch, “A
taxonomy of variability realization techniques:
Research Articles,” Software Practice & Experience,
vol. 35, no. 8, pp. 705–754, 2005.

[12] K. Pohl, G. Böckle, and F. J. v. d. Linden, Software

Product Line Engineering: Foundations, Principles
and Techniques. Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 2005.

[13] G. Böckle, P. Clements, J. McGregor, D. Muthig, and
K. Schmid, “A cost model for software product lines,”
in Software Product-Family Engineering (F. van der
Linden, ed.), vol. 3014 of Lecture Notes in Computer
Science, pp. 310–316, Springer Berlin / Heidelberg,
2004.

[14] K. Lee and K. Kang, “Feature dependency analysis for
product line component design,” in Software Reuse:
Methods, Techniques, and Tools (J. Bosch and
C. Krueger, eds.), vol. 3107 of Lecture Notes in
Computer Science, pp. 69–85, Springer Berlin /
Heidelberg, 2004.

[15] I. J. Jureta, A. Borgida, N. A. Ernst, and
J. Mylopoulos, “Techne: Towards a new generation of
requirements modeling languages with goals,
preferences, and inconsistency handling,” in 2010 18th
IEEE International Requirements Engineering
Conference, pp. 115–124, IEEE, Sept. 2010.

[16] A. Metzger, K. Pohl, P. Heymans, P.-Y. Schobbens,
and G. Saval, “Disambiguating the documentation of
variability in software product lines: A separation of
concerns, formalization and automated analysis,”
Requirements Engineering, IEEE International
Conference on, vol. 0, pp. 243–253, 2007.

[17] M. Acher, A. Cleve, G. Perrouin, P. Heymans,
C. Vanbeneden, P. Collet, and P. Lahire, “On
extracting feature models from product descriptions,”
in Proceedings of the Sixth International Workshop on
Variability Modeling of Software-Intensive Systems,
VaMoS ’12, (New York, NY, USA), pp. 45–54, ACM,
2012.

[18] K. Schmid, “An initial model of product line
economics,” in Software Product-Family Engineering
(F. van der Linden, ed.), vol. 2290 of Lecture Notes in
Computer Science, pp. 198–201, Springer Berlin /
Heidelberg, 2002.

[19] S. Kalaiselvi, Financial Performance in Software
Industry. New Delhi, India: Discovery Publishing
House, 2009.

[20] G. Chastek, P. Donohoe, K. C. Kang, and S. Thiel,
“Product line analysis: A practical introduction,” 1998.

[21] A. Helferich, G. Herzwurm, and S. Schockert,
“Qfd-ppp: Product line portfolio planning using
quality function deployment,” in Software Product
Lines (H. Obbink and K. Pohl, eds.), vol. 3714 of
Lecture Notes in Computer Science, pp. 162–173,
Springer Berlin / Heidelberg, 2005.

[22] L. J. M. Taborda, “Generalized release planning for
product line architectures,” in Software Product Lines
(R. Nord, ed.), vol. 3154 of Lecture Notes in Computer
Science, pp. 153–155, Springer Berlin / Heidelberg,
2004.

[23] M. I. Ullah, G. Ruhe, and V. Garousi, “Decision
support for moving from a single product to a product
portfolio in evolving software systems,” J. Syst. Softw.,
vol. 83, pp. 2496–2512, Dec. 2010.

[24] M. Denne and J. Cleland-Huang, “The incremental
funding method: Data-driven software development,”
IEEE Softw., vol. 21, pp. 39–47, May 2004.

170

