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Abstract
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the formal specification of rmls. The paper shows how to use tf (i) to specify a new rml, (ii)
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to analyze rmls by analyzing interesting properties of their tf specifications.
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1 Introduction

Requirements Engineering (re) research focuses on issues that arise when it is necessary to elicit,
model, and analyze the purpose of a system-to-be in order to derive its specification. Such issues are
present both when engineering new systems, and when changing existing ones.

A basic result in re research is knowledge on how to solve these issues. Surveys show that there
is a considerable amount of such knowledge [41, 10] in response to the various issues of interest to
the field [51], including, for example: “How to gather information about a system-to-be and its
environment?” [21, 27, 15], “Which of the gathered information is relevant to re?” [13, 52, 31], “How
to clarify the elicited information, to avoid such problems as vagueness and ambiguity?” [40, 37, 30],
“How to determine which requirements have highest priority, for whom, and why?” [34, 2, 26], “How
to help stakeholders agree on common priorities over requirements?” [36, 4, 32], “How to distribute
the responsibility for the satisfaction of requirements to the system-to-be, systems it might interact
with, and people in its environment?” [13, 9, 19], “How to estimate costs, risks, and deadlines for
making systems that satisfy requirements?” [6, 5, 43], “How to evaluate how complete requirements
are, and if any important requirements may have been missed?” [24, 44, 53], “How to evaluate if the
requirements are consistent, and to manage inconsistent requirements?” [18, 25, 45], “How to specify
and compare alternative strategies to satisfy the same requirements?” [40, 37, 39], “How to evaluate
the quality to which requirements would be satisfied by a system-to-be?” [7, 40, 35], “How to check if
a system-to-be specification satisfies requirements?” [20, 19, 17], “How to keep track of changes to
requirements, reasons for these changes, their impact on existing requirements and systems, and how
to propagate these changes in an existing specification of a system-to-be?” [22, 42, 12], “How to do
re for systems capable of adapting to their enviroment?” [11, 46, 8], and others.

It is usually necessary to have a representation of requirements, that is, a requirements model
when solving these issues. When requirements are elicited, they are added to such models; when they
are negotiated, the parties involved use the model to facilitate communication; the model is a basis
for estimating costs, risks, and deadlines; it is used to evaluate completeness and clarity; and so on.

Requirements Modeling Languages (rmls) are used to make requirements models. Research on
rmls goes back to the original framework for requirements models, rmf [23]. Many different rmls
have been proposed since, including erae [16], kaos [13], i* [48], lqcl [28], and Techne [29].

rmls have different shapes and forms. rmf is a custom formal language with built-in abstraction
mechanisms, including aggregation, classification, and generalization. kaos uses the language of
first-order linear temporal logic, and categorizes ground formulas as instances of concepts, such as
goals, requirements, constraints, while categorizing proof patterns as goal refinement, conflict, or other
relations of interest when doing re. i* has a custom visual notation, which comes together with axioms
constraining the interpretation of i* models. lqcl uses the language of classical propositional logic
to represent requirements, imposes no classification to requirements, and uses a set of inference rules
that are paraconsistent, so that it allows automated reasoning over inconsistent sets of requirements.
Techne has its own formal language, where expressions are a subset of propositional Horn clauses,
with a mechanism to assign types of requirements to facts and clauses.

This diversity highlights two key issues for the research on the design of rmls. Firstly, it is unlikely
that there is one best rml, which we have somehow failed to discover by now; rather, different rmls
may be useful for different domains, system classes, projects, organizations, etc. There is therefore a
need to make potentially many rmls on demand1, and so, a need for more general knowledge about
how to make new rmls. Secondly, once we accept that a proliferation of rmls is not undesirable,
it becomes critical to develop a body of knowledge on how to relate, extend, compare, and analyze
rmls in a systematic way.

This paper proposes a framework, called the Techne Framework (tf), for the specification of
rmls. The motivation for producing such specifications is to facilitate the presentation, extension,
merging, and comparison of rmls, as well as deal with ambiguity, imprecision, incompleteness, and
inconsistency in them.

1In this paper alone, we specify 12 rmls: T1, iS1, iS2, iS3, T1t, T1qc, T1op, T1r, T1me, T0, TS1, T1rx.
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tf is used for the declarative specification of rmls. This means that a specification will give (i)
necessary conditions for the rml to apply to a problem encountered during re, (ii) the properties
of the solution sought when using that rml, and (iii) the rules to satisfy when using the rml. The
specification will not describe steps to take to find the solution, but allow different paths to solutions.
Which of these paths are better than others is a question for a procedural specification of re methods
(also called re techniques [47]) that use these rmls, and is not covered in this paper.

tf is based on the idea that an rml embeds three kinds of knowledge for solving problems in re;
we call them Problem-Solving, Interface, and Domain knowledge. Problem-Solving Knowledge is the
general knowledge we apply whenever we identify an instance of a problem we learned to solve before.
Domain knowledge is what we know about the concrete situation in which we observed the problem
instance. Interface knowledge tells us how to combine Problem-Solving and Domain knowledge in
order to solve the problem instance.

For example, the specifics we know about the particular systems engineering project are our
Domain Knowledge, including, for example, stakeholders, their expectations from the system-to-be,
regulations applicable to the system-to-be, business processes it may need to support, etc. If we want
to use i* for that project, then all we know about i* is our Problem-Solving Knowledge, including
that we should look for for agents, and find out how they depend on one another to achieve goals,
execute tasks, and deliver resources. i* will not be able to capture all we know about the specific
project: it is Interface Knowledge that tells us which of the available Domain Knowledge we should
use when making an i* model of the system-to-be.

A tf specification of an rml has three parts, corresponding to the three knowledge types:

1. The Domain part includes (i) the Knowledge Base (kb) that holds the representation of Domain
knowledge, (ii) the language for writing that kb, and (iii) the inference rules to draw conclusions
from the kb. The contents of the kb changes from one problem instance to the next, while the
representation language and inference rules remain the same.

2. The Interface part includes functions, called selectors, which return statements from the Domain
kb. They select only those statements manipulated with Problem-Solving Knowledge.

3. The Problem-Solving part also has a kb, a predicate language for writing that kb, inference
rules, and rules that the kb has to satisfy. The key ideas of the rml are reflected in the selection
of predicates allowed in the language, and in the rules that relate the predicates. Terms in
predicates are members of the Domain kb: if x is a proposition in the Domain kb, and there
is a selector which returns x, then there will be statements over x in the Problem-Solving
kb. For example, if x is the propostion “an ambulance should be dispatched to a reported
incident location”, then there may be a statement in the Problem-Solving kb which says “x is
a requirements and the system-to-be must satisfy it”, written Requirement(x).

A tf specification is formal, in the sense that all its parts are written using a formalism that
has a well-defined mathematical basis. As we will show in the paper, this helps us extend, merge,
and compare rmls. It also helps us define and analyze interesting properties of rmls via formal
properties of their tf specifications, including:

• Conciseness, which fails if there are parts of the rml that can be removed, without affecting
our ability to solve the problem with what remains.

• Clarity, which fails if we do not always know whether we have found a solution. Clarity succeeds
if we can determine, at all times when applying the rml, if we have found at least one solution.

• Decisiveness, which fails if we can find more than one solution instance for the same problem
instance. If so, it means that the rml does not produce a unique solution to a problem.

A tf specification of an rml neither is, nor is intended to be the unique or universal specification
of it. An rml reflects the knowledge of its designers, and a tf specification thereof as an attempt to
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represent some of that knowledge. We accept that there can be different tf specifications of what
seems to be the same rml. We leave for future work the evaluation of the coverage of some rml by
its tf specification.

This paper is organized as follows. Section 2 introduces basic terminology and conventions. Section
3 defines the Techne Framework. Section 4 illustrates the use of tf for the specification of a new rml.
Section 5 illustrates the use of tf to specify an existing rml. Section 6 illustrates how to use tf to
specifiy changes of rmls, whereby change we mean adding or removing capabilities to rmls. Section
7 illustrates how to merge the tf specifications of different rmls to create a new rml. Section 8
discusses how to analyze rmls by analyzing the properties of their tf specifications.

2 Terminology and Conventions

All rmls in this paper are specified with tf. All specifications are declarative and formal, in the
sense explained in Section 1.

A tf specification has three parts, Domain Knowledge (denoted D), Interface Knowledge
(I), and Problem-Solving Knowledge (S). None of these are Knowledge Bases (kbs) themselves,
but D and S include kbs. We discuss the reasons for this in Section 3.

A kb is a formal representation of a set of propositions [38]. Proposition refers to the meaning
of a declarative natural language sentence. A proposition is represented by an expression.

As we can use different formal languages in tf specifications, there are different kinds of expressions.
If a language is propositional, such as in propositional logic, we will say that a proposition is represented
either by an atom, which is a propositional variable, or a formula, which combines atoms according
to the syntax of the language. In case of a predicate language, such as first-order logic, we will say
that a proposition is represented by a ground formula, a formula with no free variables. A free
formula is a formula with free variables.

An expression is either an atom, a formula, or a ground formula, and the context will make it
clear which it is; when we write expressions, we are referring to a set of expressions.

Language refers to a set of expressions that all satisfy a specific grammar. A grammar is a set
of rules for generating expressions. A formalism is a combination of language and inference rules
on its expressions. By inference rule, we mean any function which takes one, and returns another
(potentially equal) set of expressions. A consequence relation relates a set of expressions, called
premises, to an expression, called conclusion, if and only if there is a proof from the former to the
latter; such a proof is a finite sequence of expressions, each of which is an axiom of the language over
which the consequence relation is defined, or follows from the preceding expressions in the sequence
by the application of an inference rule.

Given a consequence relation and a set of expressions X, the closure of X is a set Y that includes
all expressions which are conclusions of X according to that consequence relation.

We use lowercase Latin letters to refer to expressions and free formulas. We use uppercase Latin
letters to denote kbs or sets of free formulas. What exactly we refer to will be clear from the context.

When we write that an expression x is in Problem-Solving Knowledge, we mean that x is in
some set which is part of S. Analogous reading applies to expressions which we say are in D. It does
not apply to I, as Interface Knowledge includes only functions.

When we say that Problem-Solving Knowledge is about Domain Knowledge, we mean
that expressions in the former range over expressions of the latter. For this to be the case, expressions
in S need to be those of a predicate language, and the set of allowed constants in that language must
include all expressions in Domain Knowledge. In other words, at least a part of (if not, in some cases
the entire) universe of discourse of Problem-Solving Knowledge needs to be restricted to expressions
in D, that is, to what we know about the specific problem instance.

For example, suppose that S can include expressions that use a unary predicate Requirement(·),
such that Requirement(x) reads “x is a requirement”. Let y be an atom in D, and refer to the
proposition “when an incident is reported, an ambulance is dispatched”, then the expression y is
in D, but there may also be an expression Requirement(y) in S, through which we convey the idea
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that, according to Problem-Solving Knowledge, y is a requirement. Then, there may be a rule in S,
according to which if a requirement in a kb X which holds Domain Knowledge expressions is not
satisfied, then there is no solution in that kb, which may be written:

∀a ∈ X Requirement(a) ∧ ¬Satisfied(a)⇒6 ∃Y ⊆ X Solution(Y ).

It is by defining predicates that range over Domain expressions, and rules over these predicates, that
we capture Problem-Solving Knowledge with a declarative specification.

3 Techne Framework

tf suggests (i) questions that an rml specification needs to answer, and (ii) structure that this
specification should have. The structure organizes the answers to the questions.

Table 1 gives the structure of a tf specification. It lists the three parts of the specification, and
their respective components. Each component answers questions, as follows:

1. What do we know about the concrete situation we are in, and which may include a problem
instance? Domain Knowledge answers this question by answering the following, more specific
ones:

(a) What do we know about that concrete situation? Answer: Domain kb, denoted X, as it
includes a representation of propositions about the situation we are in.

(b) How do we represent what we know about the concrete situation? Answer: Domain
language, LD, as it defines the language we use to write the Domain kb.

(c) What can we conclude from what we know about the concrete situation? Answer: All
expressions in the closure of X, and to compute any member of the closure, we need the
Domain consequence relation, |vD, defined from inference rules that we allow over Domain
Knowledge. Depending on our choice of the Domain formalism, it may be more relevant
to use the satisfiability relation, instead of a consequence relation. When we do so, we will
denote the latter with |≈D.

2. Given what we know about the rml, is there a problem instance we can solve with that rml
in the concrete situation we are in? Answer: Problem concept, Problem(·), because it defines
properties that should be satisfied by the Domain kb in order for a problem instance to exist.
If Problem(X) is true, then there is a problem instance in X.

3. Which of what we know about the concrete situation do we use to solve the problem instance?
Answer: Selectors in Interface Knowledge, as they will return, from Domain kb or its closure,
the expressions useful to solve the problem.

4. Is there a solution to the problem in the concrete situation we are in? Answer: Solution concept,
Solution(·, ·), as it defines properties that should be satisfied by the Domain kb in order for a
solution instance to exist. If Solution(Y,X) is true, then Y is a solution to the problem instance
in X.

5. How should we structure what we know about the concrete situation when we are solving the
problem? Answer: Sorts and Relations. Sorts gives categories to use for the classification of
knowledge we consider – through the selectors – as relevant for the resolution of the problem.
Relations gives relations that may exist, or that we may want to establish between the knowledge
we are considering while searching for solution instances.

6. How do we know how close we are to one or more solution instances? Answer: Statuses, as its
members define the properties that fragments of selected Domain kb should have, when there
is no solution instance, and when there are parts of one or more solution instances.
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Table 1: Structure of a tf specification.

Part Component Name and definition

D Domain Knowledge, includes:
LD Domain language: All expressions for the representation of Domain

propositions.
|vD or |≈D Domain consequence or satisfiability relation: Consequence or satisfiability

relation defined from inference rules over LD.
X Domain kb: kb such that X ⊆ LD.

I Interface Knowledge: Set of functions. Each is called a selector and is
from LD expressions to LD expressions.

S Problem-Solving Knowledge, includes:
LS Problem-Solving language: All expressions for the representation of

Problem-Solving propositions.
|vS or |≈S Problem-Solving consequence or satisfiability relation: Consequence or

satisfiability relation defined from inference rules over LS.
〈X〉S Problem-Solving kb: A kb such that 〈X〉S ⊆ LS and all expressions in

〈X〉S are about the Domain Knowledge expressions in X.
Sorts Sorts : A set of predicates, each referring to a sort.

Statuses Statuses : A set of predicates, each referring to a status of a sort.
Relations Relations : A set of predicates, each referring to a relation.

Evaluations Evaluations : A set of predicates, each referring to an evaluation.
Problem Problem concept : A predicate, such that if Problem(X) is true, then there

is a problem instance to solve in X.
Solution Solution concept : A predicate, such that if Solution(Y,X) is true, then

there is a solution instance Y in the problem in X.
Rules Rules : A set of expressions in LS that all Problem-Solving kbs must be

consistent with.
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7. If we have more than one solution instance, how can we compare them? Answer: Evaluations,
as they define order relations over solution instances, and allow the aggregation of these orders
into a total order over all solution instances.

8. How do we know if our way of solving the problem instance is correct? Answer: Rules, as they
define the rules that we need to satisfy while solving the problem instance.

To make a tf specification of an rml amounts to answering the questions above, and filling in
the answers to their respecitive tf specification components. We do this in Section 4 for a new rml,
and in Section 5 for an existing rml.

4 RML Specification

The tf specification in this section is for a new rml that can be used to solve the following problem:
Given goals and assumptions about the environment in which the system-to-be will run, find tasks
that need to be executed to achieve the goals and maintain the assumptions. The problem is inspired
by Zave & Jackson’s [52] statement of the so-called requirements problem. The rml is called T1.

We start with Domain Knowledge of T1. To make the Domain kb easily readable, we take the
language of classical propositional logic as the Domain language, and that logic’s consequence relation,
denoted `, as the Domain consequence relation. As we are not looking at a particular problem
instance for the moment, the Domain kb is some set of expressions in the Domain language. This
results in the following D part of T1.

DT1 = (Lcpl,`, X), where:

• Lcpl is the language of classical propositional logic.

• ` is the consequence relation of classical propositional logic.

• X is some subset of Lcpl.

The informal problem statement mentions goals, assumptions, and tasks. We want to be able to
say that an atom in the Domain kb is either of these; we need a selector that returns atoms only. To
solve the problem, we also need to be able to say that, given some tasks and assumptions, we can
conclude that they achieve or not some goals. We need this to answer such questions as “How is a
goal r achieved?” That is, we need to be able to talk in Problem-Solving Knowledge about proofs
that we can define from the Domain kb. It follows that we need selectors for proofs, and once we
have that, it will be useful to select only premises, or only the conclusion of a proof. This leads to the
following Interface Knowledge for T1.

IT1 = {atoms(·),minproofs(·), premises(·, ·), conclusion(·, ·)}, where:

• atoms(Y ) returns the set of atoms in Y ⊆ Lcpl.

• minproofs(Y ) = {(X1, z1), . . . , (Xn≥0, zn≥0)}, where for every i = 1, . . . , n, (Xi, zi) satisfies
the following conditions:

1. Xi ⊆ Y and Y ⊆ Lcpl,

2. zi is either a member of Lcpl, or ⊥ (read “inconsistency”),

3. Xi ` zi,
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4. there is no X ′i ⊂ Xi such that X ′i ` zi, i.e., Xi includes only the formulas necessary to
prove zi.

In a summary, minproofs(Y ) returns, for a given set Y of Domain expressions, the set of all
pairs (Xi, zi), in which Xi is the minimal set of expressions from Y that are sufficient to
deduce zi using `.

• premises(X, z) = X is the set of premises in a proof of z from X, if there is a proof.

• conclusion(X, z) = z is the conclusion in a proof of z from X, if there is a proof.

We use classical first-order logic (cfol hereafter) as the formalism in Problem-Solving Knowledge,
so that Problem-Solving language is the language of cfol, and the Problem-Solving kb a set of
expressions in that language. While we are interested in proofs in Domain Knowledge, our concern
in Problem-Solving Knowledge is only if the Problem-Solving kb satisfies or fails some properties
of interest. We consequently replace the Problem-Solving consequence relation by the satisfiability
relation |=. This gives us the first components of S in T1, as follows.

ST1 = (Lcfol, |=, 〈X〉S, Sorts, Statuses,Relations,Evaluations,

Problem(·), Solution(·, ·),Rules)

where:

• Lcfol is the language of cfol.

• |= is the satisfiability relation of cfol.

• 〈X〉S is a set of cfol expressions. All constants in these expressions are members of Domain
kb X, or of its closure.

Following the problem statement, we have the goal, assumption, and task sorts. A goal can be
achieved, an assumption maintained, and a task executed. This gives three statuses, one for each sort.
Only atoms from Domain Knowledge can be sorted, not other expressions. This is because we do not
use composite sorts: for example, let p ∧ q be a Domain expression, and let p be a requirement and q
an assumption; a composite sort would be the sort of p ∧ q.

Sorts = {G : atoms(Lcpl)× ℘(Lcpl) −→ {True,False},
A : atoms(Lcpl)× ℘(Lcpl) −→ {True,False},
T : atoms(Lcpl)× ℘(Lcpl) −→ {True,False}}

Statuses = {Achieved : {x | G(x, Y ) = True} × ℘(Lcpl) −→ {True,False},
Maintained : {x | A(x, Y ) = True} × ℘(Lcpl) −→ {True,False},
Executed : {x | T(x, Y ) = True} × ℘(Lcpl) −→ {True,False}}

where:

• G(x, Y ) = True reads “x is a Goal in Y ”, “x is not a Goal in Y ” otherwise.
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• A(x, Y ) = True reads “x is an Assumption in Y ”, “x is not an Assumption in Y ” otherwise.

• T(x, Y ) = True reads “x is a Task in Y ”, “x is not a Task in Y ” otherwise.

• Achieved(x, Y ) = True reads “Goal x is achieved in Y ”, “Goal x is not achieved in Y ”
otherwise.

• Maintained(x, Y ) = True reads “Assumption x is maintained in Y ”, “Assumption x is not
maintained in Y ” otherwise.

• Executed(x, Y ) = True reads “Task x is executed in Y ”, “Task x is not executed in Y ”
otherwise.

We want all atoms to be sorted, which leads to the following first rule.

Rules = {Rule[GAT]}

where:

Rule[GAT] ≡ ∀Y ⊆ Lcpl ∀x ∈ atoms(Y )

(G(x, Y ) ∨ A(x, Y ) ∨ T(x, Y )) ∧ ¬(G(x, Y ) ∧ A(x, Y ) ∧ T(x, Y ))

Status of a sorted expression depends on its relations to other sorted expressions. It is useful to
think of any of the three statuses as being either positive or negative: achieved, maintained, and
executed are positive, while not achieved, not maintained, and not executed are negative. We use two
relations, Break and Build. Break is undirected, and when it relates some sorted atoms, then this
means it is not possible for all of these atoms to have positive statuses together. Build is directed
from one or more sorted atoms to a single other sorted atom. If there is a Build relation from some
sorted atoms to another sorted atom, then the latter will get a positive status if the former all have a
positive status.

Relations = {Build : ℘(LD)× LD × ℘(LD) −→ {True,False},
Break : ℘(LD)× ℘(LD) −→ {True,False}}

where:

• Build(X, z, Y ) = True reads “there is a positive relation between X and z in Y ”, “there is
no positive relation between X and z in Y ”.

• Break(X, Y ) = True reads “there is a negative relation between the members of X in Y ”,
“there is no negative relation between the members of X in Y ” otherwise.

We want relations to reflect Domain Knowledge, in the sense that if some Domain expressions are
inconsistent, then they are in a Break relation, while premises and a conclusion in a Domain proof are
in a Build relation. This fits the rationale we gave above for Build and Break relations. Inconsistent
Domain expressions cannot be true together, which in Problem-Solving Knowledge translates that
they cannot all have positive statuses together. The analogy aplies to the Build relation as well: in
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Problem-Solving Knowledge, Build ties the positive status of a sorted atom to positive statuses of
other expressions, while in Domain Knowledge, proof ties the truth of the conclusion to the truth of
the premises. This results in two rules below, which generate Build and Break relations from the
proofs that the selector minproofs finds.

Rules := Rules ∪ {Rule[Build],Rule[Break]}

where:

• Every minimal proof in Domain Knowledge is a Build relation in Problem-Solving Knowledge:

Rule[Build] ≡ ∀Y ⊆ Lcpl ∀(Z, x) ∈ minproofs(Y )

¬(conclusion(Z, x) = ⊥)⇒ Build(premises(Z, x), conclusion(Z, x), Y )

• Every minimal proof to inconsistency in Domain Knowledge is a Break relation in Problem-
Solving Knowledge:

Rule[Break] ≡ ∀Y ⊆ Lcpl ∀(Z, x) ∈ minproofs(Y ),

conclusion(Z, x) = ⊥ ⇒ Break(premises(Z, x), Y )

We said that a status of an atom depends on the statuses of other atoms and the relations it is
in. We define these dependencies with the rules below. The overall idea is that the achievement of a
goal depends on the execution of tasks and the maintenance of assumptions, and that execution and
maintenance depend on the absence of break relations.

Rules := Rules ∪ {Rule[Successful],Rule[Failed],Rule[Achieved],Rule[Maintained]

Rule[Executed]}

where:

• An atom is successful if it has a positive status:

Rule[Successful] ≡ ∀Y ⊆ Lcpl x ∈ Lcpl

(Achieved(x, Y ) ∨Maintained(x, Y ) ∨ Executed(x, Y ))

⇔ Succeeds(x, Y )

Rule[Failed] ≡ ∀Y ⊆ Lcpl x ∈ Lcpl

(¬Achieved(x, Y ) ∨ ¬Maintained(x, Y ) ∨ ¬Executed(x, Y ))

⇔ ¬Succeeds(x, Y )

• A goal x is achieved in the set Y iff (i) x is not in Break relations, and (ii) there is a good
Build relation to x, in which all premises are successful. That is:

Rule[Achieved] ≡ ∀Y, Z ⊆ Lcpl x ∈ Lcpl

G(x, Y ) ∧ BreakFree(x, Y ) ∧ GoodBuild(x, Z, Y )

∧ ∀w ∈ Z Succeeds(w, Y ))⇔ Achieved(x, Y )
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• To be maintained, an assumption needs (i) to be in no Break relations, and either (ii-a)
primitive, or, if it is not primitive, (ii-b) then there needs to be a good Build to it, in which
all premises are successful. That is:

Rule[Maintained] ≡ ∀Y, Z ⊆ Lcpl x ∈ Lcpl

A(x, Y ) ∧ BreakFree(x, Y ) ∧ (Primitive(x, Y ) ∨ (¬Primitive(x, Y )

∧ GoodBuild(x, Z, Y ) ∧ ∀w ∈ Z Succeeds(w, Y )))

⇔ Maintained(x, Y )

• To be executed, a task needs (i) to be in no Break relations, and either (ii-a) primitive, or,
if it is not primitive, (ii-b) then there needs to be a good Build to it, in which all premises
are successful. That is:

Rule[Executed] ≡ ∀Y, Z ⊆ Lcpl x ∈ Lcpl

T(x, Y ) ∧ BreakFree(x, Y ) ∧ (Primitive(x, Y ) ∨ (¬Primitive(x, Y )

∧ GoodBuild(x, Z, Y ) ∧ ∀w ∈ Z Succeeds(w, Y )))

⇔ Executed(x, Y )

The tf specificaton above mentions the predicates for primitive expression, of being free of Break
relations, and being in a good Build relation. We define these next.

Rules := Rules ∪ {Rule[Primitive],Rule[BreakFree],Rule[GoodBuild]}

where:

• A Domain expression x is primitive in a set Y , denoted Primitive(x, Y ), iff there is no Build
relation to x from Y \ {x}:

Rule[Primitive] ≡ ∀Y ⊆ Lcpl ∀x ∈ Lcpl

(6 ∃(Z, q) ∈ minproofs(Y \ {x}) Build(Z, q, Y )

∧ x = conclusion(Z, q) )⇔ Primitive(x, Y )

• A Domain expression x is free of Break relations in a set Y , denoted BreakFree(x, Y ), iff x
participates in no Break relations:

Rule[BreakFree] ≡ ∀Y ⊆ Lcpl, ∀x ∈ Lcpl

(6 ∃(Z, q) ∈ minproofs(Y ) Break(Z, Y ) ∧ x ∈ premises(Z, q) )

⇔ BreakFree(x, Y )

• A Domain expression x is said to have a good Build relation from Z in Y , denoted
GoodBuild(x, Z, Y ), iff x is the conclusion of a Build from Z, and every member of Z is
successful in Y :

Rule[GoodBuild] ≡ ∀Y ⊆ Lcpl ∀x ∈ Lcpl

(∃(Z, x) ∈ minproofs(Y ) ∧ x = conclusion(Z, x)

∧ Z = premises(Z, x) ) ∧ (∀q ∈ Z Succeeds(x, Y ))

⇔ GoodBuild(x, Z, Y )
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We use no evaluations in T1; we will extend it with evaluations in Section 6. We finish the tf
specification of T1 with the problem and solution predicates.

( ∃X ⊆ Lcpl ∃z ∈ X G(z,X) ∧ ¬Succeeds(z,X) )

⇔ Problem(X)

( ∃X ⊆ Lcpl ¬Problem(X) ∧ (∃z ∈ X G(z,X))

∧ ∃Y ⊆ X ∀z ∈ X (G(z,X)⇒ (G(z, Y ) ∧ Succeed(z, Y ))) )

⇔ Solution(Y,X)

The problem predicate says that there is a problem instance in a set X of Domain expressions iff
there is a goal that fails. If there are goals in a set X and there is no problem instance in it, then
there is a solution instance for that set X.

Table 2 gives a summary of the components of T1 according to the tf specification we gave
above.

Table 2: Summary of components in T1.

Part Component In T1

D Domain Knowledge, includes:
LD Lcpl

|vD `
X X ⊆ Lcpl

I {atoms(·),minproofs(·), premises(·, ·), conclusion(·, ·)}

S Problem-Solving Knowledge, includes:
LS Lcfol

|≈S |=
〈X〉S 〈X〉S ⊆ Lcfol

Sorts {G(·, ·),A(·, ·),T(·, ·)}
Statuses {Achieved(·, ·),Maintained(·, ·),Executed(·, ·)}
Relations {Build(·, ·, ·),Break(·, ·)}

Evaluations None.
Problem Problem(·)
Solution Solution(·, ·)

Rules {Rule[GAT],Rule[Build],Rule[Break],Rule[Successful],
Rule[Failed],Rule[Achieved],Rule[Maintained],Rule[Executed],
Rule[Primitive],Rule[BreakFree],Rule[GoodBuild]}

5 RML Reconstruction

rml reconstruction is a particular case of rml specification, in which one specifies in tf an rml
which was, when it was proposed, specified in some other way. It does not matter much how it was
specified, as long as it was not with tf. We would want to do rml reconstruction when, for example,
we want to compare a new rml with existing ones, so that we need to reconstruct the latter, or if we
want to survey and compare existing rmls.
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The specification produced through rml reconstruction is necessarily debatable, as we have no
criteria to say if the resulting specification captures correctly the rml as its authors intended it, and
how much of it it manages to represent.

To illustrate rml reconstruction, we chose one existing rml, and used a single publication as the
source of knowledge on that rml. The resulting specification is more interesting as an illuatration of
tf, than as a comprehensive, valid, and definitive specification of the rml we selected.

We use tf to specify Yu’s i∗ modeling language. We give three tf specifications for i∗ in the rest
of this section, and refer to them as iS1, iS2, and iS3. All three are based on the early i∗ variant,
which appeared at the 1st IEEE International Symposium on Requirements Engineering [50]. All
quotes in this section are from that publication, unless we give another reference. Other variants of
i∗ appeared afterwards (e.g., [48]), but we do not consider them here. We will use i∗ to refer to the
definition of that rml in the publication we selected, and iS1, iS2, and iS3 to the tf specifications
we make of it below.

The reason we make three specifications is to illustrate how different they can be, depending on
decisions we make when using tf to specify i∗.

5.1 Background

i∗ is a modeling language that focuses on the representation of “organizational environments – an
important class of environments within which many computer-based information systems operate”.

An organization involves agents, and every agent “depends on others for accomplishing some parts
of what it wants, and are in turn depended on by others. Agents have wants that are met by others’
abilities, run tasks that are performed by others, and deploy resources that are furnished by others.
These dependencies form a complex and intricate network of intentional relationships among agents
that might be called the intentional structure of the organizational environment.”

i∗ models are representations of information about goals of agents, plans that agents execute to
achieve goals, tasks in plans, and resources used when executing tasks. It is agents who pursue goals,
have plans, execute tasks, and deploy or furnish resources.

An important innovation in i∗ are the dependency relations between agents: an agent a may have
a goal that she cannot or does not want to achieve by herself; another agent b may be able to achieve
that goal, and if a delegates that goal to b, then a depends on b. Analogous dependency relations
exist over the execution of tasks and the availability of resources.

An i∗ model will represent propositions about the dependencies between agents to have goals
achieved, tasks executed, and resources made available.

Relations in i∗ are not only between propositions. Goal and task sort propositions, but agents
and resources do not. Moreover, “in an organization, dependencies are usually not tied to a particular
agent, but rather to a role. [...] We call a set of roles that are played by an agent a position.” We
thus need a language that can represent propositions, for goals and tasks, and constants for reference
to agents, resources, roles, and positions. For example, “Mary has the role of project manager” is a
proposition, but “Mary” and “project manager” are constants, referring respectively to an agent and
a role, that i∗ represents in relation to that proposition.

5.2 iS1

Domain language for iS1 consequently needs propositional variables and constants. And in Problem-
Solving Knowledge, Agents, Roles, Positions, and Resources will be sorts over constants, while Goals
and Tasks will be sorts over propositions.

An important observation is that i∗ has no notion of compositionality of propositions. This
means that one cannot say, for example, that a goal proposition is a conjunction of some other, also
sorted propositions, or that an agent is a part of another agent (which may be useful if we wanted to
represent groups of agents, and allow agents to depend on groups). There is therefore no need to
have a Domain formalism which allows the compositionality of propositions and constants.
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There are different ways with tf to formalize the absence of compositionality in iS1 Domain
knowledge. For example, an option is to restrict Domain knowledge so that its language includes only
a set of constants and a set of propositional variables. In that case, the consequence relation |vD would
deduce, from any set of propositions, any one of these propositions, but nothing else. Another option
would be to have a classical propositional language as LD, and its consequence relation as |vD; but in
that case, selectors would still need to return only propositional variables, and any formula could
only be interesting if it is treated itself as a propositional variable in Problem-Solving Knowledge. If
this second option is used, then the relations between a formula and a proposition that propositional
logic gives (e.g., that p can be deduced from p ∧ q) are lost in Problem-Solving Knowledge: a selector
would return p and p ∧ q as two different and unrelated statements, both atomic as far as the rml is
concerned.

We adopt the first option above, as it is simpler. This leads us to the following Domain Knowledge
for iS1.

DiS1 = (LiS1, |v∗, X), where:

• LiS1 = P ∪ C, where P is a set of atoms, and C is a set of constants. Constants can be, for
example, names of people, names of roles and positions, names of resources, etc.

• |v∗⊆ ℘(P) × P is defined as follows: the atom p ∈ P is a consequence of X ⊆ P, written
X |v∗ p iff p ∈ X.

• X is some subset of LiS1.

The Domain language distinguishes only between constants and atoms, and the Domain con-
sequence relation relates uses only a single inference rule. We need only two selectors, one for
propositions and another for constants.

IiS1 = {constants(·), atoms(·)}, where:

• constants(Y ) returns all constants in Y ⊆ LiS1.

• atoms(Y ) returns all atoms in Y ⊆ LiS1.

We use cfol as the formalism for Problem-Solving Knowledge, which gives the following first
components of S for iS1.

SiS1 = (Lcfol, |=, 〈X〉S, Sorts, Statuses,Relations,Evaluations,

Problem(·), Solution(·),Rules)

where:

• Lcfol is the language of cfol.

• |= is the satisfiability relation of cfol.

• 〈X〉S is a set of cfol expressions. All constants in these expressions are members of Domain
kb X, or of its closure.
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To sort constants, Sorts gets the unary predicates Agent(·), Role(·), and Resource(·). For example,
Agent(a) is true iff a ∈ constants(X) refers to an Agent.

Sort predicates for constants are primitive and are always asserted by the modeler. Given some
constant x, the modeler needs to add to Problem-Solving Knowledge that Agent(x), rather than
deduce this from 〈X〉S. In other words, it will be the case that 〈X〉S |= Agent(a) iff Agent(a) ∈ 〈X〉S.

A position is a set of roles an agent plays, so that position is a relation, not a sort. Position(R, a, p)
is true iff p is the name of the position in which agent a plays the set of roles R. Names of positions
are constants too, and we use the sort PositionName for these. The predicate Plays(a, r) is used to
relate an agent a to a role r, that the agent plays.

The discussion above leads to the following update to SiS1.

Sorts := {Agent : constants(LiS1) −→ {True,False},
Role : constants(LiS1) −→ {True,False},
Resource : constants(LiS1) −→ {True,False},
PositionName : constants(LiS1) −→ {True,False}}

Relations := {Plays : constants(LiS1)× constants(LiS1) −→ {True,False}}
Rules = {Rule[Position]}

where:

• Agent(a) = True reads “a is an agent”, “a is not an agent” otherwise.

• Role(a) = True reads “a is a role”, “a is not a role” otherwise.

• Resource(a) = True reads “a is a resource”, “a is not a resource” otherwise.

• PositionName(a) = True reads “a is a name of a position”, “a is not a name of a position”
otherwise.

• Plays(a, r) = True reads “agent a plays role r”, “agent a does not play role r” otherwise.

• p is the name of the position in which an agent a plays all roles in R:

Rule[Position] ≡ ∃a, p ∈ constants(X) R ⊆ constants(X)

(Agent(a) ∧ PositionName(p) ∧ (∀r ∈ R Role(r) ∧ Plays(a, r)))

⇔ Position(R, a, p)

Goals and tasks are sorts over Domain atoms, and are specified with predicates Goal(·) and Task(·).
For example, Goal(p) reads that proposition p is a goal.

Sorts := Sorts ∪ {Goal : atoms(LiS1) −→ {True,False},
Task : atoms(LiS1) −→ {True,False}}

where:

• Goal(p) = True reads “p is a goal”, “p is not a goal” otherwise.

• Task(p) = True reads “p is a task”, “p is not a task” otherwise.
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There are three dependency relations in i∗:

• Goal Dependency is a relation in which “one agent, the depender, depends on another, the
dependee, for the fulfillment of a goal. The dependee is free to choose how to accomplish the
goal. The depender is only interested in the outcome”.

• In a Task Dependency “a depender agent depends on some dependee agent for the performance
of a task. The task specification constrains the choices that the dependee can make regarding
how the task is to be carried out.”

• Resource Dependency is a relation in which “a depender agent presupposes the availability of a
resource, which is made available by a dependee agent”.

We define all three dependency relations in iS1 using other primitive relations. We first introduce
the rules that define the dependencies, and define these primitive relations then.

Rules := Rules ∪ {Rule[GoalDependency],Rule[TaskDependency],

Rule[ResourceDependency]}

where:

• That agent a depends on agent b to have goal x achieved means that a wants to have x
achieved, cannot do it herself, and b is able to achieve x:

Rule[GoalDependency] ≡ ∃a, b, x Goal(x) ∧ Agent(a) ∧WantsAchieved(a, x)

∧ ¬CanAchieve(a, x) ∧ Agent(b) ∧ CanAchieve(b, x)

⇔ GoalDependency(a, b, x)

• That agent a depends on agent b to have task x executed means that a needs to have x
executed, cannot do it herself, and b is able to execute x:

Rule[TaskDependency] ≡ ∃a, b, x Task(x) ∧ Agent(a) ∧WantsExecuted(a, x)

∧ ¬CanExecute(a, x) ∧ Agent(b) ∧ CanExecute(b, x)

⇔ TaskDependency(a, b, x)

• That agent a depends on agent b to make available resource x means that a needs to have
access to x, cannot gain that access herself, and b can provide that access:

VC[ResourceDependency] ≡ ∃a, b, x Resource(x) ∧ Agent(a) ∧WantsDelivered(a, x)

∧ ¬CanDeliver(a, x) ∧ Agent(b) ∧ CanDeliver(b, x)

⇔ ResourceDependency(a, b, x)

Yu’s definition of i∗ defines dependencies in a different way, as our relations in the specification
fragment above differ from his. We will return to this issue later; for now, we only mention that main
reason for this departure is that Yu defines dependencies in terms of agent’s beliefs which we do not
see as crucial to iS1. Once we leave agents’ beliefs aside, we can have a simpler specification of i∗,
without losing much.

An atom can be either a goal or a task, never neither, nor both. This gives the following rule.
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Rules := Rules ∪ {Rule[GT]}

where Rule[GT] is that an atom is either a goal or a task:

Rule[GT] ≡ ∀x ∈ atoms(LiS1)(Goal(x) ∨ Task(x)) ∧ ¬(Goal(x) ∧ Task(x))

We add a rule to define the dependum sort. It will help us shorten definitions of other rules below.

Rules := Rules ∪ {Rule[Dependum]}

where Rule[Dependum] is that any goal, task, or resource x is a dependum if there is a dependency
relation on it:

Rule[Dependum] ≡ ∀x (∃a, b GoalDependency(a, b, x)

∨ TaskDependency(a, b, x) ∨ ResourceDependency(a, b, x))

⇔ Dependum(x)

Pursuing, then, with the specification of our understanding of i∗, we consider as primitive all
predicates used in rules that define dependency relations. This leads to the following update to SiS1.

Relations := Relations ∪ {WantsAchieved : constants(LiS1)× atoms(LiS1) −→ {True,False},
CanAchieve : constants(LiS1)× atoms(LiS1) −→ {True,False},
WantsExecuted : constants(LiS1)× atoms(LiS1) −→ {True,False},
CanExecute : constants(LiS1)× atoms(LiS1) −→ {True,False},
WantsDelivered : constants(LiS1)× atoms(LiS1) −→ {True,False},
CanDeliver : constants(LiS1)× atoms(LiS1) −→ {True,False}}

where:

• WantsAchieved(a, x) = True reads “agent a wants goal x achieved”, “agent a does not want
goal x achieved” otherwise.

• CanAchieve(a, x) = True reads “agent a can achieve goal x”, “agent a cannot achieve goal x”
otherwise.

• WantsExecuted(a, x) = True reads “agent a wants task x executed”, “agent a does not want
task x executed” otherwise.

• CanExecute(a, x) = True reads “agent a can execute task x”, “agent a cannot execute task
x” otherwise.

• WantsDelivered(a, x) = True reads “agent a wants resource x delivered”, “agent a does not
want resource x delivered” otherwise.

• CanDeliver(a, x) = True reads “agent a can deliver resource x”, “agent a cannot deliver
resource x” otherwise.
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There are no evaluations in i∗, leaving Evaluations empty.

Evaluations := ∅

If we consider that a goal will be achieved if there is an agent who wants it achieved, and another
who can achieve it, we can use the following definition of the status achieved. It is straightforward to
define by analogy the statuses executed for tasks, and delivered for resources.

Statuses := {Achieved : {x | Goal(x)} −→ {True,False},
Executed : {x | Task(x)} −→ {True,False},
Delivered : {x | Resource(x)} −→ {True,False}}

Rules := Rules ∪ {Rule[Achieved],Rule[Executed],Rule[Delivered],Rule[Successful],Rule[Failed]}

where:

• Achieved(x) = True reads “goal x is achieved”, “goal x is not achieved” otherwise.

• Executed(x) = True reads “task x is executed”, “task x is not executed” otherwise.

• Delivered(x) = True reads “resource x is delivered”, “resource x is not delivered” otherwise.

• A goal is achieved if there is an agent who wants it achieved and another who can achieve it:

Rule[Achieved] ≡ ∀x ∈ LiS1 Goal(x) ∧ Dependum(x)⇔ Achieved(x)

• A task is executed if there is an agent who wants it executed and another who can execute
it:

Rule[Executed] ≡ ∀x ∈ LiS1 Task(x) ∧ Dependum(x)⇔ Executed(x)

• A resource is delivered if there is an agent who wants it delivered and another who can
deliver it:

Rule[Delivered] ≡ ∀x ∈ LiS1 Resource(x) ∧ Dependum(x)⇔ Delivered(x)

• A goal, task, or resource is successful if it is, respectively, achieved, executed, or delivered:

Rule[Successful] ≡ ∀x ∈ LiS1
(Goal(x) ∧ Achieved(x)) ∨ (Task(x) ∧ Executed(x))

∨ (Resource(x) ∧ Delivered(x))⇔ Succeeds(x)

• A goal, task, or resource fails if it is, respectively, not achieved, not executed, or not delivered:

Rule[Failed] ≡ ∀x ∈ LiS1
(Goal(x) ∧ ¬Achieved(x)) ∨ (Task(x) ∧ ¬Executed(x))

∨ (Resource(x) ∧ ¬Delivered(x))⇔ ¬Succeeds(x)
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Problem and solution concepts are the following ones.

∃X ⊆ LiS1 ∃z ∈ X (Goal(z) ∨ Task(z) ∨ Resource(z)) ∧ ¬Succeeds(z)⇔ Problem(X)

∃X ⊆ LiS1 ¬Problem(X)⇔ Solution(X)

The problem above says that if we have an iS1 model in which there is some goal, task, or resource,
and it fails, then there is a problem with that model. As soon as all goals, tasks, and resources in a
model are successful, that model solves the problem.2

Table 3 gives a summary of the components of iS1 according to the tf specification we gave
above.

Table 3: Summary of components in iS1.

Part Component In iS1

D Domain Knowledge, includes:
LD LiS1
|vD |v∗
X X ⊆ LiS1

I {constants(·), atoms(·)}

S Problem-Solving Knowledge, includes:
LS Lcfol

|≈S |=
〈X〉S 〈X〉S ⊆ Lcfol

Sorts {Agent(·),Role(·),Resource(·),PositionName(·),Goal(·),Task(·)}
Statuses {Achieved(·),Executed(·),Delivered(·)}
Relations {Plays(·, ·),WantsAchieved(·, ·),CanAchieve(·, ·),WantsExecuted(·, ·),

CanExecute(·, ·),WantsDelivered(·, ·),CanDeliver(·, ·)}
Evaluations None.

Problem Problem(·)
Solution Solution(·, ·)

Rules {Rule[Position],Rule[GoalDependency],Rule[TaskDependency],
Rule[ResourceDependency],Rule[GT],Rule[Dependum],
Rule[Achieved],Rule[Executed],Rule[Delivered],
Rule[Successful],Rule[Failed]}

2There is a way to define the problem and solution in iS1 without using statuses. Notice that success equates with
being in a dependency relation, in Rule[Achieved], Rule[Executed], Rule[Delivered]. The simpler problem and solution are
therefore as follows.

∃X ⊆ LiS1 ∃z ∈ X (Goal(z) ∨ Task(z) ∨ Resource(z)) ∧ ¬Dependum(z)⇔ Problem(X)

∃X ⊆ LiS1 ¬Problem(X)⇔ Solution(X)
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5.3 iS2

Yu emphasized that dependencies are intentional relationships, meaning that they are defined in terms
of agents’ beliefs. This is not reflected at all in iS1. Yu’s own axiomatization uses a first-order logic
with the belief modality, which we will not do here. We want to keep cfol as the Problem-Solving
formalism, so that we will not use a belief modality, but instead, new relations that refer to intentions.

To have a specification of i∗ that defines dependencies in terms of belief, desire and intention, we
define a new rml and call it iS2.

iS2 is iS1 with one change: in iS2, WantsAchieved(·, ·), CanAchieve(·, ·), WantsExecuted(·, ·),
CanExecute(·, ·), WantsDelivered(·, ·), and CanDeliver(·, ·) are not primitive. Instead, we add rules
which define them via belief, desire, and intention relations, also new compared to iS1.

To define iS2, we first let iS2 := iS1, so that it includes all iS1 did, and we progressively make
changes below.

We read from WantsAchieved(a, x) that agent a wants to have goal x achieved. For Yu [50] it
would mean that “a believes that it has some plan p for achieving some goal φ0 which contains an
activity α which has x as an external subgoal”. Our understanding of this is that a has some other
goal y, a plan p to achieve y, that x is one of the subgoals in the plan, and that a delegates the
achievement of x. We use the following definition in iS2.

Rules := Rules ∪ {Rule[WantsAchieved]}

where:

• WantsAchieved(a, x) means that (i) a intends some other goal y, (ii) plan p is for achieving
y, (iii) a intends p, (iv) goal x is part of the plan p, (v) a delegates the achievement of x:

Rule[WantsAchieved] ≡ ∀a, x WantsAchieved(a, x)⇔ Goal(x) ∧ Agent(a)

∧ (∃y, p Goal(y) ∧ Plan(p, y)) ∧ Intend(a, y) ∧ Intend(a, p)

∧ PartOf(x, p) ∧ Delegate(a, x)

We used the plan sort, and the intend, part of, and delegate relations above, all of which are new
in iS2 compared to iS1. We add them as follows.

Sorts := Sorts ∪ {Plan : atoms(LiS2)× atoms(LiS2) −→ {True,False}}
Relations := Relations ∪ {Intend : constants(LiS2)× atoms(LiS2) −→ {True,False},

PartOf : {x ∈ atoms(LiS2) | ∀y ¬Plan(x, y)}
× {z ∈ atoms(LiS2) | ∃w Plan(z, w)} −→ {True,False},
Delegate : {x ∈ atoms(LiS2) | ∀y ¬Plan(x, y)}
× {a | Agent(a)} −→ {True,False}}

where:

• Plan(p, y) = True reads “p is a plan for satisfying y”, “p is not a plan for satisfying y”
otherwise.

• Intend(a, y) = True reads “a commits to y”, “a does not commit to y” otherwise.

• PartOf(x, p) reads “x is part of plan p”, “x is not part of plan p” otherwise.
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• Delegate(a, x) reads “a delegates x to another agent”, “a does not delegate x to another
agent” otherwise.

By analogy to Rule[WantsAchieved], we define WantsExecuted(·, ·) and WantsDelivered(·, ·).

Rules := Rules ∪ {Rule[WantsExecuted],Rule[WantsDelivered]}

where:

• WantsExecuted(a, x) means that (i) a intends some goal y, (ii) plan p is for achieving y, (iii)
a intends p, (iv) task x is part of the plan p, (v) a delegates the execution of x:

Rule[WantsExecuted] ≡ ∀a, x WantsExecuted(a, x)⇔ Task(x) ∧ Agent(a)

∧ (∃y, p Goal(y) ∧ Plan(p, y)) ∧ Intend(a, y) ∧ Intend(a, p)

∧ PartOf(x, p) ∧ Delegate(a, x)

• WantsDelivered(a, x) means that (i) a intends some goal y, (ii) plan p is for achieving y, (iii)
a intends p, (iv) resource x is needed for the plan p, (v) a delegates the delivery of x:

Rule[WantsDelivered] ≡ ∀a, x WantsDelivered(a, x)⇔ Resource(x) ∧ Agent(a)

∧ (∃y, p Goal(y) ∧ Plan(p, y)) ∧ Intend(a, y) ∧ Intend(a, p)

∧ PartOf(x, p) ∧ Delegate(a, x)

In a dependency, the counterpart to WantsAchieved(a, x) is CanAchieve(b, x). In i∗, this counterpart
conveys the ability of agent b to achieve the goal in the dependency, but not that agent’s intention to
do so; same applies, by analogy, to the execution of tasks and the delivery of resources: “an agent is
able to achieve [a goal] if it believes it has some plan which will result in [that goal] being true. An
agent can perform [here, execute] plan / activity if [it] is in [that agent’s] repertoire. An agent can
furnish [a] resource if it has a plan which results in [that resource] being available.” For us, an agent
can achieve a goal if it has a plan for it.

We define CanAchieve(b, x), CanExecute(b, x), and CanDeliver(b, x) as follows.

Rules := Rules ∪ {Rule[CanAchieve],Rule[CanExecute],Rule[CanDeliver]}
Relations := Relations ∪ {Intend : constants(LiS2)× atoms(LiS2) −→ {True,False}}

where:

• CanAchieve(b, x) means that (i) agent b has plan p, and (ii) p is a plan for achieving the goal
x.

Rule[CanAchieve] ≡ ∀b, x CanAchieve(b, x)

⇔ Goal(x) ∧ Agent(b) ∧ Plan(p, x) ∧ CanIntend(b, p)

• CanExecute(b, x) means that (i) agent b has plan p, and (ii) p is a plan for executing the
task x.

Rule[CanExecute] ≡ ∀b, x CanExecute(b, x)

⇔ Task(x) ∧ Agent(b) ∧ Plan(p, x) ∧ CanIntend(b, p)
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• CanDeliver(b, x) means that (i) agent b has plan p, and (ii) p is a plan for delivering the
resource x.

Rule[CanDeliver] ≡ ∀b, x CanDeliver(b, x)

⇔ Resource(x) ∧ Agent(b) ∧ Plan(p, x) ∧ CanIntend(b, p)

• CanIntend(b, p) reads “agent b can choose to commit to p”, “agent b cannot choose to commit
to p” otherwise.

iS2 differs from iS1 in having more predicates and sorts, and rules that together define relations
which we took for primitive in iS1. These relations were used in iS1 to define dependencies. By
redefining them in iS2 with Intend(·, ·) and CanIntend(·, ·), we introduced a notion of intention. This
remains a fairly simple way to introduce intentional notions; a more interesting, but also more
complicated way, cosists of providing also rules needed to deduce these predicates, rather than have
to assert them – as they remain primitive, and as no rules other than the new ones in iS2 mentions
them, we can only assert them in the Problem-Solving kb.

5.4 iS3

While iS2 introduced a notion of intention, it failed to capture the distinction between dependencies
in which there is no commitment from the dependee, and those where such commitment is present.
This is important if we want to have a solution concept, in which the dependee needs to commit to
the delegated goal, task, or resource.

We can accomplish this by defining iS3 by defining new kinds of dependency relations, in which
the depender intends to achieve, execute, or deliver, respectively, the goal, task, or resource.

Doing this is straightforward, as iS2 has the predicate Intend(·, ·). Let iS3 := iS2, and add the
following rules to iS3.

RulesiS3 := RulesiS3 ∪ {Rule[CommittedAchieve],Rule[CommittedExecute],

Rule[CommittedDeliver]}

where:

• CommittedAchieve(b, x) means that (i) agent b has plan p, (ii) p is a plan for achieving the
goal x, and (iii) a intends p.

Rule[CommittedAchieve] ≡ ∀b, x CommittedAchieve(b, x)

⇔ Goal(x) ∧ Agent(b) ∧ Plan(p, x) ∧ Intend(b, p)

• CommittedExecute(b, x) means that (i) agent b has plan p, (ii) p is a plan for executing the
task x, and (iii) a intends p.

Rule[CommittedExecute] ≡ ∀b, x CommittedExecute(b, x)

⇔ Task(x) ∧ Agent(b) ∧ Plan(p, x) ∧ Intend(b, p)

• CommittedDeliver(b, x) means that (i) agent b has plan p, (ii) p is a plan for delivering the
resource x, and (iii) a intends p.

Rule[CommittedDeliver] ≡ ∀b, x CommittedDeliver(b, x)

⇔ Resource(x) ∧ Agent(b) ∧ Plan(p, x) ∧ Intend(b, p)
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The rules above define a variant of achieve, execute, and deliver, where the agent also intends to
perform the plan which will result in the achievement, execution, or delivery. These rules give us
predicates which we use to define the following variants of each dependency relation that we had in
iS1 and iS2.

RulesiS3 := RulesiS3∪{Rule[CGoalDependency],

Rule[CTaskDependency],Rule[CResourceDependency]}

where:

• That agent a depends on the commitment of agent b to have goal x achieved means that a
wants to have x achieved, cannot do it herself, and b commits to achieve x:

Rule[CGoalDependency] ≡ ∃a, b, x Goal(x) ∧ Agent(a) ∧WantsAchieved(a, x)

∧ ¬CanAchieve(a, x) ∧ Agent(b) ∧ CommittedAchieve(b, x)

⇔ CGoalDependency(a, b, x)

• That agent a depends on the commitment of agent b to have task x executed means that a
needs to have x executed, cannot do it herself, and b commits to execute x:

Rule[CTaskDependency] ≡ ∃a, b, x Task(x) ∧ Agent(a) ∧WantsExecuted(a, x)

¬CanExecute(a, x) ∧ Agent(b) ∧ CommittedExecute(b, x)

⇔ CTaskDependency(a, b, x)

• That agent a depends the commitment of agent b to make available resource x means that
a needs to have access to x, cannot gain that access herself, and b commits to provide that
access:

VC[CResourceDependency] ≡ ∃a, b, x Resource(x) ∧ Agent(a) ∧WantsDelivered(a, x)

¬CanDeliver(a, x) ∧ Agent(b) ∧ CommittedDeliver(b, x)

⇔ CResourceDependency(a, b, x)

We can use the new dependency relations to redefine in iS3 the predicate Dependum(·) via these
committed dependencies. The consequence of this is that the solution will require committted
dependencies, not the original ones from iS1 and iS2. This redefined Dependum(·) is the following
one. Rule[Dependum] below replaces that original rule from iS1.

Rule[Dependum] is that any goal, task, or resource x is a dependum if there is a committed
dependency relation on it:

Rule[Dependum] ≡ ∀x ∈ atoms(LiS1) (∃a, b CGoalDependency(a, b, x)

∨ CTaskDependency(a, b, x) ∨ CResourceDependency(a, b, x))

⇔ Dependum(x)

Another way to achieve the same effect would be to leave the definition of Rule[Dependum] from
iS1 and iS2, and define a new predicate CommittedDependum(·) and the Rule[CommittedDependum].
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This would require further changes to rules Rule[Achieved], Rule[Executed], and Rule[Delivered], and
the problem and solution concepts, where every occurrence of Dependum(·) would be replaced by
CommittedDependum(·).

6 RML Change

rml change consists of making a new tf specification by changing one or more components of an
existing specification.

We categorize changes according to the components that they modify in a tf specification. Given
that a tf specification includes formal languages, inference rules, and predicates, it is not feasible to
define all possible types of changes we can make. Instead, we discuss and illustrate several of these
changes below, at least one for each component in tf specifications.

6.1 Domain Formalism Replacement

Domain formalism replacement consists of replacing the Domain language LD and the Domain
consequence relation by another one.

Suppose that temporal properties of a system-to-be are an important consideration in stakeholders’
requirements. This is the case in ambulance dispatching systems, as illustrated in the London
Ambulance Service [1] case. They need to satisfy such requirements as that the ambulance needs to
arrive at an incident location within some given number of minutes. In that case, the readability of
classical propositional logic expressions in D of T1 become a drawback, rather than an advantage.

If S in T1 still seems useful, we can take T1 and replace its Lcpl with LLTL and ` with |=LTL,
where LLTL and |=LTL refer to, respectively, the language and satisfiability relation of first-order
linear temporal logic. Let T1t refer to the new RMLSpec made by this change from T1; we will use
it below to illustrate other RML Change types.

6.2 Domain Language Replacement

Domain language replacement consists of replacing the Domain language LD with another one, while
keeping the Domain consequence relation unchanged.

To be useful, the replacement language has to fit the existing consequence relation. This will be
the case if, for example, the replacement language uses the same inference rules, or only a subset of
them. For illustration, take T1, and replace the Domain language with the one generated by these
BNF rules:

atom ::= p | q | r | s | . . .
formula ::= atom1 ∧ atom2 ∧ . . . ∧ atomn−1 → atomn

| atom1 ∧ atom2 ∧ . . . ∧ atomn → ⊥

The language above is a subset of the Domain language in T1, as every expression in it is also an
expression in Lcpl. One motive to use this language, instead Lcpl is to intentionally restrict the range
of expressions that can be in the Domain kb, perhaps because this language may be easier for rml
users to learn.

Another case when Domain language replacement may be relevant is in projects where we have
a domain ontology [33], as the definition of concepts and relations that are key to understand the
domain. We may want to restrict all expressions to only those which use those concepts and relations
from the domain ontology. We would want to do this in order to, for example, avoid terminology
clashes [45], which are the use of different names for the same concepts or relations in the domain.
We could do this by taking a first-order language for the Domain language, and restrict predicates to
only those referring to concepts or concept properties, and those referring to relations.
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6.3 Domain Inference Rules Replacement

Domain inference rules replacement, also consequence relation replacement, consists of replacing
the inference rules in D by another set of rules, and thereby replace the consequence relation, while
keeping the Domain language unchanged.

Inference rules replacement can be used to allow or disable specific proof patterns. For example,
inference rules may allow ex falso quodlibet proof pattern, according to which anything can be deduced
from an inconsistent set of expressions. This is the case in classical propositional logic, and so in T1.
It makes the Domain kb X explode, in the sense that the closure of X will be equal to Lcpl in T1,
whenever X ` ⊥.

If we want to avoid ex falso quodlibet, but keep the language of classical propositional logic for
LD, we can replace the inference rules that define ` with inference rules from Besnard and Hunter’s
quasi-classical logic [3], for example. Let T1qc refer to the tf specification made by taking T1 and
making only this change of inference rules to it. Because of this, T1qc has a paraconsistent Domain
consequence relation, and it will not have an exploding Domain kb that T1 has.

6.4 Interface Replacement

Interface change consists of replacing original selectors with new ones. Such changes will influence
which formulas from Domain kb, or of its closure, can appear as terms in the Problem-Solving kb.

We imposed no constraints on selectors in a tf specification, so that we can define them to work
in different ways. They can return Domain formulas or proofs, they can return formulas having
some syntactic shape, such as only atoms, or formulas that are conclusions from proofs, where the
proof satisfies some properties, such as having the minimal set of premises to derive its conclusion.
A selector could also be defined to return only proofs in which a single inference rule is applied. If
Domain language is propositional, it may be useful to have a selector that returns all proper nouns in
propositions, so that we can use these names for agents, something we could have used in iS1.

In T1, we had selectors that fed atoms into sorts, as well as the selector minproofs(·) which instead
looked at premises and conclusions in proofs from Domain kb, and returned only those proofs which
were minimal with regards to deriving the conclusion. If we anticipated that the T1 Domain kbs can
be inconsistent, perhaps we would want to replace minproofs(·) with a selector minmaxconsproofs(·),
which would return only those minimal proofs where premises are members of maximally consistent
subsets of the Domain kb.

6.5 Specialization

Given two tf specifications A and B, we say that A is a specialization of B if B includes all
sorts, statuses, relations, and evaluations of A and in addition includes Sorts, Statuses, Relations, or
Evaluations that specialize those in A.

For illustration, suppose that the goal sort in T1 is specialized onto organizational goal and
personal goal. The aim could be to distinguish the official goals that an organization has for the
system-to-be, from those that individuals may have, who will be using that system-to-be. This may
be useful if we wanted to analyzed the fit or departure between organizational and personal goals,
and use the conclusions of such an analysis to choose the security features of the system-to-be.

There are different ways in which we could specify our adding of organizational and personal goal
sorts. For example, we would add predicates OG(·, ·) for the organizational goal sort, and PG(·, ·) for
the personal goal sort, so that the new Sorts set would be as follows.

Sorts = {G(·, ·),A(·, ·),T(·, ·),PG(·, ·),OG(·, ·)}
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We would also need rules that capture the idea that organizational and personal goals are types
of goal.

Rules := Rules ∪ {Rule[OGG],Rule[PGG],Rule[OGPG]}

where:

• Every organizational goal is also a goal:

Rule[OGG] ≡ ∀X ⊆ Lcpl z ∈ X OG(z,X)⇒ G(z,X)

• Every personal goal is also a goal:

Rule[PGG] ≡ ∀X ⊆ Lcpl z ∈ X PG(z,X)⇒ G(z,X)

• Every goal is either an organizational goal or a personal goal:

Rule[OGPG] ≡ ∀X ⊆ Lcpl ∀z ∈ X
G(z,X)⇒ ((OG(z,X) ∨ PG(z,X)) ∧ ¬(OG(z,X) ∧ PG(z,X)))

Let T1op be the name of the tf specification created by adding the sorts and rules above to T1.
T1op lets us represent organizational and personal goals separately.

6.6 Evaluation Introduction

The introduction of evaluations amounts to adding new evaluation relations to Evaluations, some
new Rules as needed to define how the evaluations work, and if needed, changing the rest of the tf
specification (for example, to take evaluations into account in the problem or solution concepts).

We take T1 for illustration. Its Evaluations set is empty. In re, one of the important ideas is that
of refinement: to refine a requirement, we add new requirements which are more detailed than the
former. We say that the latter refine the former.

To add refinement to T1, we make a new RMLSpec, denote it T1r and let it be identical to T1
for now: T1r := T1.

To capture the idea of refinement of goals, assumptions, and tasks in T1r, we need a partial order
over Domain expressions. That partial order should compare Domain expressions in terms of their
level of detail. It is not a total order, because many Domain expressions cannot be compared in terms
of level of detail.

We use the predicate geqDetail(x, z, Y ), which reads that x is at least as detailed as z in Y . In
addition, we add Rules to ensure it is a partial order: that it is reflexive, antisymmetric, and transitive.

EvaluationsT1r := {geqDetail : atoms(Lcpl)× atoms(Lcpl)× ℘(Lcpl) −→ {True,False}}

where geqDetail(x, y, Z) = True reads “x is at least as detailed as y in Z”, “x is not at least as
detailed as y in Z” otherwise.

RulesT1r := RulesT1r ∪ {Rule[DetailReflexive],Rule[DetailAntisymmetric],

Rule[DetailTransitive]}
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where:

Rule[DetailReflexive] ≡ ∀Z ⊆ Lcpl ∀x ∈ Lcpl geqDetail(x, x, Z)

Rule[DetailAntisymmetric] ≡ ∀Z ⊆ Lcpl ∀{x, y} ⊆ Lcpl geqDetail(x, y, Z)

∧ geqDetail(y, x, Z)⇔ eqDetail(x, y, Z)

Rule[DetailTransitive] ≡ ∀Z ⊆ Lcpl ∀{x, y, w} ⊆ Lcpl geqDetail(x, y, Z)

∧ geqDetail(y, w, Z)⇒ geqDetail(x,w, Z)

In Rule[DetailAntisymmetric], eqDetail(x, y, Z) reads “x and y are at the same level of detail in
Z”.

In the refinement relation, the refining requirements must be strictly more detailed than the
refined requirement. We therefore define the following variant of evaluation in terms of detail.

RulesT1r := RulesT1r ∪ {Rule[gDetail]}

where:

• gDetail(x, y, Z) reads “x has strictly higher level of detail than y in Z”:

Rule[gDetail] ≡ ∀x, y ∈ Lcpl Z ⊆ Lcpl geqDetail(x, y, Z) ∧ ¬geqDetail(y, x, Z)

⇔ gDetail(x, y, Z)

To define the refinement relation, we combine the build relation and the detail evaluation.
Refinement is thereby a specialization of the build relation. Moreover, we can define a taxonomy of
positive relations by restricting sorts of the premises and of the conclusion in the refinement relation.
The taxonomy is in Eqs. 1–5.

Eq. 1 defines a refinement relation which is independent from the sorts of premises and conclusion.
Eq. 2 defines a goal refinement relation analogous to Darimont & van Lamsweerde’s goal refinement
[14]. Eq. 3 defines the realization, or operationalization relation, in which all premises must be tasks
or assumptions. Eq. 4-5 defines the task decomposition and means-ends relations, analogous to the
i-star task decomposition and means-ends relations [49].

Refine(Y, x, Z)⇔ Build(Y, x, Z) ∧ ∀y ∈ Y gDetail(y, x, Z) (1)

GoalRefine(Y, x, Z)⇔ Refine(Y, x, Z) ∧ ∀y ∈ {x} ∪ Y G(y, Z) (2)

Realize(Y, x, Z)⇔ Refine(Y, x, Z) ∧ ∀y ∈ Y (T(y, Z) ∨ A(y, Z)) (3)

TaskDecompose(Y, x, Z)⇔ Refine(Y, x, Z) ∧ T(x, Z) ∧ ∀y ∈ Y (G(y, Z) ∨ T(y, Z)) (4)

MeansEnds(Y, x, Z)⇔ Refine(Y, x, Z) ∧ G(x, Z) ∧ ∀y ∈ Y T(y, Z) (5)

If we add each equation above as a rule to T1r, then we can represent these relations in its
Problem-Solving kb.

6.7 Evaluation Expansion

Problem-Solving evaluation expansion refers to the effort of adding new evaluation relations to a tf
specification.

We illustrate evaluation expansion by adding many evaluations to T1. In the process, we make a
new rml which we refer to as T1me.
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Each new evaluation we add to T1me compares Goals, Tasks, and/or Assumptions over a single
criterion for comparison. Each criterion is referred to by a constant. Let E be that set of constants,
so that firstly we change the Domain language in T1me as follows.

LD := LT1me

LT1me = Lcpl ∪ E

where E is a set of constants, each referring to the name of a comparison criterion, such as cost,
secutity, scalability, reliability, etc.

We use the constants from E in the four-place predicate geqCritComp(c, x, y, Z), which reads “in
Z, x is at least as high as y on the scale defined by criterion c”, with c ∈ E , while x and y are, each,
a goal, a task, or an assumption. We add this predicate to Evaluations.

EvaluationsT1me := EvaluationsT1me

∪ {geqCritComp : E × atoms(LT1me)× atoms(LT1me)× ℘(LT1me)

−→ {True,False}}

where geqCritComp(c, x, y, Z) = True reads “in Z, x is at least as high as y on the scale defined
by criterion c”, “in Z, x is not at least as high as y on the scale defined by criterion c” otherwise.

We add rules to make geqCritComp(·, ·, ·, ·) a partial order relation, and to define its strict variant.

RulesT1me := RulesT1me ∪ {Rule[CritCompReflexive],Rule[CritCompAntisymmetric],

Rule[CritCompTransitive],Rule[gCritComp]}

where:

• For every criterion, geqCritComp(·, ·, ·, ·) is reflexive:

Rule[CritCompReflexive] ≡ ∀c ∈ E ∀Z ⊆ LT1me ∀x ∈ LT1me geqCritComp(c, x, x, Z)

• For every criterion, geqCritComp(·, ·, ·, ·) is antisymmetric. eqCritComp(c, x, y, Z) reads “in
Z, x is at same position as y on the scale defined by criterion c”.

Rule[CritCompAntisymmetric] ≡ ∀c ∈ E ∀Z ⊆ LT1me ∀{x, y} ⊆ LT1me

geqCritComp(c, x, y, Z) ∧ geqCritComp(c, y, x, Z)

⇔ eqCritComp(c, x, y, Z)

• For every criterion, geqCritComp(·, ·, ·, ·) is transitive:

Rule[CritCompTransitive] ≡ ∀c ∈ E ∀Z ⊆ LT1me ∀{x, y, w} ⊆ LT1me

geqCritComp(c, x, y, Z) ∧ geqCritComp(c, y, w, Z)

⇒ geqCritComp(c, x, w, Z)
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• gCritComp(c, x, y, Z) reads “in Z, x is at a higher position than y on the scale defined by
criterion c”:

Rule[gCritComp] ≡ ∀c ∈ E ∀x, y ∈ LT1me Z ⊆ LT1me

geqCritComp(c, x, y, Z) ∧ ¬geqCritComp(c, y, x, Z)

⇔ gCritComp(c, x, y, Z)

The new evaluations will allow us to represent nonfunctional requirements, also called softgoals
or quality requirements. Examples of such requirements are “low cost” or “high security”. To see
how, let there be two goals x and y. Suppose that they are comparable in terms of cost, in the sense
that it costs more to achieve x than to achieve y. The nonfunctional requirement “low cost” can
consequently be interpreted for a given pair of goals, tasks, assumptions comparable in terms of cost,
as preference for the one associated with lower cost.

We observe that a nonfunctional requirement refers to a criterion and to a direction over the scale
of that criterion. We therefore add a relation to apply over criteria only, and the associated rules.

RelationsT1me := RelationsT1me ∪ {Increase : E −→ {True,False}}
RulesT1me := RulesT1me ∪ {Rule[IncreaseNotDecrease],Rule[IncreaseXORDecrease]}

where:

• Increase(c) = True reads “on the scale of the criterion c, higher values are strictly preferred
over lower values”, “on the scale of the criterion c, higher values are not strictly preferred
over lower values” otherwise.

• Increase and decrease directions are opposites, for every criterion:

Rule[IncreaseNotDecrease] ≡ ∀c ∈ E ¬Increase(c)⇔ Decrease(c)

• We can choose one direction over every criterion, not both:

Rule[IncreaseXORDecrease] ≡ ∀c ∈ E (Increase(c) ∨ Decrease(c))

∧ ¬(Increase(c) ∧ Decrease(c))

If dcost ∈ E and dcost informally reads “development cost”, then Decrease(dcost) captures the
nonfunctional requirement “low development cost”. We can use these softgoals to generate preferences
over comparisons, as follows. We add a criterion-specific preference relation, geqPreference(·, ·, ·, ·),
such that geqPreference(c, x, y, Z) reads that for the criterion c and in Z, x is at least as desirable as
y. The preference relation over each criterion is a partial order.
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EvaluationsT1me := EvaluationsT1me

∪ {geqPreference : E × atoms(LT1me)× atoms(LT1me)× ℘(LT1me)

−→ {True,False}}
RulesT1me := RulesT1me

∪ {Rule[PreferenceReflexive],Rule[PreferenceAntisymmetric],

Rule[PreferenceTransitive],Rule[gPreference]}

where:

• geqPreference(c, x, y, Z) = True reads “in Z, and for the criterion c, x is at least as desirable
as y”, “in Z, and for the criterion c, x is not at least as desirable as y” otherwise.

• For every criterion, geqPreference(·, ·, ·, ·) is reflexive:

Rule[PreferenceReflexive] ≡ ∀c ∈ E ∀Z ⊆ LT1me ∀x ∈ LT1me geqPreference(c, x, x, Z)

• For every criterion, geqPreference(·, ·, ·, ·) is antisymmetric. eqPreference(c, x, y, Z) reads “in
Z, and for the criterion c, x is as desirable as y”.

Rule[PreferenceAntisymmetric] ≡ ∀c ∈ E ∀Z ⊆ LT1me ∀{x, y} ⊆ LT1me

geqPreference(c, x, y, Z) ∧ geqPreference(c, y, x, Z)

⇔ eqPreference(c, x, y, Z)

• For every criterion, geqPreference(·, ·, ·, ·) is transitive:

Rule[PreferenceTransitive] ≡ ∀c ∈ E ∀Z ⊆ LT1me ∀{x, y, w} ⊆ LT1me

geqPreference(c, x, y, Z) ∧ geqPreference(c, y, w, Z)

⇒ geqPreference(c, x, w, Z)

• gPreference(c, x, y, Z) reads “in Z, and for the criterion c, x is strictly more desirable than
y”:

Rule[gPreference] ≡ ∀c ∈ E ∀x, y ∈ LT1me Z ⊆ LT1me

geqCritComp(c, x, y, Z) ∧ ¬geqPreference(c, y, x, Z)

⇔ gPreference(c, x, y, Z)

Given a softgoal, we can generate preference relations: if we have Increase(c) for the criterion c,
and we have a comparison of x and y as follows gCritComp(c, x, y, Z), then we also know that we
prefer x to y, i.e., that gPreference(c, x, y, Z). The following rules generate these strict preferences
from nonfunctional requirements and comparisons.

RulesT1me := RulesT1me ∪ {Rule[IncreasePref],Rule[DecreasePref]}

where:
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• If there is Increase(c) and gCritComp(c, x, y, Z), then there is also gPreference(c, x, y, Z):

Rule[IncreasePref] ≡ ∀c ∈ E ∀x, y ∈ LT1me ∀Z ⊆ LT1me

Increase(c) ∧ gCritComp(c, x, y, Z)⇒ gPreference(c, x, y, Z)

• If there is Decrease(c) and gCritComp(c, x, y, Z), then there is also gPreference(c, y, x, Z):

Rule[DecreasePref] ≡ ∀c ∈ E ∀x, y ∈ LT1me ∀Z ⊆ LT1me

Decrease(c) ∧ gCritComp(c, x, y, Z)⇒ gPreference(c, y, x, Z)

6.8 Strengthening

Given two tf specifications A and B, we say that A is stronger than B if the only difference between
them is that A includes more rules than B. That is, if RulesB ⊂ RulesA and everything else in their
tf specifications is the same.

Problem-Solving strenghtening consists of changing an original tf specification only by adding
new Rules, so that the strenghtened specification does not exibit some drawbacks of the original.

For illustration, consider what happens with T1 if it is applied to an inconsistent Domain kb X,
i.e., X ` ⊥.

The consequence relation ` satisfies ex falso quodlibet, so that anything can be concluded from an
inconsistent set of expressions in classical propositional logic. There will consequently be at least as
many Build relations as there are expressions in Lcpl. There will be at least one Build relation to any
goal atom.

Suppose that we made T0 by taking T1 and making two changes: (i) we remove Rule[BreakFree],
and (ii) if a rule mentions the predicate BreakFree(·, ·), we change the rule so it no longer mentions
it. So T0 can still represent Break relations, but these relations would have no influence on sort
statuses. This would ensure that T0 would mark as achieved all goals in any inconsistent Domain kb.
Achievement would be due to inconsistency, not to knowledge relevant to the achievement of the goal.

T1 is a strenghening of T0 in the sense that the only difference between T0 and T1 are the rules,
and T1 will not fail in the way that T0 does, when Domain kb is inconsistent.

7 RML Merging

rml merging consists of combining tf specifications of two or more existing rmls, in order to create
the specification of a new rml. We illustrate Problem-Solving merging by combining T1 and iS1
into a new tf specification, and we refer to the resulting rml as TS1. Our aim in merging T1 and
iS1 is that the new specification should allow us to say at least everything we could with each of
them separately.

In order to say with the Domain kb of TS1 at least the same as with iS1 and T1 separately,
the merged Domain language is that of cpl, to which we add a set of constants. The consequence
relation is the consequence relation ` of cpl; as it is reflexive, all atoms in a Domain kb are also in
the closure of that kb, which fits our definition of |v∗ in iS1. While we add constants to the language
of cpl, we keep the original ` of cpl, so that constants are independent from the inference rules;
this follows |v∗ from iS1.

DTS1 = (LTS1,`, X), where:
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• LTS1 = Lcpl ∪ C, where Lcpl is the language of classical propositional logic and C is a set
of constants. Constants can be, for example, names of people, names of roles and positions,
names of resources, etc.

• ` is the consequence relation of classical propositional logic.

• X is some subset of LTS1.

The merged Interface Knowledge is simply a union of selectors from T1 and iS1.

ITS1 = {atoms(·),minproofs(·), premises(·, ·), conclusion(·, ·), constants(·)}

The merged Problem-Solving Knowledge has the same Problem-Solving language, satisfiability
relation, and kb as in T1 and iS1. We discuss the rest of Problem-Solving Knowledge below.

It is useful to summarize key differences between the Problem-Solving Knowledge of T1 and of
iS1, in order to understand how we will merge their Sorts, Statuses, Relations, and Rules:

1. In T1, all predicates in Sorts, Statuses, and Relations include a term which is always a set of
Domain expressions. For example, in Goal(x, Y ) this set is the second term. The purpose of that
set is to make sorting, status assignments, and relations local to a set of Domain expressions,
and allow different sortings and status assignments to same Domain expressions, when they are
in other sets. This can be useful when the Domain kb is inconsistent, and we want to look at,
for example, only its maximally consistent subsets, and perhaps the effects on the presence or
absence of solutions in these sets as a function of sorts we assign to atoms in them. There was
no need for this in iS1, because there was no relation analogous to Break in T1, so that it was
impossible to say that, for example, two goals cannot be achieved together.

2. The key idea in iS1 was that of dependency relations, to capture that some agents want to
delegate to other agents the achievement of goals, the execution of tasks, and the delivery of
resources. There were no agents in T1 – requirements were independent of who owns them,
and who is resonsible for making them succeed.

As TS1 will include the break relation, we will change all sort, status, and relation predicates
carried over from iS1 so that they are local to a set of Domain expressions. To be able to capture
dependency relations in Tts1, we will carry over all sorts over constants from iS1. We keep the goal
and task sorts from T1, and do not carry over those from iS1.

SortsTS1 := {G(·, ·),T(·, ·),A(·, ·),Resource(·, ·),
Agent(·, ·),Role(·, ·),PositionName(·, ·)}

We omit the definitions of predicates above, and in the rest of this section, as they are straightfor-
ward adaptations of definitions given earlier for T1 and iS1. Notice that predicates are now over
expressions and constants from the TS1 language.

The merged Statuses includes all those from T1, and the updated status for resources, which is
now local to a set of Domain expressions.
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StatusesTS1 := {Achieved(·, ·),Maintained(·, ·),Executed(·, ·),Delivered(·, ·)}

In iS1, relations are never between goals, tasks, and resources. More generally, an atom is never
related to another atom. In contrast, there are no constants in T1 and all relations are between
atoms. We keep the build and break relations from T1, and all relations from iS1. But we also
change each relation from iS1 by indicating, as we did for sorts, that it is local to a set of Domain
expressions. As we are not changing the definitions of the build and break relations, only expressions
can be in these relations, and therefore not constants; there can be no break or build relation between
agents, roles, positions, and resources.

As we now have assumptions as the fourth sort next to goal, task, and resource, we need to be
able to define dependencies over assumptions. For this reason, we add WantsMaintained(·, ·, ·) and
CanMaintain(·, ·, ·) relations.

RelationsTS1 := {Build(·, ·, ·),Break(·, ·),Plays(·, ·, ·),
WantsAchieved(·, ·, ·),CanAchieve(·, ·, ·),
WantsExecuted(·, ·, ·),CanExecute(·, ·, ·),
WantsDelivered(·, ·, ·),CanDeliver(·, ·, ·),
WantsMaintained : constants(LTS1)× atoms(LTS1)× ℘(LTS1 \ C)
−→ {True,False},

CanMaintain : constants(LTS1)× atoms(LTS1)× ℘(LTS1 \ C)
−→ {True,False}}

where:

• WantsMaintained(a, x, Y ) = True reads “in Y , agent a wants assumption x maintained”, “in
Y , agent a does not want assumption x maintained” otherwise.

• CanMaintain(a, x, Y ) = True reads “in Y , agent a can maintain assumption x”, “in Y , agent
a cannot maintain assumption x” otherwise.

Since Resource(·, ·) classifies constants, and not atoms, as resources, we adopt the Rule[GAT] from
T1. We also keep all rules that do not define conditions for the success or failure of a goal, assumption,
or task. This is because we want to combine these conditions from T1 with those in iS1; roughly,
this means that the achievement of a goal, for example, will depend both on their being good builds
to it, it being break free, and on it being in a goal dependency; the former conditions were missing in
iS1, while the latter was missing in T1.

RulesTS1 := {Rule[GAT],Rule[Build],Rule[Break],Rule[Primitive],

Rule[BreakFree],Rule[GoodBuild]}

We carry over all rules for dependency relations from iS1, and we add the assumption dependency.
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RulesTS1 := RulesTS1 ∪ {Rule[GoalDependency],Rule[TaskDependency],

Rule[ResourceDependency],Rule[AssumptionDependency]}

where:

• That agent a depends on agent b to have assumption x maintained means that a needs to
have x maintained, cannot do it herself, and b is able to maintain x:

Rule[AssumptionDependency] ≡ ∃a, b, x, Y Assumption(x, Y ) ∧ Agent(a, Y )

∧WantsMaintained(a, x, Y ) ∧ ¬CanMaintain(a, x, Y )

∧ Agent(b, Y ) ∧ CanMaintain(b, x, Y )

⇔ AssumptionDependency(a, b, x, Y )

To define achievement, execution, delivery, and maintenance, we adopt Rule[Dependum] from iS1
and redefine it as follows.

RulesTS1 := RulesTS1 ∪ {Rule[Dependum]}

where:

• Any goal, task, resource, or assumption x is a dependum if there is a dependency relation
on it:

Rule[Dependum] ≡ ∀x (∃a, b, Y GoalDependency(a, b, x, Y )

∨ TaskDependency(a, b, x, Y ) ∨ ResourceDependency(a, b, x, Y )

∨ AssumptionDependency(a, b, x, Y ))

⇔ Dependum(x, Y )

We can now define the conditions for goal achievement, task execution, resource delivery, and
assumption maintenance.

RulesTS1 := RulesTS1 ∪ {Rule[Achieved],Rule[Executed],Rule[Delivered],

Rule[Maintained],Rule[Successful],Rule[Failed]}

where:

• A goal x is achieved in the set Y if (i) there is an agent who wants it achieved, (ii) another
agent who can achieve it, (iii) x is not in Break relations, and (iv) there is a good Build
relation to x, in which all premises are successful:

Rule[Achieved] ≡ ∀Y, Z ⊆ Lcpl x ∈ Lcpl

G(x, Y ) ∧ Dependum(x, Y ) ∧ BreakFree(x, Y )

∧ GoodBuild(x, Z, Y ) ∧ ∀w ∈ Z Succeeds(w, Y ))

⇔ Achieved(x, Y )
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• An assumption x is maintained in the set Y if (i) there is an agent who wants it maintained,
(ii) another agent who can maintain it, (iii) x is in no Break relations, and either (iv-a) is
primitive, or, if it is not primitive, (iv-b) then there needs to be a good Build to it, in which
all premises are successful:

Rule[Maintained] ≡ ∀Y, Z ⊆ Lcpl x ∈ Lcpl

A(x, Y ) ∧ Dependum(x, Y ) ∧ BreakFree(x, Y )

∧ (Primitive(x, Y ) ∨ (¬Primitive(x, Y )

∧ GoodBuild(x, Z, Y ) ∧ ∀w ∈ Z Succeeds(w, Y )))

⇔ Maintained(x, Y )

• A task x is executed in the set Y if (i) there is an agent who wants it executed, (ii) another
agent who can execute it, (iii) x is in no Break relations, and either (iv-a) primitive, or, if it
is not primitive, (iv-b) then there needs to be a good Build to it, in which all premises are
successful:

Rule[Executed] ≡ ∀Y, Z ⊆ Lcpl x ∈ Lcpl

T(x, Y ) ∧ Dependum(x, Y ) ∧ BreakFree(x, Y )

∧ (Primitive(x, Y ) ∨ (¬Primitive(x, Y )

∧ GoodBuild(x, Z, Y ) ∧ ∀w ∈ Z Succeeds(w, Y )))

⇔ Executed(x, Y )

• A resource is delivered in the set Y if there is an agent who wants it delivered and another
who can deliver it:

Rule[Delivered] ≡ ∀x ∈ LTS1 \ Lcpl Resource(x, Y ) ∧ Dependum(x, Y )

⇔ Delivered(x, Y )

• Success is defined as goal achievement, assumption maintenance, task execution, or resource
delivery:

Rule[Successful] ≡ ∀x, Y (Achieved(x, Y ) ∨Maintained(x, Y ) ∨ Executed(x, Y )

∨ Delivered(x, Y ))⇔ Succeeds(x, Y )

Rule[Failed] ≡ ∀x, Y (¬Achieved(x, Y ) ∨ ¬Maintained(x, Y ) ∨ ¬Executed(x, Y )

∨ Delivered(x, Y ))⇔ ¬Succeeds(x, Y )

As there are break relations in TS1, we cannot ask that all goals, tasks, assumptions, and resources
be successful. Instead, we let the problem and solution concepts be those from T1, i.e., a solution
makes all goals successful.

There were no evaluations in T1 and in iS1, and there are none in TS1. If needed, one can add
evaluations to TS1 in the same way as described for evaluation introduction in Section 6.6.

8 RML Analysis

Given a tf specification of an rml, we want to evaluate if it satisfies some properties of interest. We
mentioned these properties in the introduction, and we discuss each of them in this section. This is
an incomplete list, other properties can be relevant.
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8.1 Conciseness

Given two tf specifications A and B, where B was obtained only by removing parts from A, we say
that A fails Conciseness if solution instances of B are also solution instances of A.

To illustrate Conciseness, we use T1r from Section 6.6. T1r is T1 to which we added the
evaluation relation geqDetail(·, ·, ·) to represent comparisons in terms of level of detail. We showed
how to define its strict variant, gDetail(·, ·, ·), and we used it to define refinement and a taxonomy of
refinement relations.

Suppose that we now make another RMLSpec, we denote it T1rx, and we define it as follows:
T1rx := T1r and we add to it the following rules:

RulesT1rx := RulesT1rx ∪ {Rule[Refinement],Rule[GoalRefinement],Rule[Realization]}

where:

Rule[Refinement] ≡ ∀x, Y, Z Refine(Y, x, Z)

⇔ Build(Y, x, Z) ∧ ∀y ∈ Y gDetail(y, x, Z)

Rule[GoalRefinement] ≡ ∀x, Y, Z GoalRefine(Y, x, Z)

⇔ Refine(Y, x, Z) ∧ ∀y ∈ {x} ∪ Y G(y, Z)

Rule[Realization] ≡ ∀x, Y, Z Realize(Y, x, Z)

⇔ Refine(Y, x, Z) ∧ ∀y ∈ Y (T(y, Z) ∨ A(y, Z))

Removing these rules from T1rx makes no difference to the rml that the specification represents.
We defined the additional rules above using ingredients already in T1r. T1rx fails Conciseness. Notice
that Conciseness fails for T1rx because the conditions for the success of goals, tasks, and assumptions
in T1rx are unrelated to there being refinements, goal refinements, or realization relations in the
Domain kb.

Conciseness is not necessarily a desirable property. For example, it is independent from the ease of
use of Problem-Solving Knowledge that is specified. It may be the case that T1rx is more convenient
than T1r. : it may be helpful, while searching for solution instances, to have the refinement, goal
refinement, and realization relations. But if we choose that th problem and solution concepts be
independent from these relations, the specification will fail Conciseness.

8.2 Clarity

A tf specification succeeds Clarity if we can always determine whether we found zero or more solution
instances when using the rml it specifies.

The most apparent case when Clarity fails is when a tf specification is missing either or both the
problem and the solution predicates, that is, when they are undefined. If they are defined, it will fail
if it is unclear from the rules when the sorts have desirable, and when they have undesirable statuses,
where desirable statuses are those required in the solution, and undesirable those required in the
problem.

For illustration, recall that when we defined iS1 from i∗, we introduced statuses, the problem,
and the solution concept not on the basis of the publication we selected. Because there was no clear
problem statement in in the publication we selected as our primary source of knowledge on i∗, and
there was no notion of solution, we needed to decide how an i∗ model needs to look like, in order for
it to be problematic, or for it to include a solution instance.

If we take iS1 and remove the problem and solution concepts from it, we obtain a tf specification
which fails Clarity.
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Whether Clarity is a desirable property depends on the rml being specified. i∗ was introduced as
a modeling language for a wide range of application areas. As different application areas may have
their own specific problems that i∗ can be used to solve, a tf specification of i∗ without the problem
and solution predicates can be taken as a template, waiting to be adapted for specific needs within
each application area.

8.3 Decisiveness

A tf specification fails Decisiveness if we can find more than one solution instance for the same
problem instance.

In T1, the conditions for a set to be a solution instance do not restrict the possibility that
there are several such sets in the Domain kb, so that T1 failed Decisiveness. iS1, iS2, and iS3 all
fail Decisiveness whenever all goals, tasks, and assumptions in the Domain kb are in at least one
dependency relation, and at least one goal, task, or assumption is in more than one dependency
relation. In that case, there is nothing in either iS1, iS2, or iS3 that tells us which dependency
relations we should keep, and which we can remove from a solution.

When there are several solutions we can choose from, the usual approach is to define criteria,
compare solutions over the criteria, establish a total order of solutions based on how they rank over all
criteria, and select one which is not dominated in that total order. We introduced criteria in T1me,
but did not introduce rules for how to use the criteria to establish a total order of all solutions.

We can make sure in different ways that T1me satisfies Decisiveness. A simple option is to focus
on one criterion only, and require that the solution be one set in which none of the members ranks
lower on that criterion than in another set, and that, in case there are several sets equivalent on
that criterion, one of them be chosen randomly. Problem remains the same, and solution concept is
replaced as follows, when the chosen criterion is denoted c.

( ∃X ⊆ Lcpl ¬Problem(X) ∧ (∃z ∈ X G(z,X))

∧ ∃Y ⊆ X ∀z ∈ X (G(z,X)⇒ (G(z, Y ) ∧ Succeed(z, Y )))

( 6 ∃W ⊆ X ∀z ∈ X (G(z,X)⇒ (G(z,W ) ∧ Succeed(z,W )))

∧ ∃r ∈ W, q ∈ Y gCritComp(c, r, q,X)) )

⇔ Solution(Y,X)

9 Related Work

tf is our current response to the problems of having to design, relate, and compare many rmls. It is
based on the assumptions that (i) there is no unique or universal statement of the problem that re
aims to solve, (ii) there is no universal rml that can be used to solve any requirements problem we
may encounter when doing re, and (iii) there is consequently a need for knowledge about how to
make, compare, extend, merge, and analyze rmls in a systematic way.

Many ideas in tf are due to individual rmls that precede it. rmf influenced the decision not to
commit to one Domain formalism, but leave that choice open to the rml designer who uses tf. rmf
showed that requirements ought to capture knowledge about the domain, and that there can be a need
for powerful formalisms when doing so. But perhaps such formalisms are not always necessary, and
simpler ones may be good enough. Also, rmf committed to the sorts entity, activity, and assertion,
which do not reflect clearly enough that we are also interested in why some requirement is present,
namely, because there may be some goal that the system-to-be should help its stakeholders achieve.
We and others have argued for other sorts (e.g., [13, 52, 31]), and it is a disagreement over the right
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set of sorts that led us to avoid committing to specific sorts, statuses, relations, and evaluations in
tf. Such decisions are left to the rml designer. kaos and Formal Tropos [19] inspired the idea
that Problem-Solving Knowledge is about Domain Knowledge, or in other words, that sorts and
relations can be seen as a mechanism to structure Domain Knowledge: kaos in some sense does this
by organizing ground formulas of linear temporal logic into goals, and proofs into goal refinements,
or conflicts between goals. lqcl and Techne led us to avoid committing to a single set of inference
rules in Problem-Solving Knowledge: both are paraconsistent, but in different ways, and there are
many other paraconsistent formalisms, each arguing for its own set of inference rules. This also led to
the notion of statuses, since conditions for the assignment of statuses to sorted Domain expressions
clarify conditions that a Problem-Solving kb should satisfy, for us to be happy with it; this means
that we can distinguish the fact that some, for example, goal expression can be derived from the
Domain or Problem-Solving kb, from us concluding that that goal is achieved. In other words, we do
not equate the derivability or satisfiability of an expression with it being, and this depending on the
sort, achieved, maintained, executed, or otherwise.

10 Conclusions

re uses requirements models. Such models are made with rmls. We proposed the Techne Framework
for the formal specification of rmls. We showed how to use tf (i) to specify a new rml, (ii) to
specify an existing rml, (iii) to specify changes to rmls, (iv) to specify merged rmls, and (v) to
analyze rmls by analyzing interesting properties of their tf specifications.

There are many open questions. We did not discuss how we would specify knowledge about
how to use an rml, that is, steps in which one can best use it. We saw this as an issue for the
procedural specification of rmls, and left it outside the scope of this paper. We defined only the
Conciseness, Clarity, and Decisiveness properties of tf specifications. There may be other properties
of interest when comparing rmls. We did not consider if it would be feasible to avoid defining new
rmls whenever we specify an extension to an existing rml, but rather specify rml modules that
can be used to extend more than one rml. We did not consider how best practices in rmls, such as
the use of specific sorts (e.g., the goal sort), of specific relations (e.g., refinement) can be specified as
properties of tf specifications, so that we can check these properties on existing and new rmls.
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