
17

The Requirements Problem for Adaptive Systems

IVAN J. JURETA, Fonds de la Recherche Scientifique – FNRS and University of Namur
ALEXANDER BORGIDA, Rutgers University
NEIL A. ERNST, University of British Columbia
JOHN MYLOPOULOS, University of Trento

Requirements Engineering (RE) focuses on eliciting, modeling, and analyzing the requirements and envi-
ronment of a system-to-be in order to design its specification. The design of the specification, known as the
Requirements Problem (RP), is a complex problem-solving task because it involves, for each new system,
the discovery and exploration of, and decision making in a new problem space. A system is adaptive if it
can detect deviations between its runtime behavior and its requirements, specifically situations where its
behavior violates one or more of its requirements. Given such a deviation, an Adaptive System uses feedback
mechanisms to analyze these changes and decide, with or without human intervention, how to adjust its
behavior as a result. We are interested in defining the Requirements Problem for Adaptive Systems (RPAS).
In our case, we are looking for a configurable specification such that whenever requirements fail to be ful-
filled, the system can go through a series of adaptations that change its configuration and eventually restore
fulfilment of the requirements. From a theoretical perspective, this article formally shows the fundamental
differences between standard RE (notably Zave and Jackson [1997]) and RE for Adaptive Systems (see the
seminal work by Fickas and Feather [1995], to Letier and van Lamsweerde [2004], and up to Whittle et al.
[2010]). The main contribution of this article is to introduce the RPAS as a new RP class that is specific to
Adaptive Systems. We relate the RPAS to RE research on the relaxation of requirements, the evaluation of
their partial satisfaction, and the monitoring and control of requirements, all topics of particular interest in
research on adaptive systems [de Lemos et al. 2013]. From an engineering perspective, we define a proto-
framework for solving RPAS, which illustrates features needed in future frameworks for adaptive software
systems.

Categories and Subject Descriptors: D.2.1 [Requirements]: Languages

General Terms: Languages, Theory

Additional Key Words and Phrases: Adaptive systems, requirements engineering, requirements problem,
requirements modelling language, requirements problem for adaptive systems

ACM Reference Format:
Ivan J. Jureta, Alexander Borgida, Neil A. Ernst, and John Mylopoulos. 2014. The requirements problem for
adaptive systems. ACM Trans. Manag. Inform. Syst. 5, 3, Article 17 (September 2014), 33 pages.
DOI: http://dx.doi.org/10.1145/2629376

This work was supported in part by ERC advanced grant 267856, titled “Lucretius: Foundations for Software
Evolution” http://www.lucretius.eu.
Authors’ addresses: I. J. Jureta, Department of Business Administration, University of Namur, 8 rempart
de la Vierge, B-5000 Namur, Belgium; email: ivan.jureta@unamur.be; A. Borgida, Department of Computer
Science, Rutgers University, Piscataway, NJ 08855; email: borgida@cs.rutgers.edu; N. A. Ernst, Department
of Computer Science, University of British Columbia, ICICS/CS Building 201-2366 Main Mall, Vancouver,
B. C. V6T 1Z4, Canada; email: neil.ernst@gmail.com; J. Mylopoulos, Information Engineering and Computer
Science, University of Trento, 5 Via Sommarive, I-38123 Povo, Italy; email: jm@disi.unitn.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 2158-656X/2014/09-ART17 $15.00
DOI: http://dx.doi.org/10.1145/2629376

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

http://dx.doi.org/10.1145/2629376
http://www.lucretius.eu
http://dx.doi.org/10.1145/2629376

17:2 I. J. Jureta et al.

1. INTRODUCTION

1.1. Uncertainty and Risk in Requirements

Requirements Engineering (RE) focuses on eliciting, modeling, and analyzing the re-
quirements and environment of a system-to-be in order to design a specification. The
design of the specification, usually called the Requirements Problem (RP), is a complex
problem-solving tas because it involves the discovery and exploration of, and decision
making in, a large problem space. Unsurprisingly, it has been repeatedly found through
experience that it is hard to get the requirements right because “it is really impossible
for a client, even working with a software engineer, to specify completely, precisely,
and correctly the exact requirements of a modern software product before trying some
versions of the product” [Brooks 1986, p. 1075].

A fundamental difficulty in solving the RP is that requirements often reflect engi-
neers’ (be they software engineers, product designers, or business analysts) interpre-
tations of future expectations and needs of stakeholders.

Uncertainty is therefore an essential property of requirements. So is risk: uncertainty
is usually quantified by probability and risk as the sum of the products of the probability
of each undesirable outcome and its corresponding cost.

It is impossible to eliminate all requirements risks at design time, when the spec-
ification of the first or any subsequent release is produced. It is impossible because
the system-to-be is situated in a complex environment of societal rules, commitments,
incentives, laws, contracts, organizations, and, to borrow again from Brooks, “[t]hese
all change continually, and their changes inexorably force change upon the software
product” [Brooks 1986, p. 1070].

1.2. Adaptive Systems as a Response to Requirements Risk

Although there is no silver bullet for requirements uncertainty, there are strategies to
mitigate risk. Design time, for example, may involve prototypes and frequent releases,
collecting feedback, then taking that feedback into account for the design of each next
release.

A risk management strategy that has been steadily gaining attention is the engineer-
ing of Adaptive Systems [Cheng et al. 2009; de Lemos et al. 2013]. A system is adaptive
if it can detect differences between its requirements and runtime performance and can
adjust its behavior to cope with such deviations.

Adaptive Systems engineering, when seen as a risk management strategy, is one that
spans design time and runtime: Design time, because design decisions influence the
range of monitored inputs for the system, and the feedback mechanisms it will have;
and runtime, because these mechanisms enable the system to react to at least some
changes rather than ignore them.

1.3. Exactly Why and How Is Requirements Engineering for Adaptive Systems Nonstandard?

It has been argued that RE for adaptive software systems is nonstandard [Cheng
et al. 2009; Whittle et al. 2010; de Lemos et al. 2013] because it is impossible to know
at design time all possible changes in requirements and environment conditions and
therefore build into the specification all the best ways for it to respond at runtime.
Although some changes can be anticipated at design time, many will only be identified
and understood when or after they happen.

The observation that we are not very good at predicting the future, can, however, be
made independently of Adaptive Systems. It applies for RE for all kinds of systems.
The interesting question for research for RE on Adaptive Systems is therefore this:

Exactly why and how is Requirements Engineering for Adaptive Systems different
from standard Requirements Engineering?

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

The Requirements Problem for Adaptive Systems 17:3

It is interesting, because an answer will suggest what can be retained in, discarded
from, or added to standard RE modeling languages, frameworks, and methodologies to
address Adaptive Systems RE; that is, to help design Adaptive Systems.

The aim of this article is to give a formal answer to this question and thereby help
connect existing research, inform future work, and move closer to a deeper classification
of research in Adaptive Systems RE. It might also help skeptics decide if/how novel is
the problem posed by Adaptive Systems RE.

1.4. Contributions: A New Requirements Problem

To answer the central question in this article, we start from the de facto standard
RP from Zave and Jackson [1997], then illustrate and discuss its differences from the
Requirements Problem for Adaptive Systems (RPAS).

We then introduce a formalism that is just expressive enough to be useful in solv-
ing RPAS, includes concepts and relations already appearing in mainstream RE, and
includes features central in RE for Adaptive Systems. These features are:

—Monitoring and control of requirements [Fickas and Feather 1995; Feather et al.
1998; Robinson 2006]); that is, the idea that satisfaction of requirements should
be monitored and that failure to reach required satisfaction levels should trigger
changes in system behavior;

—Probabilistic relaxation of requirements [Letier and van Lamsweerde 2004]; that is,
instead of requiring that some requirement be satisfied to the same extent all of
the time, probabilistic relaxation weakens such requirements so that they can be
satisfied some of the time to some desired frequency;

—Fuzzy relaxation of requirements [Whittle et al. 2010; Baresi et al. 2010]), where
black-and-white satisfaction of a requirement is replaced with satisfaction to some
level on a continuous scale defined by a fuzzy membership function;

—Evolution requirements [Souza et al. 2012] that concern how to change the system
when some other requirements succeed or fail.

It turns out that extending the simple but abstract modeling language Techne [Jureta
et al. 2010] to allow constraints over quantitative (numerical) variables is enough to
capture key ideas in monitoring, relaxation, and adaptation, and to show how they
contribute to the RPAS.

This article presents two main contributions:

—The RPAS and its solution concept, called Configurable Specification, are formally
defined. A Configurable Specification amounts to a set of requirements configurations
and evolution requirements for switching between configurations. Each configuration
is shown to satisfy all properties required by Zave and Jackson [1997] and in our
prior work [Jureta et al. 2008]. These parallels show exactly how the requirements
problem and Configurable Specification concepts are different from more traditional
RE.

—To introduce the RPAS and Configurable Specification concepts, we define a simple
formalism in which we can model (i) probabilistic and fuzzy relaxation, (ii) monitored
and controlled variables, (iii) evolution requirements. It is a proto-framework because
(a) it is impractical in its current form, but is enough to allow us to present and discuss
the salient properties of the RPAS and Configurable Specification concepts, and (b)
it can serve as a prototype for early formal modeling languages for RE of Adaptive
Systems.

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

17:4 I. J. Jureta et al.

1.5. Organization

This article is organized as follows. Section 2 gives an informal introduction to and the
definition of the RPAS. Section 3 contrasts RPAS to the the standard RP in RE; there, we
use a simple example to discuss how the RPAS departs from the standard RP. Section 4
introduces informally a modeling framework that we use in the rest of the article to
model instances of the RPAS. Section 5 recalls key ideas in the existing RE research
on Adaptive Systemand thereby identifies the notions that have to be accommodated
in the RPAS, its solution concept, and the modeling framework. Section 6 focuses on
the solution concept, the Configurable Specification, and defines its components. We
then revisit in Section 7 the question of how exactly RE for Adaptive System differs
from standard RE. We summarize conclusions and open issues in Section 8. This article
has electronic appendices in which we formally define the modeling framework, and
explain how to use it to capture the key notions from related work on RE for Adaptive
System.

2. THE REQUIREMENTS PROBLEM FOR ADAPTIVE SYSTEMS

2.1. Premises for the Definition of the Problem

The RPAS is based on the premise that the overall aim when designing an Adaptive
System is to make sure that the system satisfies its stakeholders’ requirements as much
as feasible over time, as its environment conditions change and/or its components fail.

To adapt, the Adaptive System has to gather data about events in its operating
environment and about the functioning of its own components. At all times, and on the
basis of these observations, the Adaptive System has to estimate the level to which
it satisfies stakeholders’ requirements. If the levels of satisfaction are inadequate, the
Adaptive System has to make changes to its operational configuration in order to satisfy
requirements.

This leads to key observations about the runtime of Adaptive System. (i) The level at
which requirements are satisfied will vary due to failures in the system and changes
in its environment. (ii) It is necessary to monitor the level of satisfaction in order to
know when the system needs to adapt. (iii) When the system adapts, it may have
different ways of adapting, and each of these ways may have a different impact on
requirements satisfaction levels. (iv) Whenever it needs to adapt, the system should
adapt in a way that optimizes levels of requirements satisfaction, relative to the newly
observed failure of a component or of a change in the environment.

The observations about runtime have important implications for the design time of
Adaptive Systems. Due to observation (i), it may be too idealistic and impractical to
think of requirements as being either satisfied or not because this may lead to too many
failed requirements, too often. It can be more practical, therefore, to define multivalued
scales of requirements satisfaction, in which failure equates to only some of many
values. This is done through the relaxation of requirements, where the idea is to
replace binary levels of satisfaction with, for example, continuous scales of satisfaction
or by letting the requirement be binary, but tracking the frequency at which they are
being satisfied or failing and then using that frequency as the measure of the degree to
which these requirements are satisfied. Observation (ii) suggests that it is necessary,
at design time, to define the levels of requirements satisfaction that trigger adaptation.
If the requirement has a binary satisfaction scale, being either satisfied or not, it may
be relevant to define the minimal probability of observing its satisfaction; for example,
in an ambulance dispatch system, asking for the probability of at least 0.95 that an
ambulance arrives to an incident location within 14 minutes of being dispatched to it.
This would translate, at runtime, into looking at the frequency of incidents in which
the ambulance arrived 14 minutes or more from its dispatch and triggering adaptation

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

The Requirements Problem for Adaptive Systems 17:5

if that frequency is 5% or more of all incidents to which an ambulance was dispatched.
If the requirement has a scale with many levels of satisfaction, then a threshold value
has to be defined on that scale such that, when the satisfaction is below threshold, the
system needs to adapt. This has led to research on awareness requirements, which
are used to define these thresholds for triggering adaptation.

At runtime, when awareness requirements are satisfied, feedback loops become ac-
tive, and the system adapts. Because of observations (iii) and (iv), it is necessary to
define at design time the requirements that the system should satisfy when adapting.
These are the so-called evolution requirements [Souza et al. 2012], and they place
constraints on how the system adapts. In the terminology of research on the RE for
Adaptive Systems, evolution requirements place constraints on the range of reconcil-
iation tactics that the system may choose to apply, when adapting. For example, if the
requirement to compute ambulance location fails, one evolution requirement could be
to try to satisfy instead the requirement that assistants should compute ambulance lo-
cation manually. Another evolution requirement could be to try to compute ambulance
location from ambulance’s onboard record.

2.2. Adaptation as Switching between Configurations

Given the observations and implications discussed in the preceding section, the run-
time of an Adaptive System looks like a sequence of time periods of two kinds: stability,
when no awareness requirement is violated, and adaptation, which lasts while aware-
ness requirements are violated and the system is moving through unstable states
toward another stable period. Evolution requirements define the transitions that take
place during adaptation periods.

This leads to the following terminology in this paper. A configuration describes the
tasks that the system should execute and the environmental conditions within which
these tasks can be executed. If these conditions change, the same tasks may no longer
be feasible. A configuration describes system responsibilities and its environmental
assumptions.

The difference between the notion of configuration and the usual notion of specifi-
cation is that, when we talk about configurations, we assume that there is a so-called
Configurable Specificationand that one configuration amounts to one set of values of
all the parameters of that specification. By assigning a value to each configurable
parameter of the specification, we are choosing one of its possible configurations.

During adaptation, the system switches from one configuration to another and does
so because awareness requirements became violated during the last period of stability.
When switching from one configuration to another—that is, when changing the param-
eters of the specification—the system must satisfy the evolution requirements; it has
to choose the new set of tasks by taking into account the environmental conditions, the
requirements to satisfy, and the evolution requirements.

An individual configuration has to satisfy a number of properties; we mention them
here and define them formally in Section 6. It has to be consistent, so that executing
tasks does not make it impossible to execute others in the same configuration or possible
to violate the environment conditions. It must satisfy all mandatory requirements to
their threshold levels because it would otherwise not be acceptable to stakeholders. It
has to include only those tasks that are necessary and sufficient to reach thresholds for
the satisfaction of the requirements and no unused tasks. Finally, it has to be Pareto
efficient with regards to optional requirements; these requirements are optional in the
sense of being nice-to-have, but, if they fail, the system still remains acceptable to the
stakeholders. If there were two configurations that the system could choose from to exit
an adaptation period, and if their only difference is that one satisfies more desirable

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

17:6 I. J. Jureta et al.

optional requirements, then the system choosing the other would not be Pareto efficient
with regards to optional requirements.

2.3. Configurable Specifications

An individual configuration or, in other words a nonparameterizable specification, can-
not be the solution to the RPAS. This is because a single configuration is only applicable
in the environmental conditions that it describes and when the system is capable of
executing those tasks that it describes. The single configuration says nothing about the
system when these environmental conditions change or when some of its capabilities
fail, thus making it unable to execute the tasks that the configuration prescribes.

At runtime, the Adaptive System will be switching between configurations and
should do so in such a way that it satisfies the evolution requirements. The Adap-
tive System will, at runtime, be realizing a specific sequence of configurations.

A specific sequence of configurations is not the solution to the RPASbecause it is not
possible to predict how the environmental conditions will vary over time, when exactly
the system will fail, and which tasks it will fail to execute. In other words, we cannot
at design time predict the best sequence of configurations to follow at runtime.

Moreover, a motivation for enabling adaptivity is to delegate to the system at least
part of the decision making involved in choosing which configuration to switch to. The
solution should recognize that there can be varying degrees of autonomy with which
the system will choose the next configuration when the current one fails.

This discussion led us to introduce the concept of Configurable Specification as
the solution concept for the RPAS.

Definition 2.1. Configurable Specification: A Configurable Specification is a pair
R = (S, E), where S = {S1, . . . , Sn} is a set of n configurations, and E is a set of evolution
requirements.

The solution to the RPAS includes no concept, which is specifically useful in describ-
ing how exactly adaptation should be done. Evolution requirements impose constraints
on this, and, if needed, feedback loops can be defined in tasks, in configurations.

2.4. The Requirements Problem for Adaptive Systems

The RPAS is the problem of designing a Configurable Specification that can satisfy
the given requirements to the highest feasible level for the predicted failures and
environmental changes.

Definition 2.2. The RPAS: Given (i) stakeholders’ requirements, (ii) stakeholders’
preferences over different levels of requirements satisfaction, and (iii) domain assump-
tions about the operating environment and its expected changes at runtime, find the
Configurable Specification such that, if the system-to-be is implemented so as to be ca-
pable of realizing the configurations and satisfying the evolution requirements in the
Configurable Specification, then it is expected at runtime to satisfy the requirements
to their most desirable feasible levels.

The RPAS does not commit to what it means exactly that requirements are satis-
fied to their most desirable feasible levels; this will depend on the preferences over
requirements and the specifics of scales of satisfaction used to quantify the degree of
satisfaction. Also note that configurations might share the same tasks, yet these tasks
could be parameterized differently in different configurations.

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

The Requirements Problem for Adaptive Systems 17:7

3. FROM THE STANDARD REQUIREMENTS PROBLEM TO THE REQUIREMENTS PROBLEM
FOR ADAPTIVE SYSTEMS

3.1. The Standard Requirements Problem

The standard view in RE is that the system specification is produced incrementally,
starting from requirements and domain knowledge. The latter captures properties of
the environment where the system will run. The goal is to produce a specification which,
together with the given domain knowledge, satisfies requirements and is consistent
with both requirements and domain knowledge.

This important and general conceptualization of the aim in RE is most clearly for-
mulated in Zave and Jackson’s seminal paper, “Four dark corners of requirements
engineering” [Zave and Jackson 1997]. This view, called ZJ hereafter, is echoed in
some of the most influential research in the field, which both preceded and followed
the said paper, including, for example, contributions from Boehm [1988], Boehm et al.
[1995], Dardenne et al. [1993], Darimont and van Lamsweerde [1996], van Lamsweerde
et al. [1998], van Lamsweerde and Letier [2000], Letier and van Lamsweerde [2004],
Mylopoulos et al. [1992], Greenspan et al. [1994], Castro et al. [2002], Robinson et al.
[2003], Nuseibeh et al. [1994], and Hunter and Nuseibeh [1998].

More specifically, Zave and Jackson suggested that, in any concrete systems engi-
neering project, RE is successfully completed when the following five conditions are
satisfied [Zave and Jackson 1997]:

(1) “There is a set R of requirements. Each member of R has been validated (checked
informally) as acceptable to the customer, and R as a whole has been validated
as expressing all the customer’s desires with respect to the software development
project.

(2) There is a set K of statements of domain knowledge. Each member of K has been
validated (checked informally) as true of the environment.

(3) There is a set S of specifications. The members of S do not constrain the environ-
ment; they are not stated in terms of any unshared actions or state components;
and they do not refer to the future.

(4) A proof shows that K, S � R. This proof ensures that an implementation of S
will satisfy the requirements.

(5) There is a proof that S and K are consistent. This ensures that the specification
is internally consistent and consistent with the environment.”

According to Zave and Jackson, the aforementioned conditions “establish minimum
standards for what information should be represented in a requirements language.”

If the satisfaction of these conditions marks the end of RE in any systems engineering
project, then we can give the following compact formulation of the standard RP, which
we call the ZJ RP hereafter.

Definition 3.1. Zave and Jackson Requirements Problem (ZJ RP): Given a
set R of requirements and a set K of domain knowledge, find a specification S such
that (i) there is a proof of R from K and S, written K, S � R, and (ii) K and S are
consistent.

It is useful to observe the following about the ZJ RP. First, it suggests that the basic
categories of information to distinguish in the RP are requirements, domain knowledge,
and specification. Second, it imposes two conditions on the members of these categories.
The first condition is called the Satisfaction Condition and the second the Consistency
Condition in the rest of this article.

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

17:8 I. J. Jureta et al.

Fig. 1. rA and rB are two functional requirements that both need to be satisfied by a system. rAF1 to rAF5
are alternative functionalities that satisfy rA, whereas rBF1 to rBF5 are alternative functionalities that
satisfy rB. Filled circles are combinations of functionalities that satisfy both rA and rB and are thereby
alternative configurations of a system; empty circles denote incompatible combinations of functionalities
and are not configurations.

3.2. Adaptation to Change

Having recalled the ZJ RP as the standard RP for RE, the goal now is to clarify what is
meant by adaptation when talking about RE for Adaptive Systems. This will be used
in subsequent sections to discuss why and how the RPAS differs from the ZJ RP.

To clarify what is meant by adaptation, consider a trivial example. In this example,
by functional requirement we mean a requirement that is either satisfied or not; it
is if a system can deliver a specific functionality, which is, roughly speaking, that it
can do something we can observe. By quantitative variable requirement we mean a
requirement that assigns a desirable value or range of values to a variable that is not
binary.

We have only two functional requirements, rA and rB, to satisfy. We know that we
can satisfy rA by implementing one of five different functionalities, denoted rAF1 to
rAF5, and rB by implementing another five different functionalities, denoted rBF1 to
rBF5. For simplicity, let all 10 functionalities be different and not related in terms of
refinement or parthood; that is, they are neither more detailed variants of one another,
nor parts of one another.

With two functional requirements and five functionalities satisfying each, there are
25 combinations of the 10 functionalities. But some functionalities are not compatible.
This means that we cannot make a system that includes them both. Some combinations
of functionalities therefore do not give a configuration that satisfies both rA and rB.

The part of the example introduced so far can be drawn as in Figure 1. There, filled
circles are configurations; that is, combinations of functionalities that satisfy both rA
and rB. Empty circles are incompatible combinations of functionalities, and because
we cannot make a system that has those functionalities, these empty circles are not
configurations.

If our problem was to find one combination in which functionalities are compatible
and that satisfies both rA and rB, then this can be any one of the 20 configurations in
Figure 1.

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

The Requirements Problem for Adaptive Systems 17:9

Fig. 2. System runs according to configuration S4. Then, functionality rAF4 fails, and the system activates
functionality rAF2 instead, switching thereby from S4 to S2.

Consider adaptation to the failure of a functionality. If we were to design a system
according to one configuration among those in Figure 1, suppose that we chose, for
example, S4, so that the system has functionalities rAF4 and rBF1. If rAF4 fails,
the system fails. If it were an Adaptive System, then it would be designed to switch
to another functionality at runtime, for example, from rAF4 to rAF2. Such a change
is, in the terminology introduced so far, a switch from one configuration to another
by changing the parameters of the Configurable Specification. This is illustrated in
Figure 2.

So far, and including adaptation shown in Figure 2, there is nothing that the ZJ
RP fails to capture. Namely, if S in the ZJ RP is not one filled circle but a set that
includes all filled circles together with conditions for activating each subset S1, S2, and
so on, switching between these subsets requires no changes to the ZJ RP: The problem
is still to find S, given R and K, such that S satisfies the Satisfaction Condition and
Consistency Condition.

Now, assume that we have two quantitative variable requirements to satisfy in
addition to rA and rB. The first relates to scalability and the second to how the sys-
tem compares to its competitors. Let Var1 be the variable in the first and Var2 in
the second quantitative variable requirement. Var1 can be “number of users that
can simultaneously use the system” and Var2 “number of products available for
purchase.”

We prefer large to small values for both Var1 and Var2, and we cannot accept values
that are below some threshold. This is drawn in Figure 3, where T1 is the threshold
for Var1 and T2 for Var2, so that the shaded area shows all acceptable combinations of
Var1 and Var2 values.

If the system were running according to S4, then it satisfies all four requirements
because its values over Var1 and Var2 are above their respective thresholds. If rAF4
fails, the system would need to switch from S4 to either S3 or S5 to still satisfy all
four requirements; if it switched to S2, it would satisfy rA, rB, and the requirement
quantified by Var1, but not the requirement quantified by Var2.

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

17:10 I. J. Jureta et al.

Fig. 3. Variables Var1 and Var2 quantify the level of satisfaction of two quantitative variable requirements.
Hypothetical simulations of configurations S1 to S6 yield values show in the figure. T1 is the threshold value
for Var1 and T2 for Var2.

As long as the system can switch from one configuration to any other configuration,
provided that the latter satisfies all requirements and domain knowledge, then we can
capture with the ZJ RP the problem of designing that system’s specification.

But this fails to capture two important insights. First, the ZJ RP can be read as the
problem of finding any single configuration that satisfies the Satisfaction Condition and
the Consistency Condition. There is no reason why such a specification should result
in a system capable of coping with requirements failure or environmental changes. In
the RPAS, we are looking for a collection of such specifications, each of which applies
in different conditions. We need a Configurable Specification that can be configured
into each of these different nonadaptive specifications. Second, once there are different
configurations that the system can switch to, a mechanism is needed to decide which
of the configurations it is best to switch to.

3.3. Why Is RE for Adaptive Systems Nonstandard?

To see what optimality means here and why it makes RPAS nonstandard, we continue
the example from the previous section.

We said that we prefer higher values of Var1 and Var2. To make this more precise,
we need to say which combinations of values we prefer over others. Since the region
above the thresholds T1 and T2 is large, it is interesting to indicate (i) the shape of
indifference curves in that region and (ii) the direction where these indifference curves
are over more desirable combinations of Var1 and Var2 values.

Figure 4 shows hypothetical indifference curves in the region above thresholds T1
and T2. Each indifference curve is the set of Var1 and Var2 value combinations that are
equally preferred. So, every specification that has Var1 and Var2 values on the same
indifference curve as S3 is equally preferred to S3. The arrow indicates the direction in
which Var1 and Var2 value combinations are preferred, so that any specification on the
indifference curve with S5 is strictly preferred to any specification on the indifference
curve with S3.

Having clarified with indifference curves what we mean by preference for higher
Var1 and Var2 values, we now go back to Figure 1. There, we had 20 alternative

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

The Requirements Problem for Adaptive Systems 17:11

Fig. 4. Hypothetical indifference curves over value combinations of Var1 and Var2. One indifference curve
includes all Var1 and Var2 value combinations that are equally desirable. For example, any configuration
on the same indifference curve as S3 is equally desirable as S3. The arrow indicates the direction in which
value combinations are more desirable. Therefore, S5 is preferred to S3, and S3 is preferred to S4.

configurations. Moreover, we said that adaptation amounts to moving from one to
another of these configurations, based on monitored input of the system and feedback
mechanisms that indicate what configuration to switch to. As discussed earlier, only
some of this can be captured in terms of a ZJ RP.

By adding the two quantitative variable requirements, with their Var1 and Var2,
we restricted the set of acceptable configurations to some subset of the 20 shown in
Figure 1.

Given several configurations, all above T1 and T2 thresholds and all satisfying rA
and rB, which one should we choose?

The answer is simple: Given the indifference curves, we should choose any config-
uration that is on the most desirable indifference curve. More generally, we want the
system to switch, every time it needs to adapt, to the configuration that is the most
desirable among those that are feasible.

This is not to say that we cannot also capture this notion of optimality in ZJ RP.
For example, we can have as an additional member of R in ZJ RPthe proposition
that there should be no feasible configuration that is on a more desirable indifference
curve than the chosen configuration. We can therefore see RPAS as a subclass of the
ZJ RP, although doing so seems rather odd because there were no considerations of
configurations, adaptation, preference, uncertainty, or optimality in defining the ZJ RP.

RE for Adaptive Systems is nonstandard precisely because it is not clear how ex-
actly notions key to Adaptive Systems, such as configurations, adaptation, preference,
uncertainty, optimality, and so on, fit in the ZJ RP. Clarifying this requires that we
define the RPASand thereby answer exactly how RE for Adaptive Systems differs from
standard RE.

4. BASIC FRAMEWORK

This section introduces a framework needed to model the kinds of examples used in the
previous section. We need it to make our discussion of RPAS more precise. We introduce

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

17:12 I. J. Jureta et al.

the framework informally in this section. It is formalized in the electronic appendices
to this article.

The framework distinguishes different types of requirements and allows relations
between requirements. We discuss how these types and relations are used to com-
pare alternative requirements configurations. To illustrate the framework, we use the
London Ambulance Service (LAS) case study [Anonymous 1993].

4.1. Classification of Requirements

The term quantitative variable refers to any variable that takes a number as its value.
The term propositional variable is used as in classical propositional logic—it is a vari-
able that refers to a proposition and gets either True or False as its value.

A requirement is either one of the following three types:

(1) the assignment of True to a propositional variable; for example, “q1 should be true,”
where q1 refers to the proposition “Ambulance shall arrive at an incident location
within 14 minutes,”

(2) the assignment of a value to a quantitative variable; for example, “v should be
exactly 50,” where v is the number of ambulances per 1.000.000 inhabitants,

(3) the restriction of the range of values of a quantitative variable; for example, “av-
erage value of t1,c should be at most 15 seconds,” where t1,c is the time the caller
waits for a control assistant.

In item 1, we talk about a functional requirement; in items 2 and 3, of a quanti-
tative variable requirement.

Figures 5–6 show some of the functional and quantitative variable requirements for
LAS. Annotations of functional requirements, visible in the two figures, indicate their
types according to the two additional classification dimensions, discussed next.

The functional and quantitative distinction gives one classification dimension for re-
quirements. The second classification dimension distinguishes requirements according
to the role they play in the RP. For that second dimension, we use the types introduced
in our prior work on a core ontology for RE [Jureta et al. 2008]; this means that a
requirement is:

k: a domain assumption if it is assumed to hold for the domain. Consider two
examples:

—In Figure 5, k(r3)M is “Callers report imprecise incident location.”
—Let μ be a function over a quantitative variable tx, where tx is the time to estab-

lish if two or more calls refer to the same incident location, and μ(tx) the degree
of satisfaction of LAS stakeholders for a given value of tx. (Another way to see
μ is that it is a utility function.) The domain assumption k(μ(tx = 30 sec) = 0.6)
says that the degree of satisfaction with value tx = 30 sec is 0.6 on some scale.

g: a goal is a propositional variable that describes a desired state (by the stakehold-
ers); for example, in Figure 5, the goal g(p4) indicates that it is desired that
“Fill incident report” is True. Goals are always functional requirements. Qual-
ity constraint, defined next, is analogous to a goal, but for quantitative variable
requirements.

q: a quality constraint exists if it is desired that a quantitative variable gets the
value (in the range of values that) the requirement assigns to it. For example, the
quality constraint q(tx = 60 sec) says that tx should have the value 60 seconds,
whereas q(tx ≤ 60 sec) says that tx should have the value of at most 60 seconds.

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

The Requirements Problem for Adaptive Systems 17:13

Fig. 5. One part of requirements for LAS.

s: a softgoal refers to a desirable range of values for a variable in which the range
is only vaguely specified. Consider “Quickly establish if double location is re-
ported for same incident,” where “quickly” makes the statement vague, leading
us to consider this a softgoal, denoted s(w̃1), where w̃1 refers to the given vague
statement.

t: a task is an action/function that should be executed. In Figure 5, for example, a
task is t(u1), where u1 refers to the proposition “Make the map searchable through
dispatch software.” When a task is over a quantitative variable, it says that it is
necessary to ensure that the given variable gets the assigned value and that it
is known how to do so (otherwise, it would not have been a task but a quality
constraint). For example, if v is the number of new control assistants hired every
year, there can be a task t(v = 3) to indicate simply that three control assistants
should be hired every year, and it is not necessary to model the details of how it
will be ensured that three control assistants are hired every year.

The third and final classification dimension for requirements concerns if they must be
satisfied (i.e., obtain the value True if functional or some specified value if quantitative)
or can be allowed to fail. A requirement can be mandatory, optional, or neither.
g(q2)M in Figure 5 is a mandatory goal, which means that it must be satisfied. g(p15)O

in Figure 6 is an optional goal, meaning that it is more desirable that it is satisfied
than not, but we will still accept a system that fails to satisfy g(p15)O.

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

17:14 I. J. Jureta et al.

Fig. 6. Another part of requirements for LAS.

4.2. Relations between Requirements

We use three kinds of relations between requirements:

—The imply relation drawn with empty circles in Figures 5 and 6 represents non-
material implication [Jureta et al. 2010], understood as a conditional, if-then re-
lation, so that the line from t(u1) to g(p2) abbreviates the formula i(t(u1) → g(p2));
that is, a relation according to which, if we can deduce t(u1), then we can also de-
duce g(p2). When the left-hand side of the implication includes only tasks and do-
main assumptions, we say that it operationalizes the requirement on the right-hand
side. In this example, t(u1) operationalizes g(p2). The implication relation is under-
stood as an operationalization relation if and only if it relates tasks and domain

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

The Requirements Problem for Adaptive Systems 17:15

assumptions to goals or quality constraints; otherwise, it is read as a refinement
relation: In Figure 5, i(k(r1) ∧ k(r2) ∧ g(p1) ∧ g(p2) ∧ g(p3) ∧ g(p4) → g(q2)M) says that
the domain assumptions k(r1) and k(r2) and the goals g(p1) to g(p4) refine g(q2)M.

—Logical inconsistency is represented by the conflict relation; for example, we assume
in Figure 5 that t(u5) cannot be carried out together with t(u6). The conflict relation
between these tasks, drawn in Figure 5, abbreviates the assumption i(t(u2) ∧ t(u4) →
⊥): If we can deduce both, then we will also conclude logical inconsistency.

—Finally, we can have a preference relation between requirements to indicate their
relative desirability. For example, we write t(u10) � t(u13) to say that making sure
t(u10) gets the value True is strictly more desirable than making sure of the same for
t(u13). We draw this as in Figure 6.

Preferences are not written in i() because they differ from implication and conflict:
The latter two are used when doing deduction from requirements, whereas preferences
are not and are instead used only for the comparison of requirements.

The idea of using only the implication and conflict relations in deductions fits the
observation from Robinson et al. [2003] that there are essentially two kinds of relations
used in RE: positive and negative. Negative relations exist between requirements that
either cannot be satisfied together at all, or can, but not all to the desired extent. Typical
kinds of negative relations are conflict [van Lamsweerde et al. 1998] and obstruction
[van Lamsweerde and Letier 2000]. Positive relations exist between requirements that
can be satisfied together, and these are relations found to be useful in designing or
comparing solutions to requirements problems. Typical examples are goal refinement
[Darimont and van Lamsweerde 1996], means-ends [Yu and Mylopoulos 1994], and
operationalization [Dardenne et al. 1993] relations. Appendix C in the electronic ap-
pendices discusses how implication and conflict can be used to define oft-cited positive
and negative relations in RE research and thereby illustrates the versatility of the
relatively simple requirements ontology we outlined earlier using our classification
dimensions on requirements and the relations.

4.3. Comparison of Configurations

Figures 5–6 gave alternative operationalizations of the two mandatory top-level goals
g(q1)M and g(q2)M.

Each combination of operationalizations that results in the satisfaction of all manda-
tory goals in Figures 5 and 6 is also called a configuration.

There are many alternative configurations that can be identified in Figures 5 and 6.
Of these, three are shown in Figures 7–9. They are referred to, respectively, by S1, S2,
and S3; Table I shows the domain assumptions and tasks included in each.

Given several configurations, we want to be able to compare them in order to choose
the most desirable one. Figures 7, 8, and 9 each show one configuration. Each config-
uration satisfies the two mandatory top-level goals, g(q1)M and g(q2)M. One difference
between S2 and both S1 and S3, is that, in S2, the dispatch software does not keep track
of open incident locations automatically whether because of malfunction or otherwise,
thus requiring the control assistants to manually keep track of incident locations. An-
other difference of S2 from both S1 and S3 is that we could switch to S2 if it was no longer
possible to use dispatch software to keep track of which ambulances are available; that
is, if t(u7) and/or t(u8) fail, we would need to switch to t(u9). Notice that switching to
t(u9) does not necessarily mean always switching to S2 because there can be other
configurations, not shown in this article, that include t(u9) and are different from S2.

Both Figures 5 and 6 include information for the comparison of configurations:

—There are softgoals, such as s(w̃1), which come with a satisfaction function μ over the
quantitative variable tx. Such softgoals are used to compare configurations as follows:
Different configurations will result in different values of tx and different values μ(tx).

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

17:16 I. J. Jureta et al.

Fig. 7. One configuration, denoted S1 for LAS requirements from Figures 5 and 6. Highlighted domain
assumptions and tasks operationalize the two mandatory top-level goals, g(q1)M and g(q2)M.

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

The Requirements Problem for Adaptive Systems 17:17

Fig. 8. Another configuration, denoted S2, for LAS requirements from Figures 5 and 6. Highlighted domain
assumptions and tasks operationalize the two mandatory top-level goals, g(q1)M and g(q2)M.

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

17:18 I. J. Jureta et al.

Fig. 9. A third configuration, denoted S3, for LAS requirements from Figures 5 and 6. Highlighted domain
assumptions and tasks operationalize the two mandatory top-level goals, g(q1)M and g(q2)M.

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

The Requirements Problem for Adaptive Systems 17:19

Table I. Content of Each Configuration Shown in Figures 7–9

S1 S2 S3

Every call is switched to the ambulance dispatch center k(r1) x x x
No calls are dropped because of timeout k(r2) x x x
Callers report imprecise incident location k(r3)M x x x
Control assistant uses heuristics that cannot be automated k(r4) x
Make the map searchable through dispatch software t(u1) x x x
Open incident locations visible in the dispatch interface t(u2) x x
Update open incident locations at each new incident t(u3) x x
Every control assistant manually tracks locations t(u4) x
Fill out incident report via the software t(u5) x
Fill out a paper incident report form t(u6) x x
Make the list of all available and of all allocated ambulances
available through the dispatch interface

t(u7) x x

Update the list of all available and allocated ambulances every
time an ambulance is assigned to an incident

t(u8) x x

Every control assistant manually keeps track of available am-
bulances

t(u9) x

Dispatch software ranks ambulances from best to worst for a
given incident location

t(u10) x x

Dispatch software displays the ranking of ambulances to con-
trol assistant

t(u11) x x

Control assistant chooses available ambulances to dispatch t(u12) x x x
Dispatch software does not recommend ambulances to choose t(u13) x
Control assistants use dispatch software to assign the chosen
ambulance to incident

t(u14) x x

Control assistant verbally informs other assistants of which
ambulances are assigned

t(u15) x

Control assistant mobilizes the ambulance via radio with the
ambulance

t(u16) x x

Control assistant uses dispatch software to mobilize the am-
bulance, without radio

t(u17) x

Ambulance staff confirm mobilization via dispatch software
client in the ambulance

t(u18) x x x

Ambulance staff confirm arrival at incident location via dis-
patch software client, in the ambulance

t(u19) x

Ambulance staff confirm arrival at incident location via radio t(u20) x x
Close incident report via the software t(u21) x
Close incident report by filling out a paper form t(u22) x x
Ambulance staff confirm mobilization via radio t(u23)

According to Figures 7–9, task t(u2) in configurations S1 and S3 satisfies the quality
constraint q(tx = 30 sec), whereas the task t(u4) in configuration S2 satisfies the
quality constraint q(tx = 60 sec). Using μ, we then know that satisfaction is higher
when q(tx = 30 sec) is satisfied than when q(tx = 60 sec) is satisfied. Finally, because
the softgoal says that we prefer to quickly establish double location, the softgoal
gives the preference k(μ(tx) = 0.6)M � k(μ(tx) = 0.1)M, indicating, for this softgoal
only, that there are better configurations than S2. We later revisit how the softgoals,
in general, give us such preferences.

—Preference relations are not only generated via softgals, as in the preceding case.
The preference t(u14) � t(u15) is independent of softgoals and will be satisfied if we
choose a configuration that includes t(u14).

—Different configurations may satisfy different optional goals. The optional goal
g(p15)O is only satisfied by configuration S1 in Figure 7.

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

17:20 I. J. Jureta et al.

5. KEY IDEAS IN ADAPTIVE SYSTEMS RE

This section reviews key ideas in RE for Adaptive System. The language introduced
in the previous section, together with the key ideas presented in this section, form the
basis for defining the RPAS in Section 6.

5.1. Monitoring and Reconciliation Tactics

Adaptive behavior entails monitoring of requirements and control over a collection of
behaviors, each of which can satisfy requirements. Fickas and Feather [1995] suggested
that for this we must start with a specification of all alternative behaviors to be consid-
ered in a requirements model; that is, alternative refinements and operationalizations
of all requirements. The model is then a source of monitored variables, the observed
values of which will trigger behaviors, called “reconciliation tactics,” that are intended
to change the values of control variables that can affect how one operationalizes a
requirement. This forms a control loop through which the system observes and reacts
by switching from one configuration to another at runtime.

For illustration, consider the goal g(p3 : Check if double location) for LAS in Figure 5,
which has two operationalizations: One way to satisfy g(p3) is by executing both tasks
t(u2) and t(u3); the other is via t(u4). A reconciliation tactic could be, for example, “if
t(u2) fails, then operationalize g(p3) by t(u4).”

Feather et al. [1998] combined the requirements monitoring mechanisms from Fickas
and Feather with KAOS [Dardenne et al. 1993] to make an RE framework in which
requirements can be converted into constraints on events, and events are monitored
at runtime. Robinson [2006] suggested a requirements monitoring platform that can
be combined with a requirements modeling language via translation rules between
the expressions of the latter and those accepted by the former, then suggested how to
use Object Constraint Language as the modeling language for the platform [Robinson
2008].

5.2. Computed Reconciliation Tactics

An important characteristic of a reconciliation tactic (and the same applies to adap-
tation goals [Baresi et al. 2010]) is that it is defined in relation to local requirements;
that is, it says what to do in relation to a single requirement that is not being satisfied.
There are two problems with defining a reconciliation tactic by looking mainly at local
requirements:

—It is not clear that following any or every reconciliation tactic will make sure that
the new system configuration is consistent with the requirements. It is not clear
what happens if the reconciliation tactic works locally, but activates tasks that are
inconsistent with some other already active part of the system.

—One local change may seem fine by itself and may result in a new and consistent
configuration, but this new configuration may be a dominated one: that is, maybe
instead of satisfying one reconciliation tactic and obtaining some quality level, we
could have used several adaptations, which result in a configuration that ensures
higher quality. The local approach to the definition of reconciliation tactics comes
with the risk of adapting to a suboptimal or inconsistent configuration.

We therefore contend that instead of defining reconciliation tactics by considering
their impact only on a small set of requirements, reconciliation tactics should be defined
so as to ensure that the configuration obtained after adaptation via reconciliation tactics
is desirable in its entirety in terms of various criteria used to compare alternative re-
quirements configurations (including, e.g., preferences over requirements, probabilities

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

The Requirements Problem for Adaptive Systems 17:21

of requirements satisfaction, and so on). This has two consequences on the formulation
of the problem and solution concepts in Adaptive Systems RE:

(1) We do not define reconciliation tactics while writing the requirements model (or, in
other words at design time), but we compute reconciliation tactics after we have
identified at least some configurations from a set of alternative configurations, all
of which satisfy some set of properties (e.g., are consistent) and satisfy some prefer-
ences. Instead, we define evolution requirements that the computed reconciliation
tactics have to satisfy. Consider Figures 7–9, where each configuration satisfies
the mandatory goals from in Figures 5–6 for the LAS system: For example, if the
system is configured according to S1, and t(u5) fails, then it may be more desirable
to adapt to S3 than to S2, so that reconciliation tactics can be identified directly by
comparing S1 to S3 and defining what tasks to add and delete in order to switch
from t(u21) to t(u22), from t(u19) to t(u20), from t(u17) to t(u16), and from t(u5) to t(u6).

(2) The local/global distinction has an impact on how we select configurations: It is
likely that the system can adapt from one to one among several alternative config-
urations; for example, if t(u17) fails in configuration S1, then we can consider both
S2 and S3, which use the alternative t(u16). Commitment to one of these configu-
rations should take into account the evolution requirements and the consequences
of adapting to the configuration: For example, perhaps configuration S2 is more
desirable than S3 if only these two are compared, but we may know that if we
select S2, then, in the long term, it is not sustainableif we are to keep satisfying
some quality constraint; or, we may have an evolution requirement that says that,
if t(u17) fails, then the configuration to adapt to must exclude t(u23).

5.3. Probabilistic and Fuzzy Relaxation of Requirements

Adaptive behavior, by definition, means that the system cannot satisfy all the specific
requirements and meet the desired quality levels all of the time—it may do worse, but
it may also do better.

Relaxation of requirements has been suggested to cover both cases: A requirement
can be relaxed to allow the system to fail it, but we restrict how often it can do so
(via probabilistic relaxation), or to avoid overly constraining the system when it may
deliver higher quality than expected (via fuzzy relaxation). Relaxation of requirements
is closely related to the evaluation of their satifaction because one aim of relaxation
is to quantify the degree of satisfaction of a requirement. Two broad approaches to
relaxation and satisfaction evaluation have been suggested based on objective criteria
(where measurement is in terms of quantifiable phenomena in the environment or the
system) or on subjective criteria (where a number is given to reflect personal impression
of satisfaction, regardless of measurable phenomena in the domain). Souza et al. [2012]
called awareness requirements those requirements that one obtains after relaxing some
original requirements.

An important approach to relaxation based on objective criteria was suggested by
Letier and van Lamsweerde [2004], who extended the goal models of KAOS to allow
the specification of measures on system behaviors and probability functions over the
values of these measures. Using such a formalism, they can state, for example, that in
the LAS system, 95% of ambulances should reach the designated place of incident in at
most 14 minutes after an incident is reported. Values of measures and probabilities are
computed for every requirements configuration, all of which are inputs to a decision-
making process that aims at selecting a single configuration.

Approaches based on subjective criteria were revived recently for RE of Adaptive
Systems. Whittle et al. [2010] associate fuzzy membership functions with functional
requirements in order to allow and quantify departures from the ideal satisfaction of

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

17:22 I. J. Jureta et al.

such requirements. The fuzzy membership function can be interpreted as a satisfaction
function, and they use modalities to relax requirements: For example, to relax the task
t(u18) in Figure 6, we would write [As early as possible]t(u18). This means that we would
add a function μ , which returns a level of satisfaction when given a duration between
time “now” and the time when t(u18) is executed, whereby μ “has its maximum value
at 0 (i.e., at the current point in time) [and] tails off gradually ad infinitum (i.e., it has
a triangular membership graph that is asymptotic)” [Whittle et al. 2010].

Baresi et al. [2010] also use fuzzy membership functions in relaxing requirements
and so are able to treat functional requirements as quantitative ones. They introduce
degrees of satisfaction between the binary 0 (for violated) and 1 (satisfied); thus, ad-
justed requirements are associated to “adaptive” requirements that relate ranges of
values of the fuzzy membership function to trigger switching between configurations.
For example, if there is a quality constraint q(v < 6 hrs)—which would be written
as a goal G(v < 6hrs) in their notation because they allow quantitative variables in
goals—then relaxing it would amount to replacing it with q(v < f 6hrs) (in their nota-
tion, G(v < f 6hrs)), where ≤ f is a fuzzy operator. Their interpretation of v < f 6hrs is
that there is a fuzzy membership function μ that returns the level of satisfaction as a
function of v, and the shape of μ is predefined (for < f in G(v < f 6hrs), it is positive and
constant until v = 6, then decreases up to the satisfaction value 0 for some v > 6).

6. CONFIGURABLE SPECIFICATIONS, CONFIGURATIONS, AND EVOLUTION
REQUIREMENTS

The RPAS and the corresponding Configurable Specification concept are needed be-
cause monitoring, control, evolution requirements, and probabilistic and fuzzy relax-
ation are not formulated in the standard RP. These features affect the properties that
solutions need to satisfy and influence the criteria used to compare alternative solu-
tions. This section presents and discusses the formal properties of the Configurable
Specification concept as the solution concept for RPAS. In Section 7, we compare RPAS
and Configurable Specification concepts to Zave and Jackson [1997] and Techne [Jureta
et al. 2010].

The requirements problem is a design and decision-making problem. By design, we
mean that alternative solutions to the problem are not available but need to be created:
For example, in Figures 5–6, we start from two broad goals, g(q1)M and g(q2)M, so that we
need to elicit further requirements and information, refine goals, identify conflicts, and
define operationalizations, all of which fall under design.1 Decision making requires the
identification of criteria for the comparison of alternative solutions and the application
of a decision rule to rank alternative solutions from the most desirable to the least
desirable.

To provide definitions, we start with the notion of a requirements database �—a
set of requirements and the relations between them. For example, the requirements
database for LAS in this article includes all requirements and relations in Figures 5
and 6.

The novelty of the RPAS and Configurable Specification concepts lies in the proper-
ties of requirements configurations, evolution requirements, and in how Configurable
Specifications can be ranked. We discuss these in turn next.

6.1. Properties of Requirements Configurations

Let us first look at the configurations appearing in a Configurable Specification.

1Note that “design” is typically used for steps of systems development that come after RE, such as architectural
design. The term “design” is used here in a broader sense to encompass all activities (e.g., elicitation,
validation) necessary to make alternative options on which we then need to decide.

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

The Requirements Problem for Adaptive Systems 17:23

Definition 6.1. A configuration in a Configurable Specification is a set S of do-
main assumptions and tasks in � such that S satisfies the Consistency, Functional
threshold achievement, Quantitative threshold achievement, Conformity, Dominance,
and Minimality conditions.

6.1.1. Consistency. Every requirements configuration S must be consistent; that is,
S �|�τ ⊥, where |�τ is the consequence relation defined in Section A.2. The Adaptive
System should work to satisfy a consistent set of requirements. In Figures 7–9, every
configuration is such that there are no conflicts between its members. Remark that in a
Configurable Specification,

⋃
S can and will often be inconsistent because alternative

configurations need not be consistent together. If we adapt from S1 to S2, note that
S1 ∪ S2 |�τ ⊥, since there are conflicts (e.g., between t(u16) and t(u17)).

6.1.2. Functional Threshold Achievement. Every configuration S should operationalize ev-
ery mandatory goal in �—a set written as �M

g . An operationlization defines tasks and
domain assumptions with which we can fulfill a goal. For example, in Figure 5, if the
task t(u1) is satisfied, then g(p2) is satisfied, so that the former operationalizes the lat-
ter. Since a requirement can be operationalized by alternative sets of tasks and domain
assumptions, we have a function Op(ϕ) (defined in Section A.3), which, given a manda-
tory goal ϕ ∈ �M

g , returns the set of all operationalizations of ϕ. For example, Op(g(p7))
includes two operationalizations of g(p7) in Figure 6. This property is restricted to
functional requirements, for which satisfaction is binary, and thus to goals, since a
goal is either satisfied or not. The property requires threshold satisfaction because it
requires only that all mandatory goals be satisfied by a configuration.

A consistent set of requirements must meet both the functional and quantitative
thresholds, for it otherwise fails to satisfy the requirements that must be satisfied.

6.1.3. Quantitative Threshold Achievement. Every configuration S should operationalize
every mandatory quality constraint in �—a set written as �M

q . Once again, the opera-
tionalization function Op(ϕ) is used to return all sets of operationalizations of a quality
constraint ϕ = q(α), whereby some set � is such an operationalization iff it includes do-
main assumptions and tasks in which there are assignments of values to all variables
in α, and these assignments are such that the constraint in α is satisfied.

Quality constraints identify desirable values of quantitative variables. For example,
quality constraints may thus place constraints on values of measures of some behavior
of the system-to-be. In LAS, and in relation to the response to emergency calls and
the mobilization of ambulances, the time that these activities take is a crucial part of
quality of service. We can use the following variables, where c identifies a call and e a
unique incident:

t1,c: Time the caller waits for a control assistant;
t2,c: Time to identify incident location;
t3,c: Time to fill out incident report;
t4,e: Time to mobilize an ambulance;
t5,e: Time for the mobilized ambulance to arrive and confirm arrival at incident
location.

Instead of defining bounds on all of these variables, a government standard may not
be as specific and may impose a maximal time over a subset of activities that need to be
executed between the placement of the emergency call and the confirmation of arrival
of an ambulance to location; for example:

q(t6,c ≤ 3min: t6,c is the duration between the switching of the call c to the dispatch
center to the mobilization of the ambulance to the incident location)

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

17:24 I. J. Jureta et al.

where it is clear that the value of t6,c depends on t1,c, t2,c, t3,c, and t4,e. If we assume
that t6,c = t1,c + t2,c + t3,c + t4,e, then we add this to the requirements database as
a domain assumption over quantitative variables, k(t6,c = t1,c + t2,c + t3,c + t4,e). The
domain assumption says that there is a quantitative refinement relation between vari-
ables, and it specifies the functional relation between the refined t6,c and the variables
refining it. In contrast to the refinement relation, quantitative refinement is not over
requirements but over variables in quantitative variable requirements.

Although it may be useful to set a precise bound on the value of an aggregate variable,
as t6,c in the preceding paragraph, it may be more interesting to set bounds relative
to the values of other variables. For example, if we want t2,c to be at most 110% of its
average value over the past three months, then we write

q(t2,c ≤ (1.1/3)(v1,m−3 + v1,m−2 + v1,m−1));

k(v1,m = n(m)−1 ∑n(m)
i=1

∑c(i)
c=1 t2,c), where m is the month identifier, n(m) the number

of days in m, c is the call identifier on a given day, c(i) is the total number of calls
received on day i of month m;

where the domain assumption is a quantitative refinement of v1,m, the average time,
over a month, that it takes to identify the location.

The quality constraints and quantitative refinements need to be related to goals,
tasks, and domain assumptions in order to determine if the former are satisfied. If
there is a running system, the values of t2,c are recorded, and it is straightforward to
check if the constraint t2,c ≤ (1.1/3)(v1,m−3 + v1,m−2 + v1,m−1) is satisfied.

Before the system is in operation, we can simulate values of t2,c by assuming that
t2,c is a random variable that has some probability distribution, so that we would
have k(t2,c � N(60sec, 45sec2)) if we assume that t2,c follows a normal distribution with
mean 60sec and variance 45sec2 when the task t(u1) is satisfied, which we model by a
refinement k(t(u1) → k(t2,c � N(60sec, 45sec2))). This assumption may be based on data
from a pilot study, from expert opinion, or from data on systems that also satisfy t(u1)
and are already in operation.

6.1.4. Conformity. Every configuration S must include all strict domain assumptions
and all mandatory tasks, that is, �M

k ∪ �M
t ⊆ S. This property asks that all strict

domain assumptions are not violated, and all mandatory tasks are executed in every
configuration.

The Functional and Quantitative threshold achievement and Conformity properties
ensure that a configuration satisfies all that must be satisfied.

6.1.5. Dominance. Every configuration S must be maximal with regard to optional re-
quirements; that is, � ∃S′ ⊆ � such that (i) both S and S′ satisfy the Consistency,
Functional threshold achievement, Quantitative threshold achievement, and Confor-
mity conditions, (ii) S ⊂ S′, and (iii) S′\S contains optional k or t requirements.

This condition formalizes the idea of optional requirements, which are desirable to
satisfy but can be violated. A configuration should include as many such defeasible
domain assumptions and as many optional tasks up to the point at which adding any
further defeasible domain assumptions and/or optional tasks violates the Consistency,
Functional, and Quantitative threshold achievements and Conformity properties. The
Dominance property ensures that every configuration is Pareto efficient with regards
to optional requirements because this condition makes it impossible to add optional
domain assumptions and tasks to any S and still ensure that S is a configuration.

6.1.6. Minimality. A set S satisfying all the properties just described must be mini-
mal in order to qualify as a configuration. Minimality requires that a configuration

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

The Requirements Problem for Adaptive Systems 17:25

includes only the domain assumptions and tasks that are needed to satisfy exactly the
Consistency, Functional threshold achievement, Quantitative threshold achievement,
Conformity, and Dominance properties.

All three configurations S1, S2, and S3 in Figures 7–9 satisfy all six properties.
In terms of our discussion of RE for Adaptive System in Section 3, we have

defined here the properties that are satisfied by every individual configuration
shown in Figure 1. We now consider switching between configurations via evolution
requirements.

6.2. Evolution Requirements

An evolution requirement specifies the differences that are allowed between the previ-
ous configuration and the next configuration to switch to. It does so by describing the
presence/absence of certain requirements in pairs of related configurations, and it is
triggered by the failure of monitored assumptions, tasks, or quality constraints. Any
requirement monitored for failure is an awareness requirement.

In Figure 7, if task t(u21) fails, we might want to replace {t(u19), t(u17), t(u5)} with
{t(u22), t(u20), t(u16), t(u6)}. In general, we will therefore want to specify the conditions
monitored for failure and the changes (additions, removals) that must be seen in the
successor configuration when failure occurs. This evolution requirement can then tell
us that if we are running the configuration S1 in Figure 7 and the system fails to
satisfy t(u21), then it could adapt from S1 to S3. Note that an evolution requirement
〈T , A, D〉 might then be thought of as a simple operator in AI planning, where T is
trigger condition, whereas A and D are add/delete lists.

Definition 6.2. An evolution requirement is an operator of the form 〈T , A, D〉,
where T is a set of requirements present in the initial configuration (which are mon-
itored to fail) whereas A and D are, respectively, sets of requirements that must be
present and absent in the final configuration if the operator applies.

Note therefore that if operator 〈T , A, D〉 applied in going from configuration Si to
Si+1, then T ∪ D ⊆ Si and A ∩ Si = must hold and analogously with Si+1. Note
also that it is quite acceptable that multiple operators apply at the same time when
connecting Si to Si+1 and that (as with the so-called ramification problem in AI) there
may be additional changes needed in Si+1 in order to make it a valid configuration.

In this sense, requirements are monitored, whereas evolution requirements act as
a control mechanism that guides adaptation by changing the target requirements
configuration that the Adaptive System needs to satisfy.

6.3. Comparison of Configurations in a Configurable Specification

Given several configurations, the configuration that ranks best is the optimal config-
uration. Ranking of configurations requires the identification of comparison criteria
and the application of a decision rule that establishes a ranking of configurations in a
Configurable Specificationon the basis of criteria.

Comparison criteria are either optional requirements or preferences.
Preferences can be individually added to � or can be obtained through the relax-

ation of requirements or from softgoals. Preferences are illustrated in Figures 5 and 6,
where, for example, t(u16) is strictly preferred to t(u17), which indicates that, for this
criterion only, a configuration having the former task is strictly more desirable than
the configuration having the latter task.

6.3.1. Preferences through Probabilistic Relaxation. Continuing the example from
Section 6.1.3, the upper bound on t2,c in q(t2,c ≤ (1.1/3)(v1,m−3 + v1,m−2 + v1,m−1)) may

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

17:26 I. J. Jureta et al.

still be too idealistic because callers may provide information of very different quality
about the incident location.

Probabilistic relaxation of a quality constraint is done in two steps:

(1) The variable constrained in q is redefined as a random variable, and an assumption
is made on the probability distribution of that random variable. Adding k(t2,c �
N(60sec, 45sec2)) to � makes t2,c into a random variable that follows a normal
distribution.

(2) The quality constraint to be relaxed is removed from �, and a new quality constraint
is added. The new constraint specifies a bound not on the value of the now random
variable, but on the probability that its value is in some range. Since we made t2,c
into a random variable in the first step, we now replace q(t2,c ≤ (1.1/3)(v1,m−3 +
v1,m−2 + v1,m−1)) with q(P(t2,c ≤ (1.1/3)(v1,m−3 + v1,m−2 + v1,m−1)) ≥ 0.90); that is, we
now require that the minimal probability should be 0.90 for t2,c to be at most 110%
of its three-month average.

Random variables and the quality constraints thereon are important for decision
making because we use them to set desired probability levels over random variables.
In more informal terms, this means that we can write quality constraints and domain
assumptions that reflect, respectively, the confidence that we desire to reach in relation
to system behaviors and the confidence that we actually have.

Figure 6 indicates that t(u7) operationalizes the quality constraint q(P(e ≤ 0.10) =
0.8), whereas t(u8) operationalizes q(P(e ≤ 0.10) = 0.2). The two quality constraints
suggest that the two tasks result in different probabilities of having less than 10% of
erroneous identifications of available ambulances. Figure 6 further indicates the level
of satisfaction with each of the two probability levels.

If we needed to do probabilistic relaxation of a goal, rather than of a quality con-
straint, this process is changed as follows. Given a goal, say g(p9) in Figure 5, to
perform probabilistic relaxation, we remove it from the requirements and add a qual-
ity constraint q(p′

9 ≥ 90%), where p′
9 is the percentage of confirmed mobilizations over

all mobilizations, and 90% is a threshold value. We then proceed to relax this quality
constraint in the same way as earlier.

This same approach applies when doing probabilistic relaxation of a domain assump-
tion that is over a propositional variable, such as k(r3)M.

When we do probabilistic relaxation of an optional requirement, the new requirement
obtained by relaxation is also optional; if it was mandatory, the new requirement would
also remain mandatory.

6.3.2. Preferences through Fuzzy Relaxation. Fuzzy relaxation of a quality constraint in-
volves two steps:

(1) The quality constraint is removed, and a fuzzy membership function is defined over
the variable from the removed quality constraint. In the second step, a softgoal is
defined over the variable from the relaxed requirement. Consider again q(t2,c ≤
(1.1/3)(v1,m−3 + v1,m−2 + v1,m−1)), and we now apply fuzzy relaxation. We start by
removing this quality constraint from �. A fuzzy membership function over t2,c,
denote it μ(t2,c), depends on how stakeholders evaluate, in terms of desirability, the
various values of t2,c. For example, we could use μ(t2,c) = e−t2,c , so that the higher
the value of t2,c, the lower μ(t2,c) is, which reflects the idea that the more time it
takes to identify an incident location, the more the stakeholders are dissatisfied,
whereby their satisfaction increases as t2,c approaches 0. If we adopt μ as defined,
we have removed the quality constraint on t2,c, and we quantify satisfaction as a
function of t2,c.

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

The Requirements Problem for Adaptive Systems 17:27

(2) To finish with the fuzzy relaxation of the quality constraint on t2,c, a softgoal needs
to be added to the requirements database over values of t2,c. Softgoals have had
various definitions in RE, but there seems to be agreement on their two properties:
(i) they are used for the comparison of alternatives, and (ii) they are vague because
they refer to some desirable values of variables, even though it may not be clear
which exact values or of which variables. For example, Response time should be
low is a typical softgoal in which the variable is suggested, but it is not clear
which specific range of its values qualify as low; in the softgoal High safety, not
only is it not clear how to measure safety, it is also not apparent when safety is
high. When used in fuzzy relaxation, a softgoal is defined over a known variable:
In our example, it is reasonable to prefer lower over higher values of t2,c, and we
consequently have the softgoal

s(LET x1
def= VAL(S1, t2,c) AND x2

def= VAL(S2, t2,c);
IF μ(x1) > μ(x2) THEN ADD
{k(t2,c = x1), k(t2,c = x2), k(t2,c = x1) � k(t2,c = x2)}
TO �;)

where VAL(S1, t2,c) returns the value of t2,c in configuration S1. Although this formu-
lation seems very different from saying “Low t2,c,” this is precisely what it does, as
long as μ(t2,c) decreases when t2,c increases. � denotes the strict preference relation,
and k(t2,c = x1) � k(t2,c = x2) says that k(t2,c = x1) is strictly more desirable than
k(t2,c = x2).

The important point is that the softgoal specifies a macro, and the macro generates
domain assumptions and preference relations. For any two configurations S1 and S2,
the macro compares the satisfaction (returned by satisfaction function μ) with values
that t2,c has in each of those two configurations. Depending on the comparison between
these values, the macro adds two domain assumptions and a preference relation to �.
The reason we add them to � and not individual configurations is because we can add
one of these domain assumptions only if doing so does not violate the conditions that a
configuration must satisfy (i.e., adding one of these domain assumptions may make a
configuration inconsistent and thus no longer a configuration at all).

This macro ensures that if we compare two configurations, S1 and S2, and t2,c ob-
tains the value x1 in S1 and the value x2 in S2, then we will prefer over this criterion
(independently of other criteria) the configuration in which t2,s obtains the value that
results in higher satisfaction. The macro thus conveys the idea that, whenever we are
given two values of t2,c, we prefer the one that we are more satisfied with.

Fuzzy relaxation of a quality constraint over a variable v thus works by (i) removing
the quality constraint on v, (ii) adding a fuzzy membership function μ(v) on v, (iii)
interpreting μ(v) as the level of satisfaction with the value v, and (iv) adding a softgoal
macro that generates preference relations that reflect the shape of μ.

6.3.3. Preferences Based on Softgoals. Not all softgoals are macros used in fuzzy relax-
ation. A softgoal can be introduced in � even if we do not know the exact variable it
refers to or the exact range of values that it makes desirable. Very broad softgoals are
allowed, such as

s(p̃17: Ambulances should arrive quickly at incidents)

where we write the tilde over p because the content of the softgoal is not a propositional
variable, as in a goal or task, because it is not clear from the statement referred to by p̃17
how to measure the time of arriving at incident scenes (e.g., does it begin at call recep-
tion or at ambulance mobilization?), and it is not clear when a time to arrive at an inci-
dent counts as quickly. There are two ways to approximate such softgoals: by refine-
ment or by satisfaction functions, and both can result in preferences being added to �.

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

17:28 I. J. Jureta et al.

When a softgoal is refined, it is treated just as any other requirement. For example,
we may define the following refinement of s(p̃17)

q(t7,e ≤ 15min)
k(q(t7,e ≤ 15min) → s(p̃17))
k(t7,e = t1,c + t2,c + t3,c + t4,e + t5,e)

where we refined the softgoal with the quality constraint over the quantitative variable
t7,e (i.e., if we satisfy q(t7,e ≤ 15min); then the if-then domain assumption just presented,
by implication, tells us to deduce s(p̃17)), which is itself a function of times introduced
before. We could find another refinement of s(p̃17) and have a preference between the
two.

A softgoal can be approximated using a satisfaction function and by proceeding in
a similar way to fuzzy relaxation. Given s(p̃17), we decide which variable it refers to,
and we assume it is t7,e, such that k(q(t7,e ≤ 15min) → s(p̃17)). Second, we remove the
softgoal s(p̃17). Third, we define a function μ1(t7,e), and we interpret the value given by
μ1(t7,e) as the level of satisfaction with the value t7,e. Fourth, we add a softgoal macro
over t7,e:

s(LET x1
def= VAL(S1, t7,e) AND x2

def= VAL(S2, t7,e);
IF μ1(x1) > μ1(x2) THEN ADD
{k(t7,e = x1), k(t7,e = x2), k(t7,e = x1) � k(t7,e = x2)}
TO �;)

This case is also illustrated with the softgoal s(w̃1) and function μ(tx) in Figure 5.

6.3.4. Use of Criteria for Ranking. Given a set of criteria and Configurable Specifications,
two kinds of decision rules are needed: (i) to establish a ranking of configurations from
the most desirable to the least desirable in a Configurable Specification, and (ii) to
establish a ranking of configuration sequences that can be generated with a Config-
urable Specification. A configuration sequence is generated from the configurations
and evolution requirements in a Configurable Specification.

RPAS, Configurable Specification, and configuration concepts are too general to pre-
scribe a particular decision rule. This also reflects the idea that no universal decision
rule can be given: Every decision rule gives one or more criteria priority over others,
so that domain- and/or project-independent decision rules should be much more inter-
esting. Note that the decision rule to apply will depend on how tradeoffs are resolved
through, among other methods, stakeholder negotiations; these concerns remain out-
side the scope of RPAS definition.

Various decision rules can be used to rank configurations. Examples are:

—R1: Rank highest the configuration S if S maximizes some quantitative variable
v, and rank other configurations in a descending order by value of v that each
achieves: that is, S so that MAX(v) iff ∀S′, S′ is a configuration and max(VAL(S, v)) ≥
max(VAL(S′, v)), where max returns the largest constant in a given set. The variable
v may be quantifying utility, for example, and its value may be obtained through the
aggregation of values of quantitative variables appearing in each configuration; we do
not address how exactly the aggregation is done, but contributions on multi-criteria
decision making may be relevant.

—R2: Same as R1, but rank highest the configuration that minimizes v; that is, rank
from MIN(v) to the configuration that results in the highest value of v.

—R3: Same as R1, augmented for the following condition: The chosen configuration
should satisfy the maximal number of optional and preferred requirements, where
in a preference relation φ � ψ or φ � ψ , φ is the preferred requirement.

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

The Requirements Problem for Adaptive Systems 17:29

R1 and R2 ignore preferences and optional requirements that are independent of
v, and both give highest priority to the value of a chosen variable. In that case, the
decision rule requires us to solve a single-objective optimization problem. The third
rule is significantly different because it has two high priorities; namely, the value of the
chosen quantitative variable and the number of optional and preferred requirements.
The application of the third rule requires the resolution of a multiobjective optimization
problem.

The decision rules that rank configuration sequences can concern the maximization
or minimization of a quantitative variable over a sequence of configurations from the
Configurable Specification. We may ask, with such a decision rule, that optimization
satisfies constraints on efficiency of evolution. For example, the decision rule may be
as follows:

—R4: Choose configuration sequence X if (i) it maximizes the sum of values of the
quantitative variable v over all configurations in X, under the constraints that (ii)
v must never fall below value q in X, and (ii) no configuration in X differs from the
configuration that immediately precedes it by more than w requirements.

R4 is a decision rule pattern in which a concrete rule is obtained by setting q and
w to constants. R4 illustrates that constraints need not be limited only on individual
configurations, but also on the sequence of configurations because it limits the number
of changes that can be performed, which may reflect the necessity to conserve resources
during evolution.

The choice of a Configurable Specification does not impose one sequence of configu-
rations that the system should follow: Adaptive behavior means that, for example, if
we adopt rule R3, the system will start from the configuration in which the domain
assumptions are consistent with the conditions in the environment of the system. It
will then adapt according to the satisfaction/failure of monitored requirements. It may
be relevant to dynamically (at runtime) compute new configurations, the discussion of
which we leave as an open issue.

7. HOW EXACTLY IS RE FOR ADAPTIVE SYSTEM NONSTANDARD?

Monitoring and control of requirements are not ideas new to RE for Adaptive Systems.
They have been around at least since the mid-1990s [Fickas and Feather 1995]. In
a sense, any change of requirements that is intended to broaden the range of stim-
uli (desirable or undesirable) that a system can observe and react to is a matter of
requirements adaptation. And this is hardly a new issue in RE. Relaxation, whether
probabilistic or fuzzy, is also not a new topic; the former has been discussed at least
since 2004 [Letier and van Lamsweerde 2004], the latter at least since 1996 [Liu and
Yen 1996] in relation to imprecise requirements (i.e., softgoals in this article).

A novelty in Adaptive Systems RE is that, in order to provide methodological support
to solve RPAS, it is necessary to design concepts, ontologies, formalisms, and other tools
for dealing with both anticipated change in the system environment and unanticipated
change.

Design of configurations and Configurable Specifications is a response to anticipated
changes. Fuzzy and probabilistic relaxation are responses only to some forms of unan-
ticipated change and are insufficient: They still assume that all changes will produce
stimuli that are observable using sensors engineered into the system and that the
values of measurements through these sensors and on those stimuli will fall within
ranges covered by relaxed requirements.

We have identified no mechanism in this article that deals with change that fails
these properties; that is, which involves stimuli for which there are no sensors or

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

17:30 I. J. Jureta et al.

where measurements result in values outside the scales defined through requirements
relaxation.

Novelty, then, makes it necessary to have RE frameworks that are capable of both
the specification of and reasoning about monitoring and control considerations and of
probabilistic and fuzzy relaxation. And if the aim is to also address a broader range
of unanticipated changes, then there is a need for conceptual tools that are unclear
to us at the moment. This also answers the question of what to retain within, discard
from, or add to existing RE modeling languages, frameworks, methodologies to address
Adaptive Systems RE: Such artifacts and methodologies are likely to need means for
requirements relaxation and the specification of evolution requirements to be relevant
for Adaptive Systems RE.

If we take the framework introduced in this article as one that has means for doing RE
while taking monitoring and control aspects and fuzzy and probabilistic relaxation into
account, then we can give more precise observations on how RPAS and Configurable
Specification differ from the ZJ RP and standard RE.

There is in the ZJ RP no information to define comparison criteria. We offered a
revised definition of the requirements problem [Jureta et al. 2008] (JMF hereafter)
that has a richer ontology (to account for concepts that have established them-
selves in RE; e.g., goals and softgoals), allows inconsistencies between alternative
configurations (each of which satisfies ZJ conditions), and introduces preferences to
allow the comparison of configurations in terms of desirability, and we argued that
logical consequence in early RE is more adequately described by a nonmonotonic and
paraconsistent consequence relation |�τ [Jureta et al. 2010] than � from classical logic.
These revisions make it hard to synthesize the requirements problem as K, S � R,
since consistency and achievement become only a subset of the conditions that a
solution should satisfy. Note that alternative solutions are indistinguishable in ZJ RP
because of the absence of comparison criteria.

Both the ZJ RP and JMF formulations of the requirements problem place consid-
erable emphasis on properties that can be established from propositional variables
alone. With ZJ RP, the aim was to design one solution that is consistent and achieves
requirements. With JMF, the aim was to design several configurations, all of which
are consistent and achieve a threshold (i.e., all mandatory requirements), then proceed
to decision making; that is, compare configurations in terms of which preferred and
optional requirements they satisfy, then choose one of them.

In RPAS, the aim is to choose Configurable Specifications, whereby the configura-
tions in a Configurable Specification all are consistent and achieve requirements (as
in ZJ RP), but also to distinguish mandatory from optional requirements and those
that can be compared in terms of preference (as in JMF). By satisfying Consistency and
Functional threshold achievements, each configuration in a Configurable Specification
satisfies the ZJ RP conditions. By additionally satisfying Conformity, every configura-
tion satisfies all properties that a candidate solution should satisfy in JMF. From there
on, the departures of the configuration, evolution requirement, Configurable Specifica-
tion, and RPAS concepts from ZJ RP and JMF are:

(1) A configuration satisfies Quantitative threshold achievement, Dominance, and
Minimality in addition to Consistency, Functional threshold achievement, and Con-
formity.

(2) Decision rules for the ranking of configurations and of Configurable Specifications
can be formulated as an optimization problem, in which the aim is to optimize
one or more quantitative variables. This was not of interest in ZJ RPand was very
limited in JMF.

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

The Requirements Problem for Adaptive Systems 17:31

(3) There are new kinds of preferences and tradeoffs to consider. Although a configu-
ration may give an optimal value of a variable in one Configurable Specification,
we may prefer another Configurable Specification that fails to include that con-
figuration but ensures some suboptimal but acceptable value of the variable over
several configurations in the Configurable Specification. Instead of focusing on the
desirability of individual solutions, it is necessary to look at the desirability of
Configurable Specifications.

Because of the problem of designing, finding, and ranking Configurable Specifica-
tions, RPAS reflects the consequences of adaptation behavior: A Configurable Specifi-
cation is a set of configurations that need not have a predefined sequence, but must
have evolution requirements, whereas the system needs to be designed so that it is able
to monitor requirements and satisfy evolution requirements by controlling its behavior
by switching between the highest ranking yet feasible configurations.

8. CONCLUSIONS AND OPEN ISSUES

We have presented two results. First, by defining the configuration, evolution require-
ment, and Configurable Specification concepts, we suggested a precise definition of the
RPAS. We related these concepts to the key notions from RE of Adaptive Systems;
namely, monitoring, control, evolution requirements, and probabilistic and fuzzy relax-
ation. This led us to argue that there are fundamental differences between Zave and
Jackson’s and our conceptions of the requirements problem and the RPAS, its solu-
tion concepts, and the decision rules used to rank solutions. Second, we used a simple
modeling framework throughout the article, one based on Techne [Jureta et al. 2010],
which serves as a proto-framework, being an illustration of features needed in future
requirements modeling languages relevant to RE for Adaptive Systems.

There are a number of interesting open issues. The shift to configurations and Con-
figurable Specifications suggests that research into extended planning and single- and
multiobjective optimization may be a source for further advances in RE frameworks
and tool support. It is necessary to look into how the RPAS relates to mixed-integer
and mixed-variable programming, how to make adaptation rules on the basis of Con-
figurable Specifications, and what decision rules may be relevant for decision making
in RE. New frameworks for solving RPAS need to be connected to frameworks for
controlling the evolution of services, such as those that are capable of addressing
structural, behavioral, and quality of service changes [Andrikopoulos et al. 2012].
Work is needed on the integration of probabilistic and fuzzy relaxation, monitor-
ing, and control within practical modeling languages for early and late requirements
phases.

Our focus in this article was on modeling and reasoning aids for the design of the tech-
nological side of evolving sociotechnical systems. Our conceptualization of the RPAS
did not pay particular attention to potentially complicated interactions between cre-
ating Adaptive Systems and the organizational, economic, social, or political aspects
of the environments in which they are created and/or will run. Arriving at the cur-
rent RPAS and its solution concept while relating it to a considerable body of existing
work has been itself a challenge. This obliged us to leave outside the scope of our
work the interplay between the possibilities or affordances [Zammuto et al. 2007] that
RPAS, Configurable Specification, and the resulting Adaptive Systems do and will of-
fer to organizations, the interdependencies between solving RPAS and influencing or
designing the human organization that will use it, and the effect of understanding
these interdependencies on the very formulation of the RPAS, its solution concept, and
conceptual tools for finding solutions. This article will hopefully inform these future
efforts.

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

17:32 I. J. Jureta et al.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.

REFERENCES

V. Andrikopoulos, S. Benbernou, and M. P. Papazoglou. 2012. On the evolution of services. IEEE Transactions
on Software Engineering 38, 3 (2012), 609–628.

Anonymous. 1993. Report of the Inquiry Into The London Ambulance Service. Technical Report. The Com-
munications Directorate, South West Thames Regional Authority.

L. Baresi, L. Pasquale, and P. Spoletini. 2010. Fuzzy goals for requirements-driven adaptation. In Proceedings
of the IEEE International Requirements Engineering Conference.

B. W. Boehm. 1988. A spiral model of software development and enhancement. IEEE Computer 21, 5 (1988),
61–72.

B. W. Boehm, P. K. Bose, E. Horowitz, and M. J. Lee. 1995. Software requirements negotiation and rene-
gotiation aids: A theory-w based spiral approach. In ICSE, Dewayne E. Perry, Ross Jeffrey, and David
Notkin (Eds.). ACM, 243–253.

F. P. Brooks. 1986. No silver bullet—essence and accidents of software engineering (invited paper). In IFIP
Congress. 1069–1076.

J. Castro, M. Kolp, and J. Mylopoulos. 2002. Towards requirements-driven information systems engineering:
the Tropos project. Information Systems 27, 6 (2002), 365–389.

B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee (Eds.). 2009. Software Engineering for
Self-Adaptive Systems [Outcome of a Dagstuhl Seminar]. Lecture Notes in Computer Science, Vol. 5525.
Springer.

A. Dardenne, A. van Lamsweerde, and S. Fickas. 1993. Goal-directed requirements acquisition. Science of
Computer Programming 20, 1–2 (1993), 3–50.

R. Darimont and A. van Lamsweerde. 1996. Formal refinement patterns for goal-driven requirements elab-
oration. In SIGSOFT FSE.

R. de Lemos, H. Giese, H. A. Müller, and M. Shaw (Eds.). 2013. Software Engineering for Self-Adaptive
Systems II - International Seminar, Dagstuhl Castle, Germany, October 24–29, 2010 Revised Selected
and Invited Papers. Lecture Notes in Computer Science, Vol. 7475. Springer.

N. A. Ernst, A. Borgida, I. J. Jureta, and J. Mylopoulos. 2013. Agile requirements engineering via paracon-
sistent reasoning. Information Systems 43, (2014), 100–116.

M. S. Feather, S. Fickas, A. Van Lamsweerde, and C. Ponsard. 1998. Reconciling system requirements and
runtime behavior. In IWSSD. IEEE Computer Society, Washington, DC, 50.

S. Fickas and M. S. Feather. 1995. Requirements monitoring in dynamic environments. In Proceedings of the
IEEE International Requirements Engineering Conference. IEEE Computer Society, 140–147.

S. Greenspan, J. Mylopoulos, and A. Borgida. 1994. On formal requirements modeling languages: RML
revisited. In Proceedings of the 16th International Conference on Software Engineering. 135–147.

A. Hunter and B. Nuseibeh. 1998. Managing inconsistent specifications: Reasoning, analysis, and action.
ACM Transactions on Software Engineering Methodologies 7, 4 (1998), 335–367.

I. J. Jureta, A. Borgida, N. A. Ernst, and J. Mylopoulos. 2010. Techne: Towards a new generation of require-
ments modeling languages with goals, preferences, and inconsistency handling. In Proceedings of the
IEEE International Requirements Engineering Conference.

I. J. Jureta, J. Mylopoulos, and S. Faulkner. 2008. Revisiting the core ontology and problem in requirements
engineering. In IEEE International Requirements Engineering Conference. IEEE Computer Society.

E. Letier and A. van Lamsweerde. 2004. Reasoning about partial goal satisfaction for requirements
and design engineering. In SIGSOFT FSE, Richard N. Taylor and Matthew B. Dwyer (Eds.). ACM,
53–62.

X. F. Liu and J. Yen. 1996. An analytic framework for specifying and analyzing imprecise requirements.
In Proceedings of the 18th International Conference on Software Engineering. IEEE Computer Society,
60–69.

J. Mylopoulos, L. Chung, and B. Nixon. 1992. Representing and using nonfunctional requirements:
A process-oriented approach. IEEE Transactions on Software Engineering 18, 6 (1992), 483–497.
DOI:http://dx.doi.org/10.1109/32.142871

B. Nuseibeh, J. Kramer, and A. Finkelstein. 1994. A framework for expressing the relationships between
multiple views in requirements specification. IEEE Transactions on Software Engineering 20, 10 (1994),
760–773.

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

http://dx.doi.org/10.1109/32.142871

The Requirements Problem for Adaptive Systems 17:33

N. A. Qureshi, I. J. Jureta, and A. Perini. 2011. Requirements engineering for self-adaptive systems: Core
ontology and problem statement. In Proceedings of the Conference on Advanced Information Systems
Engineering.

W. N. Robinson. 2006. A requirements monitoring framework for enterprise systems. Requirements Engi-
neering 11, 1 (2006), 17–41.

W. N. Robinson. 2008. Extended OCL for goal monitoring. ECEASST 9 (2008).
W. N. Robinson, S. D. Pawlowski, and V. Volkov. 2003. Requirements interaction management. ACM Com-

puting Surveys 35, 2 (2003), 132–190.
V. E. S. Souza, A. Lapouchnian, K. Angelopoulos, and J. Mylopoulos. 2012. Requirements-driven software

evolution. Computer Science - Research and Development (2012), 1–19. DOI:http://dx.doi.org/10.1007/
s00450-012-0232-2

V. E. S. Souza, A. Lapouchnian, W. N. Robinson, and J. Mylopoulos. 2013. Awareness requirements. In
Software Engineering for Self-Adaptive Systems II, Rogério Lemos, Holger Giese, Hausi A. Müller, and
Mary Shaw (Eds.). Lecture Notes in Computer Science, Vol. 7475. Springer, 133–161.

A. van Lamsweerde, R. Darimont, and E. Letier. 1998. Managing conflicts in goal-driven requirements
engineering. IEEE Transactions on Software Engineering 24, 11 (1998), 908–926.

A. van Lamsweerde and E. Letier. 2000. Handling obstacles in goal-oriented requirements engineering. IEEE
Transactions on Software Engineering 26, 10 (2000), 978–1005.

J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, and J.-M. Bruel. 2010. RELAX: A language to address
uncertainty in self-adaptive systems requirements. Requirements Engineering 15, 2 (2010), 177–196.

E. S. K. Yu and J. Mylopoulos. 1994. Understanding “Why” in software process modelling, analysis, and
design. In Proceedings of the 16th International Conference on Software Engineering 159–168.

Raymond F. Zammuto, Terri L. Griffith, Ann Majchrzak, Deborah J. Dougherty, and Samer Faraj. 2007.
Information technology and the changing fabric of organization. Organization Science 18, 5 (2007),
749–762.

P. Zave and M. Jackson. 1997. Four dark corners of requirements engineering. ACM Transactions on Software
Engineering Methodologies 6, 1 (1997), 1–30.

Received April 2013; revised December 2013; accepted April 2014

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

http://dx.doi.org/10.1007/s00450-012-0232-2
http://dx.doi.org/10.1007/s00450-012-0232-2

Online Appendix to:
The Requirements Problem for Adaptive Systems

IVAN J. JURETA, Fonds de la Recherche Scientifique – FNRS and University of Namur
ALEXANDER BORGIDA, Rutgers University
NEIL A. ERNST, University of British Columbia
JOHN MYLOPOULOS, University of Trento

A. FORMALIZATION

This section defines the modeling language used throughout the article. The modeling
language is called Techne 2 (T2) because it extends Techne 1 [Ernst et al. 2013]
by adding quantitative variable requirements, quality constraints, softgoals, and
preferences.

A.1. Language

The set of requirements L is the union of four disjoint sets of formulas: simple require-
ments on propositional variables LP , simple requirements on quantitative variables
LN, simple softgoals LS, and complex requirements LC .

Every simple functional requirement (i.e., every a ∈ LP) satisfies the following
BNF specification:

a ::= k(p) | g(p) | t(p), (A.1)

where p is a symbol for a propositional variable. A requirement over a propositional
variable can be a domain assumption (k), a goal (g), or a task (t). The informal reading
of the members of LP is

k(p): it is believed that p is satisfied;
g(p): it is desired that p be satisfied;
t(p): the excution of the task makes p satisfied.

Every simple quantitative variable requirement (i.e., every b ∈ LN) satisfies
the following BNF specification:

x ::= n | v | x + x | x − x | x · x | x/x | xx (A.2)

y ::= x > x | x < x | x = x | x ≥ x
| x ≤ x | x �= x | x � pdf (A.3)

b ::= k(y) | q(y) | t(y), (A.4)

where n is a real number, v is a quantitative variable, and pdf is a probability density
function. The informal reading is:

k(y): it is believed that the condition y is satisfied;
q(y): it is desired that the condition y be satisfied;
t(y): the excution of the task makes y satisfied.

Simple softgoals are kept outside LP and LN because the natural language state-
ment in a softgoal (e.g., High usability, High performance), denoted p̃, refers to some
desirable values of variables in such a way that it is not clear what the exact values

c© 2014 ACM 2158-656X/2014/09-ART17 $15.00
DOI: http://dx.doi.org/10.1145/2629376

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

http://dx.doi.org/10.1145/2629376

App–2 I. J. Jureta et al.

are or how the values of these variables can be observed or measured. Every c ∈ LS

satisfies:
c ::= s(p̃). (A.5)

A p̃ is called the content of a softgoal and is a vague proposition. By being vague,
p̃ is neither a propositional variable, nor a quantitative variable, nor a condition on
quantitative variables. The symbol used is intentionally different from those inside
domain assumptions, goals, quality constraints, and tasks.

A complex requirement relates simple requirements and/or softgoals or is a
mandatory or optional requirement. Every h ∈ LC satisfies the BNF specification

d ::= a | b | c (A.6)

e ::=
m≥1∧
i=1

di → d |
m≥2∧
i=1

di → ⊥ (A.7)

f ::= i(e) (A.8)

g ::= dM | dO | f. (A.9)
As a convention, we consider every complex requirement with an implication con-
nective as information that defines a configuration. This is because we consider such
statements as not being given in an RPAS, but part of what we add during the design
of the solution.

We use lowercase letters of the Greek alphabet to denote generic requirements,
members of L = LP ∪LN∪LS∪LC . Uppercase Greek letters denote sets of requirements.
Preferences over simple requirements and softgoals are kept in the separate set.

The set of preferences P includes all preference relations over simple requirements
and/or softgoals; every w ∈ P conforms to the specification

w ::= d 	 d | d
 d | d ≈ d. (A.10)

Note that this disallows preferences between complex requirements; preferences them-
selves cannot be marked mandatory or optional nor can they participate in a refinement
or in a conflict.

Definition A.1. The language is the tuple (P, R, V, P̃,L,P), where L is the set of
requirements that satisfy the BNF specification in Equations A.1–A.9, and P is the
set of preferences that satisfy the BNF specification in Equation A.10, whereby the
propositional variables in requirements and preferences come from the set P, numbers
from the set R of real numbers, quantitative variables from V , and vague propositions
from P̃.

Definition A.2. Any � ⊆ L ∪ P is a requirements database.

A.2. Consequence Relation

We use the following consequence relation, defined by extending the Techne conse-
quence relation to allow deduction over statements with quantitative variables.

Definition A.3. The consequence relation |�τ is such that, for � ⊆ L, φ ∈ L, and
x ∈ {φ,⊥}:
—� |�τ φ if φ ∈ �, or
—� |�τ x if for every i such that 1 ≤ i ≤ n, � |�τ φi and i(

∧n
i=1 φi → x) ∈ �, or

—If every y1, . . . , yn is a statement about real values and variables that conforms to
Eq. A.3, and if {y1, . . . , yn−1} yn in real arithmetic, then x1(y1), . . . , xn−1(yn−1) |�τ

xn(yn), where x1, . . . xn−1 ∈ {k, t} and xn ∈ {k, t, q}.

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

The Requirements Problem for Adaptive Systems App–3

The consequence relation |�τ is sound with regards to standard entailment in
classical propositional logic, but it is incomplete in two ways: It only considers deducing
positive atomic facts, and no ordinary proofs based on arguing by contradiction go
through; thus it is paraconsistent.

A.3. Operationalization Function

The purpose of the operationalization function is, given a requirement φ and a set of
requirements X, to return, if it exists, every set Y ⊆ X that satisfies the following
conditions. If φ is a requirement over a propositional variable, then Y includes only
those domain assumptions and tasks necessary to deduce φ. If φ is a requirement over
a quantitative variable, then Y includes only those domain assumptions and tasks that
ensure that the condition in φ is satisfied when all of the variables in that condition
are replaced by the values that they are assigned by the requirements in Y .

To define the operationalization function, we define here the Select function and one
useful set. We assume that O = {k, g, q, s, t, i}, and we denote by ℘(X) the powerset of
X.

Definition A.4. The select function

Select : O × {“empty”, O, M} × ℘(L) −→ ℘(L) (A.11)

is defined as follows, for x ∈ O, y ∈ {“empty”, O, M}, and � ⊆ L:

Select(x, y,�)
def= {φ | x(φ)y ∈ �}. (A.12)

To simplify notation, we use the following abbreviation:

Select(x, y,�) ≡ �
y
x. (A.13)

Given a set of expressions, the Select function returns its subset in which all members
have the labels x ∈ O and y ∈ {“empty”, O, M}.

Definition A.5. Useful set: Let � ⊆ L. Then

CON(�)
def=

{
� ⊆ � | � �|�τ ⊥ and �i ∪

⋃
x∈O

�M
x ⊆ �

}
. (A.14)

CON(�) is the set of all consistent subsets of �, whereby every one of these subsets
must include all mandatory requirements from �.

The reason why every φ ∈ CON(�) must include all mandatory requirements is that
we require the set of mandatory requirements to be consistent and, as we will see
later, to be included in all operationalizations because an operationalization must not
be inconsistent with mandatory requirements.

Definition A.6. The operationalization function

Op :
⋃
∀x,y

�
y
x −→ ℘

(
℘

(⋃
∀z,w

�w
z

))
(A.15)

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

App–4 I. J. Jureta et al.

for y, w ∈ {“empty”, O, M}, x ∈ {g, q, s}, and z ∈ {k, t, i}, is defined as follows:

Op (φ)
def=

{
� ∈ CON(�) | � |�τ φ

and � \ {φ} ⊆
⋃
∀z,w

�w
z ,

and � ∃� ⊂ �, � |�τ φ

}
. (A.16)

Every member of the set Op(φ) is a minimal consistent set of tasks and domain as-
sumptions that is sufficient to operationalize the goal, quality constraint, or softgoal φ.
Informally, Op(φ) tells us all the ways in (i.e., subsets of) � of satisfying a goal, quality
constraint, or softgoal that are consistent with all mandatory requirements.

A.4. Softgoal Macros

Softgoal macros automatically change the requirements database when it already con-
tains some specific requirements.

Macros rely on the special monitoring function VAL. Given a set of requirements
X ⊆ � and a quantitative variable v, if there are tasks and domain assumptions in X
that assign a value n ∈ R to v (e.g., a task such that t(v = n) where n is a constant),
then n ∈ VAL(X, v).

Definition A.7. The monitoring function
VAL : ℘(�) × V −→ ℘(R) (A.17)

is defined as follows, for X ⊆ �, v ∈ V , x ∈ {k, q, t}, and y ∈ {“empty”, O, M}:
VAL(X, v) = {n ∈ R | ∃Y ⊆ X so that Y ∈ Op(x(v = n)y)}, (A.18)

VAL(X, v) is a set of all constants that are assigned through operationalizations in X
to v.

The softgoal macro applies to any quantitative variable v for which VAL(�, v) �= ∅ and
for which there is a satisfaction function μ(v). This is the case when there is in � an
operationalization of a requirement that assigns a value to v and a domain assumption
that defines a variable v′ as the output of the satisfaction function on v (i.e., there exists
k(v′ = μ(v)) ∈ �). The softgoal macro automatically adds preference relations between
sets of requirements operationalize requirements that assign constants to v, whereby
the preferences are defined to reflect the values returned by μ.

Definition A.8. For every quantitative variable v ∈ V such that VAL(�, v) �= ∅ and
there exists k(v′ = μ(v)) ∈ �, where μ is informally interpreted as a satisfaction
function, there is the following softgoal macro:

s(∀x1, x2 ∈ VAL(�, v), x1 �= x2,
IF μ(x1) = μ(x2) THEN ADD

{k(v = x1), k(v = x2),
k(v = x1) ≈ k(v = x2)}

TO �;
IF μ(x1) > μ(x2) THEN ADD

{k(v = x1), k(v = x2),
k(v = x1)
 k(v = x2)}

TO �;).

Two remarks are in order. First, note that the preferences are added to reflect the
values not of v but of the satisfaction level μ(v) on v. Second, note the difference between

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

The Requirements Problem for Adaptive Systems App–5

the definition of the softgoal macro here and the macro we used in Section 6.3.2: There,
the macro was simpler because we assumed that we already knew the configurations.

A.5. Configuration Concept

Definition A.9. A configuration S, defined from the requirements database �, is a
set

S ⊆
⋃
∀x,y

�
y
x, for x ∈ {k, t, i}, y ∈ {“empty”, O, M} (A.19)

of domain assumptions, tasks, and imply and conflict relations that satisfies the fol-
lowing properties:

(1) Consistency: S �|�τ ⊥;
(2) Functional threshold achievement: ∀φ ∈ �M

z , z ∈ {g, s}, there exists � ∈ Op(φ) such
that � ⊆ S;

(3) Quantitative threshold achievement: ∀φ ∈ �M
q, ∃� ∈ Op(φ) such that � ⊆ S;

(4) Conformity: �M
k ∪ �M

t ⊆ S;
(5) Dominance: � ∃S′ such that both S and S′ satisfy conditions 1–4, S ⊂ S′, and ∃�O

x =
S′ \ S, such that �O

x �= ∅ and x ∈ {k, t};
(6) Minimality: � ∃S′ such that S′ satisfies the conditions 1–5 and S′ ⊂ S.

The Threshold achievement property requires that a configuration satisfies all
mandatory goals, quality constraints, and softgoals. Satisfaction depends on the
presence of operationalizations in S for each of the mandatory goals, quality con-
straints, and softgoals.

The Conformity property asks that all strict domain assumptions are not violated,
and all mandatory tasks are executed. The Achievement and Conformity properties
ensure that the configuration satisfies all that must be satisfied.

According to the Dominance property, every configuration will be maximal with
regards to optional requirements. This property formalizes the idea of the optional
relation as holding on requirements that are desirable to satisfy but can be violated. A
configuration should include as many defeasible domain assumptions and as many op-
tional tasks up to the point at which adding any further defeasible domain assumptions
and/or optional tasks violates the Consistency, Functional and Quantitative threshold
achievements, Conformity, or Minimality properties. The Dominance condition ensures
that every configuration is Pareto efficient with regards to optional requirements be-
cause this condition makes it impossible to add optional domain assumptions and tasks
to any S and still ensure that S is a configuration.

The Minimality property requires that a configuration includes only the domain
assumptions and tasks that are needed to satisfy exactly the Consistency, Threshold
achievement, Conformity, and Dominance properties.

B. RELATING THE FORMALIZATION TO REQUIREMENTS ENGINEERING
FOR ADAPTIVE SYSTEMS

We illustrated throughout the main article how the contributions here depart from
prior efforts in the understanding of the requirements problem and solution concepts
in mainstream RE and in Adaptive Systems RE.

The Configurable Specification concept is inspired by our discussion of the role
of contexts, time, and resources in the requirements problem for Adaptive Systems
[Qureshi et al. 2011]. We have used Techne [Jureta et al. 2010] here as a starting point
and extended its syntax to allow requirements that place constraints on quantitative
variables. This has resulted in a more general treatment of operationalization

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

App–6 I. J. Jureta et al.

because we have the operationalization of both functional and quantitative variable
requirements. As in the case of Techne, the formalism here does not provide a visual
syntax and is thus not itself a model language for early requirements in the same
sense that, for example, KAOS goal models [Dardenne et al. 1993] and i* actor models
[Yu and Mylopoulos 1994] are. Two limitations of Techne are overcome here. First,
we can make explicit the constraints on quantitative variables. Second, Techne now
distinguishes between stable facts, in the form of mandatory domain assumptions,
and defeasible information, in the form of optional domain assumptions.

In the remainder of this section, we look at how the language presented in this
article can be used to model information that was recognized as crucial in the research
into the relaxation of requirements [Letier and van Lamsweerde 2004; Whittle et al.
2010; Baresi et al. 2010], the evaluation of their partial satisfaction [Letier and van
Lamsweerde 2004], and the monitoring and control of requirements [Feather et al.
1998; Robinson 2008]. The aim is not to suggest the language here as a general
modeling language, but rather to show that it covers the main ideas presented in that
related research.

B.1. Fuzzy Relaxation

Baresi et al. [2010] associate a fuzzy operator with a predefined membership function.
For example, if in our framework there is a quality constraint q(v < 6hrs) (a goal

G(v < 6hrs) for Baresi et al. because they allow quantitative variables in goals), then
relaxing it would amount to replacing it with q(v < f 6hrs) (in their notation, G(v < f
6hrs)), where < f is a fuzzy operator. Their interpretation of v < f 6hrs is that there
is a fuzzy membership function μ that returns the level of satisfaction as a function
of v, and the shape of μ is predefined (for < f , it is positive and constant until v = 6,
then it decreases up to the satisfaction value 0 for some v > 6). The operator < f can be
defined in our language by reproducing, in a domain assumption, a function that has
the form of the fuzzy membership function for < f , as defined by Baresi et al. We can
define as follows a macro that takes a fuzzy goal of the form G(v < f n), with n ∈ R, and
transforms it into requirements that can be added to our requirements database �:

∀G(v < f n) WHERE v ∈ V AND n ∈ R ADD {k(v′ =
μ(v))} TO �, AND APPLY THE SOFTGOAL MACRO ON
� and v

where v′ ∈ V , the set of quantitative variables, and μ is a function defined according
to the function pattern defined by Baresi et al. for the fuzzy operator < f . It is straight-
forward to define similar macros for all other fuzzy operators defined by Baresi et al.

Baresi et al. also define binary connectives, such as fuzzy conjunction. These can
be defined here as well as functions of those variables that are defined using fuzzy
membership functions. Each binary fuzzy operator gives one function specified in a
domain assumption and using an approximation relation. In the formalism from Baresi
et al., one way to define fuzzy conjunction ∧ f between two variables v1 and v2, each of
which has an accompanying fuzzy membership function μ(v1) and μ(v2), is as follows:
μ(v1 ∧ f v2) = μ(v1) · μ(v2). In our language, μ(v1) and μ(v2) give satisfaction levels.
The fuzzy conjunction connective between two quality constraints, respectively over
variables v1 and v2, is introduced in � as the domain assumption k(v3 = μ(v1) · μ(v2)),
where v3 is the joint level of satisfaction over variables v1 and v2.

B.2. Probabilistic Relaxation

To handle idealistic requirements, Letier and van Lamsweerde [2004] suggest the
association of probability estimates to constraints on quantitative variables. This is

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

The Requirements Problem for Adaptive Systems App–7

what we allow in the T2 language, and this has been illustrated earlier (see Section
6.3.1 in the main article).

B.3. Monitoring and Control Variables

The importance of monitoring and control of requirements is highlighted in Fickas and
Feather [1995], Feather et al. [1998], and Robinson [2006]. It is on the basis of the
ontology for requirements that we identify controlled variables: If a variable appears
in a task, it is a controlled variable. Any variable can be monitored, but all variables
in goals, quality constraints, and domain assumptions must monitored.

B.4. Adaptation Rules

Adaptation rules have been called reconciliation tactics [Feather et al. 1998], adaptive
goals [Baresi et al. 2010], and adaptivity mechanisms [Souza et al. 2013]. We have
not discussed how they ought to be specified or actually implemented, but we have
suggested how they can be identified. The Configurable Specification adopted for a sys-
tem gives a set of configurations and evolution requirements. It consequently indicates
what changes between two configurations; that is, which requirements are dropped,
which become optional, which others become mandatory, and so on. Differences be-
tween every two consecutive configurations in the Configurable Specification specify
the effect that adaptation rules should have, regardless of how they are specified or
implemented, whereas evolution requirements specify constraints that the adaptation
rules must not violate.

B.5. Limitations

Although it may be possible to specify time and temporal constraints by having a
quantitative variable, the values of which are defined by a clock, and to map every
configuration to a temporal interval, this would clearly not be a convenient way to
model temporal constraints on Configurable Specifications. More appropriate in this
respect may be requirements modeling languages built on top of linear temporal logic
[Dardenne et al. 1993] or branching temporal logic [Whittle et al. 2010]. It is, however,
not clear how requirements models built with such languages relate to Configurable
Specifications; that is, are these requirements models describing constraints on a single
configuration or on parts of Configurable Specifications?

Techne has previously been critiqued for ignoring the notion of agent and the fact that
requirements belong to individuals that may thus be modeled as agents. We continue to
ignore them here, mainly because they can be introduced in a straightforward manner,
yet would complicate notation and presentation without adding much to the main
purpose of this article.

To add agents, consider first why they need to be added. If the aim is to help figure out
who needs to negotiate requirements conflicts, then assume there is a set of identifiers
for agents and add a function that returns, for every requirement, one or more agents
who agree on it. If the aim is to assign responsibilities of tasks to agents, then assume
a set of identifiers for these agents and define a function that maps every task to one
or more agents responsible for its execution. Either of the two uses of agents has no
influence on the structure of the RPAS, other than suggesting that RE does involve
negotiation and the assignment of responsibilities.

C. RELATIONS DEFINED USING IMPLICATION AND CONFLICT

We discuss in this section how oft-cited relations between requirements can be defined
using our requirements types and the implication and conflict relations. Our aim is to
illustrate the versatility of the language we used in the article despite its simplicity.
We start by introducing the Minimal Consistent Inference (MCI) relation.

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

App–8 I. J. Jureta et al.

Definition C.1. Let � ⊆ L and suppose Impl(�) returns all implications in �. A
proposition q in a T2 requirements database � will be said to be in the MCI relation to
propositions {p1, . . . , pn} ⊆ �, n ≥ 1 if and only if:

(1) (p1 ∧ . . . ∧ pn → q) ∈ Impl(�);
(2) � ∃�.� ⊂ {p1, . . . , pn} and � ∪ Impl(�) |�τ q;
(3) � ∃γ.γ ∈ Impl(�), {γ } ∪ {∧n

i=1 pi} ⊥.

The first condition requires that there be an implication between the propositions. The
second, a minimality condition, requires that there be no subset of the premises from
which the consequence can be deduced via |�τ . The third condition requires that the
premises be consistent in one step.

We use MCI to define the concept of argument in T2. An argument puts together the
premises and the conclusion that stand in an MCI relation.

Definition C.2. The pair (�, q) is an argument in a requirements theory � if and
only if:

(1) � ⊆ �,
(2) q is in the MCI relation to all propositions in �\Impl(�).

By restricting the types of requirements in premises and the conclusion of arguments,
we can define a taxonomy of relations and thereby illustrate that T2 can capture oft-
cited relations in requirements modeling languages.

MCI is the root of the relations taxonomy and is specialized onto the Refinement,
Realization, and Conflict relations. Each of these is defined by restricting the types
allowed in the premises and the conclusion, as follows:

—Refinement is a relation that concludes a requirement, and not all of its premises
are domain assumptions and/or tasks;

—Realization, or operationalization, is a relation that concludes a requirement, and
premises are only domain assumptions and/or tasks;

—Conflict is a relation that concludes ⊥.

It is then straightforward to observe the following:

—The goal refinement relation from Darimont and van Lamsweerde [1996] can be
defined in T2 as a specialization of the Refinement relation. Namely, Goal Refinement
in T2 is the Refinement relation, in which all premises and the concusion are of type
Goal. Recall that Darimont and van Lamsweerde defined goal refinement as the
relation between a goal being refined and subgoals that refine it, the latter having to
satisfy three conditions: (i) be sufficient to deduce the refined goal, (ii) be minimal,
and (iii) be consistent. All three conditions are satisfied here because Goal Refinement
is a specialization of Refinement, which is in turn a specialization of MCI.

—Yu and Mylopoulos [1994] introduced task decomposition in i* (i-star). It is similar to
goal refinement, with two differences: (i) The requirement being refined/decomposed
must be a task, and (ii) it can be refined by any combination of goals and tasks.2 Task
Decomposition can be defined in T2 as a specialization of the Realization relation in
which all premises and the conclusion are all of type Task.

—The goal operationalization relation in KAOS [Dardenne et al. 1993] is similar to the
means-ends relation in i*. The idea of both is that tasks should be executed in order
to satisfy goals. Operationalization in KAOS stands between goals and constraints,

2There is no concept in i* [Yu and Mylopoulos 1994] that corresponds to Domain assumption, so it is not
allowed here to have Domain assumptions in the decomposition of a task.

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

The Requirements Problem for Adaptive Systems App–9

Table II. Common Conflict Relations Translated to T2

Relation in Robinson and colleagues’ survey
[Robinson et al. 2003] Corresponding relation in T2
Process-level deviation: Deviation of the actual
process of developing the system from the
predefined process.

Either a Type B conflict, in which the blocker is a
domain assumption stating the deviation between
the planned and actual development process, or a
Type C conflict, in which one of the domain
assumptions states that deviation.

Instance-level deviation: An instance of an
implemented class violates a requirement.

A Type B conflict, which has one blocking domain
assumption. That domain assumption names the
instance responsible for the violation, and the
alternative in the Type B conflict is the
requirement violated by that instance.

Terminology clash (also Structure clash): A
member of the semantic domain is being referred
to using more than one symbol/expression.

None of the conflict relations captures terminology
clashes. The terminology clash is an error in the
use of a requirements modeling language.

Designation clash: A symbol/expression refers to
two or more different members of the semantic
domain.

As for the terminology clash, a designation clash
is an error in the use of the formalism and cannot
be captured in the formalism.

Conflict: A set of requirements is logically
inconsistent.

Conflict relation.

Divergence (also Obstruction): A set of
requirements is logically inconsistent when a
certain sequence of events can occur.

A Type B conflict, in which the blocked
requirements are alternatives and the blocker is a
domain assumption describing the problematic
sequence of events.

Competition: A kind of divergence where
particular instances of a requirement can cause a
divergence.

A Type B conflict, which has one blocking domain
assumption. That domain assumption names the
instance responsible for the violation, and the
alternative in the Type B conflict is the
requirement violated by that instance.

whereby a constraint is operational in the sense that it is formulated in terms of
objects and actions available to the agents in/of the system. Means-ends instead
emphasizes the role of goals as reasons why tasks are executed (i.e., a task exists in
a requirements database because it is a means to a goal). The Goal Operationalization
relation, which captures the idea of both Goal operationalization and means-ends, is
a specialization of the Realization relation, in which all premises are tasks or domain
assumptions, and the conclusion is a goal.

To see the kinds of conflict we can capture using our Conflict relation, we first need
the concept of Alternative.

Definition C.3. Given � ⊆ �, � ⊂ � is an alternative in � if and only if:

(1) There is an argument (�,⊥);
(2) � � ⊥;
(3) ∀
.
 ⊆ � if
 � ⊥ then � �⊂
; that is, � is a maximally consistent subset of �;
(4) � does not include only implications and/or Domain assumptions. In other words,

� includes at least one goal and/or task.

The set of all alternatives in � is denoted Alt(�).

Using the Alternative concept, we specialize the Conflict relation as follows:

—Type A Conflict relation is the Conflict relation between premises in the argument
(�,⊥) if and only if there are at least two alternatives in �; that is, |Alt(�)| ≥ 2.

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

App–10 I. J. Jureta et al.

—Type B Conflict relation is the Conflict relation between premises in the argument
(�,⊥) if and only if |Alt(�)| = 1. Informally, a Type B conflict involves domain
assumptions that are blocking the satisfaction of goals or the execution of tasks. If
instances in � are in Type B Conflict, then we have Block(�)

def= � − Alt(�), and we
call Block(�) the set of blockers.

—Type C Conflict relation is the Conflict relation between premises in the argument
(�,⊥) if and only if |Alt(�)| = 0. Type C Conflict involves a minimally inconsistent
set that includes only Domain assumptions.

We can also relate Conflict in T2 with notions of conflict in other requirements
modeling languages.

In KAOS, the Conflict relation is also a minimally inconsistent set of requirements.
Obstruction and Divergence are two relations, also in KAOS, that involve domain as-
sumptions that block, in the sense just discussed, the satisfaction of a goal or the
execution of a task.

Table II summarizes the translation of conflict relations identified in Robinson,
Pawlowski, and Volkov’s survey [Robinson et al. 2003] into T2. Conflicts listed in that
table cannot obtain in T2 definitions that are as convenient as, for example, Type A,
Type B, or Type C Conflict relations. In a propositional formalism such as T2, there
is no elegant way to formally talk about instances of classes and their deviations: A
proposition stating the deviation of an instance will be different from a proposition
stating normal behavior of other instances, but there is no relation that would say that
the two propositions talk about instances of the same class.

ACM Transactions on Management Information System, Vol. 5, No. 3, Article 17, Publication date: September 2014.

