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Abstract. Neglecting traceability—i.e., the ability to describe and fol-
low the life of a requirement—is known to entail misunderstanding and
miscommunication, leading to the engineering of poor quality systems.
Following the simple principles that (a) changes to UML model instances
ought be justified to the stakeholders, (b) justification should proceed in
a structured manner to ensure rigor in discussions, critique, and revi-
sions of model instances, and (c) the concept of argument instantiated
in a justification process ought to be well defined and understood, the
present paper introduces the UML Traceability through Argumentation
Method (UML-TAM) to enable the traceability of design rationale in
UML while allowing the appropriateness of model changes to be checked
by analysis of the structure of the arguments provided to justify such
changes.

1 Introduction

In a noted discussion of the traceability problem [10], Gotel and Finkelstein
define traceability as follows:

“Requirements traceability refers to the ability to describe and follow the life
of a requirement, in both a forwards and backwards direction (i.e., from its
origins, through its development and specification, to its subsequent deploy-
ment and use, and through all periods of on-going refinement and iteration in
any of these phases).”

Ensuring proper traceability through specialized concepts, techniques, and
methods is argued to reduce the number of iterations in the construction and
change of requirements engineering (RE) artifacts, thus helping keep the soft-
ware development project under time, budget, and other constraints. However,
if traceability is neglected, misunderstanding and miscommunication are bound
to appear, compounding the loss of implicit information guiding requirements
change and increasing the risk of poor project results [6,20,25].

This paper focuses on the problem of tracing the rationale behind changes
local to one or spanning across several different kinds of models in the Unified
Modeling Language (UML) [18]. To address the problem, the UML Traceability
through Argumentation Method (UML-TAM) is suggested to enable the trace-
ability of design rationale in UML while allowing the appropriateness of model
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changes to be checked by analysis of the structure of the arguments provided to
justify such changes.

As the related research efforts are numerous, the following section (§2) first
positions the present work within the relevant literature. The problem of interest
is then identified and contributions outlined (§3), and is followed by a description
of the case study (§4). The conceptual basis of UML-TAM is then presented (§5).
It is followed by an illustration of its use in the case study (§6). The paper closes
with conclusions and indications on directions for future effort (§7).

2 Background and Related Work

Complexity of the traceability problem, its span over the various activities in
software development, along with the trade-off between extensive traceability
and budget and time constraints make elusive the construction of an encom-
passing traceability approach still applicable to realistic settings—methods spe-
cialized for particular traceability sub-problems, combined with domain-specific
expertise on when and how to apply them in a given project seem to be the
choice in research and industry. In light of the various methods suggested in
related research efforts, situating the results of the present paper is facilitated
by classification over five taxonomic dimensions: traceability data types, scope,
degree of automation, conceptual foundations, and framework specificity. Each
is considered in turn below.

2.1 Traceability Data Types

Traceability data types, as suggested by Dömges and Pohl [6], distinguish meth-
ods according to the content of traceability information being recorded:

– Bi-directional links between the stakeholder expectations, derived require-
ments, and software components enable validation of system functionality
by stakeholders and impact analysis of requirements change on the system.
Ramesh and colleagues [25] indicate that such benefits can be achieved,
although at high initial cost of implementing and applying traceability poli-
cies. A framework allowing the capture of bi-directional links has been pro-
posed by Pohl [21] and later extended to allow configuration to project-
specific traceability needs [22], in both cases focusing on the recording of
what changes are made, by whom, when, and how.

– Contribution structures aim at clearly relating the requirements to stakehold-
ers to facilitate negotiation, search for additional information, and revision.
Gotel [11] introduced contribution structures in RE to allow the recording
of detailed information on stakeholders and the requirements they provide,
hence ensuring traceability of the requirements to the people and systems
from which these emanate.

– Design rationale records the reasoning that led to particular modeling and
other software development decisions, in the aim of arriving at a shared
understanding of models and other artifacts, and their purpose in the given
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project. Usually, a design rationale approach is employed to record such
traceability information (Louridas and Loucopoulos give an overview [16]).

– Process data which relates to the planning and control of activities in the
software development project.

2.2 Scope

Gotel and Finkelstein [10] introduce a separation of pre-Requirements Specifica-
tion (pre-RS) from post-RS traceability. Pre-RS, which concerns the life of stake-
holder expectations until they are converted to requirements, has been treated
in the various RE frameworks proposed over the last decade—for instance, the
introduction of goals in requirements models facilitates traceability, for goals
make explicit (at least in part) the rationale for the inclusion of more specific
requirements [30]. Post-RS focuses on the evolution of requirements in the steps
following RE, i.e., the various activities involved in deploying the requirements.
Automated traceability methods (below) focus on post-RS.

2.3 Degree of Automation

The degree of automation concerns the support allowed by or provided with a
traceability method to reduce manual effort and facilitate analyses of trace in-
formation. Haumer and colleagues [12] and Jackson [13] both suggest manual
traceability techniques focused on simplicity, while allowing rich trace recording
(e.g., video, audio, etc.). Such an approach becomes difficult to manage efficiently
for realistic systems, leading to, among other, Egyed’s proposal [7] where mod-
els and software are aligned using traces generated by observation of software
operation through the running of various test scenarios. Antoniol and colleagues
[1] and Pinheiro and Goguen [19] both rely on formal methods for traceability,
with the difficulty of avoiding obsolescence of formal trace specifications.

2.4 Conceptual Foundations

Conceptual foundations discriminate according to the main concepts employed
in recording traceability information (e.g., goals, scenarios, aspects). Egyed [7]
generates design traceability information by iteratively running test scenarios
on already operational software, so as to verify whether the models implement-
ing the tested functionality correspond to the behavior of the observed system.
A preliminary proposal from Naslavsky and colleagues [17] focuses on trace-
ability between scenarios and the use thereof to relate requirements to code.
Ubayashi and colleagues [28] propose a method for dealing with model evolu-
tion using model transformations based on aspect orientation, the main benefit
thereof being the separation of concerns over traceability information. Torenzo
and Castro [27] also seem to separate concerns, albeit through specialized views
and not aspects. In an overview of goal-oriented RE [30], Van Lamsweerde ob-
serves that the refinement links in goal refinement trees, in which an abstract
goal is made more precise through refinement, can be read as traceability links
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making goal -orientation a favorable approach to aligning abstract and precise,
operational information about a system. The concept of argument appears in
design rationale approaches (for an overview, see [16]) which enable the record-
ing of reasoning behind decisions. For instance, Ramesh and Dhar [24] suggest
an approach involving concepts specialized for the RE: in addition to classi-
cal concepts—position, argument, issue—introduced in IBIS [5], REMAP [24]
integrates the notion of requirement, design object, decision, and constraint.

2.5 Framework Specificity

Framework specificity classifies approaches according to whether they are spe-
cialized or not for a particular software development framework. Briand and col-
leagues [3] suggest bi-directional links be extracted automatically from changes
in UML models, whereby each identified type of UML model refinement (each
refinement being a kind of model change) has associated traceability informa-
tion, thus facilitating impact analysis in model evolution. Letelier [15] suggests a
roughly defined metamodel of traceability information to collect when working
with UML and requirements expressed in textual form; the aim is to ensure that
bi-directional links are known during UML modeling, while very limited support
is provided for design rationale recording.

3 Problem Outline and Contributions

The work presented in the remainder enables the recording of design rationale
behind changes local to one or spanning across several different kinds of UML
models. It is thus framework-specific and both pre- and post-RS (this depending
on how UML is employed), while relying on the concept of argument. Because
informally or formally expressed information is allowed into arguments to allow
adaptability of the method to project specificities, automation is limited, this
entailing selective application of the method. The present work is a response to
the following observations, each highlighting a difficulty in current research:

– UML traceability rarely aims to record the rationale behind modeling de-
cisions, and when this is attempted, as in Letelier’s work [15], very limited
attention is given to what kind of rationale information is to be recorded
and how, and if/how it can be analyzed.

– Automated traceability by taxonomies of UML change/refinement types
lacks the recording of design rationale—in the efforts cited in §2, traceability
information answers what changes are made, but not why they are made.
It is therefore possible to determine who, when, and how made a particular
appropriate or inappropriate decision, but it is difficult/impossible to deter-
mine why the decision is made, hence limiting the potential to learn from
mistakes or reinforce appropriate modeling behavior.

– Framework-independent traceability methods that use arguments in record-
ing design rationale, such as REMAP [24] only provide techniques for trace
capture—how to analyze such information remains unknown.
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Following the simple principles that (a) changes to UML model instances
ought be justified to the stakeholders, (b) justification should proceed in a struc-
tured manner to ensure rigor in discussions, critique, and revisions of model
instances, and (c) the concept of argument instantiated in a justification pro-
cess ought to be well defined and understood, the present paper introduces the
UML Traceability through Argumentation Method (UML-TAM) for capturing
and analyzing design rationale in UML modeling. The salient properties of the
method are:

– Adaptability. Both informal and formal, and qualitative and quantitative
information is allowed into arguments, to ensure that few constraints are
placed on the stakeholders employing it to record design rationale.

– Active rationale analysis. Where available methods focus on ensuring design
rationale is recorded (passive rationale traceability), UML-TAM provides
specialized analyses for confronting arguments and avoiding ill-structured
rationale which unavoidably leads to inappropriate modeling choices.

– Sound conceptual foundations. By relying on formal definitions of the concept
of argument established in AI, and using it as a central concept, UML-TAM
avoids ambiguity and aims to facilitate the learning of the method to the
stakeholders (it merely requires the understanding of the notion of argument
and the argumentation and justification processes).

– Justification of modeling choices. While recording arguments is certainly
relevant, confronting them through a justification process to discriminate
among alternative changes of model instances is critical. Justification thus
provides a means for selecting among alternative sets of arguments to arrive
at justifiably appropriate modeling choices.

4 Case Study

Following the classical meeting scheduler case study [29], a variant serves herein
to illustrate the salient features of the method.1 The aim is to design a system for
scheduling meetings and meeting rooms. A user can request a meeting room of a
chosen size and for a chosen period of time, and can schedule a meeting. A user
can cancel any of the mentioned two until the beginning of the meeting time.
An email is sent to participants any time the meeting is scheduled or canceled.
When defining a meeting, the user provides a list of attendees, meeting time
and room, and gives a brief description of the topic. It is further assumed that
there is a Post Office package which delivers messages to designated users, and
an Employee Management package which provides employee reference and email
address. Fig.1(a) shows the initial use case which represents most of the described

1 As noted above, UML-TAM is not intended for recording rationale behind all model-
ing decisions for it is not automated and thus impractical—contributions are primar-
ily conceptual and not related to efficiency per se in the present paper. An accessible
case study, appropriate for the constraints of the present format, thus introduces the
method, while scalability and cost to industrial projects are under study.
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functionality but is incomplete and serves as a starting point in moving toward
a more extensive use case diagram to illustrate the use of UML-TAM in tracing
rationale for change. Fig.1(b) gives an initial class diagram, and is used in the
remainder to illustrate traceability within class diagram with UML-TAM.

(a) An initial use case diagram (b) An initial class diagram

Fig. 1. Some initial UML diagrams for the case study

5 Traceability Through Argumentation in UML-TAM

Returning to the initial use case digram in Fig.1(a), it is not difficult to notice
it is incomplete at least with regards to the following plausible situations:

– If the room of requested size is not available at the requested period, various
alternative responses by the system can be identified: e.g., it may record a
failed request for a room for statistics on room availability; another option is
to communicate the unavailability to the user and ask for a different period.

– If an attendee is added as a participant to a recurrent meeting, should the
system assume that this person is to attend all occurrences of the meeting in
the future, or should the user specify this? Same applies when an attendee
of a recurrent meeting is removed from the list of participants—does the
removal apply for all occurrences of the meeting or only the next one?

– A participant informed of a meeting may have another engagement for the
same period. Fig.1(a) gives no explicit mechanisms for ensuring the sched-
uler knows what participants to expect. The system could, e.g., connect to
employees’ electronic agendas and return availability information when the
scheduler adds a participant and the meeting period.
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It should be apparent from the above that providing a revised use case di-
agram alone—i.e., without additional information on why that particular revi-
sion is more adequate than another one—may be appropriate only in case the
stakeholders are of similar background, share a precise idea of what the system
is expected to do, and so on. In most realistic settings, however, this is not
satisfactory, for various stakeholders would participate, each bringing a differ-
ent perspective on the system grounded in different backgrounds and interests.
The very presence of alternatives in both system functionality and of options
in the representation of functionality (e.g., at the level of use cases: what to
wrap in an existing use case, what requires an additional use case, and so on)
makes it appropriate to make explicit the reasons (i.e., arguments) that aim to
justify the functionality and representation decisions. One thus observes that
three components are needed for ensuring traceability of rationale in UML: (1)
a design rationale approach (below: TAM-Design Rationale, TAM-DR), which
indicates when and how the engineer proceeds to making explicit the alterna-
tives in functionality and/or modeling; (2) an argumentation framework, which,
as soon as the alternatives are known, enables the argumentation of each al-
ternative, the confrontation and comparison of arguments, ending in a justified
choice of one alternative; (3) specialized means for connecting the content of
UML diagrams with the content of rationale traces (referred to in the remainder
as TAM-Connectors) produced through the use of the design rationale approach
and associated argumentation and justification techniques.

5.1 UML-TAM Design Rationale

Having identified an engineering problem, design rationale literature (and as
usual in problem solving) suggests the engineer should identify alternative so-
lutions, compare them according to some relevant criteria, subsequently choose
one alternative, and act upon the prescription given in the alternative. In the
classical IBIS approach [5], the aforementioned problem is termed issue whereas
positions (i.e., alternative solutions) resolve issues, and arguments support or
object to positions. A problem in the present setting appears whenever alter-
native system structures can be chosen to translate stakeholder expectations
into a UML representation, or when several modeling options exist for a chosen
alternative system structure (i.e., one knows what to model, but syntax and
semantics of the model permit various ways of modeling this). Based on work
from Louridas and Loucopoulos [16], which integrates common characteristics of
established design rationale approaches, a design rationale approach specialized
for rationale traceability in UML-TAM involves the following steps (see, Fig.2):

1. Problem setting consists of identifying a discrepancy between the content of
the given UML model instance and the content it should represent—e.g.,
some newly acquired information is not represented therein, or the given
representation uses questionable modeling choices.

2. Based on the problem statement produced in 1 above, problem analysis leads
to the identification of alternative solutions.



Tracing the Rationale Behind UML Model Change Through Argumentation 461

3. Evaluation then consists of providing arguments for or against each alterna-
tive solution. Such argumentation is followed by a justification of a choice of
(i.e., Decision on) a particular alternative.

4. Having selected the alternative, the affected UML model instances need to
be changed according to the adopted solution. The process is reinitiated as
new problems are identified.

As shown in Fig.2, content of alternatives and arguments can give itself rise
to new problem statements. Activities of the given process rely mainly on the
domain- and problem-specific knowledge of the stakeholders. Argumentation and
justification activities require specialized concepts and techniques outlined in
§5.2 and §5.3. The use of the given concepts and techniques is exemplified in §6.

Fig. 2. Overview of the UML-TAM design rationale process

5.2 UML-TAM Argumentation Framework

Argumentation modeling literature [4] in the artificial intelligence field focuses
on formalizing commonsense reasoning in the aim of automation. An argumen-
tation model is a static representation of an argumentation process, which can
be seen as a search for arguments, where an argument consists of a set of rules
chained to reach a conclusion. Each rule can be rebutted by another rule based
on new information. To formalize such defeasible reasoning, elaborate syntax
and semantics have been developed (e.g., [4,26,2]) commonly involving a logic
to formally represent the argumentation process and reason about argument in-
teraction. A structured argumentation framework (i.e., a model and processes
employing the model) is needed herein for a rigorous justification process in the
Evaluation step of TAM-DR. To arrive at a structured argumentation system,
the concept of argument is first defined below, followed by a set of argument
relationships, and the justification process.

Argument. Assuming a first-order language L defined as usual, let K be a
consistent set of formulae (i.e., K �� ⊥), each a piece of information, and let
K ≡ KN ∪ KC. Members of the set KN, called necessary knowledge, represent
facts about the universe of discourse and are taken to be formulae which contain
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variables. Necessary knowledge is assumed unquestionable. The set KC, called
contingent knowledge, are information that can be put in question or argued for.
It is then said that the knowledge a stakeholder a can use in argumentation is
given by the pair (Ka, Δa), where Ka is a consistent subset of K (i.e., Ka ⊂ K
and Ka �� ⊥), and Δa is a finite set of defeasible rules of the form α ↪→ β. The
relation ↪→ between formulae α and β is understood to express that “reasons to
believe in the antecedent α provide reasons to believe in the consequent β”. In
short, α ↪→ β reads “α is reason for β”.

Let A a set of stakeholders, K ≡
⋃

a∈A Ka, and Δ ≡
⋃

a∈A Δa. Given (Ka, Δa)
and P ⊂ Δ↓

a, where Δ↓
a is a set of formulae from Δa instantiated over constants

of the formal language, P is an argument for c ∈ KC, denoted 〈P, c〉K, if and only
if: 1) K ∪ P |∼ c (K and P derive c); 2) K ∪ P �� ⊥ (K and P are consistent);
and 3) � ∃P ′ ⊂ P, K ∪ P ′ |∼ c (P is minimal for K). Where “|∼” is called the
defeasible consequence [26] and is defined as follows. Define Φ = {φ1, . . . , φn}
such that for any φi ∈ Φ, φi ∈ K ∪ Δ↓. A formula φ is a defeasible consequence
of Φ (i.e., Φ |∼ φ) if and only if there exists a sequence B1, . . . , Bm such that
φ = Bm, and, for each Bi ∈ {B1, . . . , Bm}, either Bi is an axiom of L, or Bi is
in Φ, or Bi is a direct consequence of the preceding members of the sequence
using modus ponens or instantiation of a universally quantified sentence. This
argument definition is well-understood in the AI literature [4,23].

Argumentation. While an argument can be constructed by combining explic-
itly expressed knowledge (e.g., from a knowledge base), the aim here is to start
from a conclusion and build arguments that support it from the knowledge that
stakeholders provide and that can be related to the conclusion. Argumentation of
a conclusion R consists of recursively defining an argument tree ATR as follows:

1. Define R as the root of the tree ATR and set c = R;
2. Let 〈P, c〉. Identify p1, . . . , pn s.t. {p1, . . . , pn} = P , P ⊆ K ∪ Δ↓;
3. Define a node for each premise pi ∈ P and define an edge from that node to

c. Draw the edge “−→” if p ∈ K, or “ �−→” in case p ∈ Δ↓;
4. Set c = pi and repeat steps 2 and 3 for each i = 1, . . . , n, until the argument

tree has been constructed to a satisfactory extent.

Argument Relationships. Of particular interest in argumentation is to con-
front arguments and reject some conclusion in favor of other. It is therefore
necessary to define several simple relationships between arguments.

Two arguments 〈P1, c1〉 and 〈P2, c2〉 disagree, denoted by 〈P1, c1〉 �	K 〈P2, c2〉,
if and only if K ∪ {c1, c2} � ⊥.

Instead of seeking contradiction of conclusions, a counterargument relation
looks for incompatibility of a conclusion with the conclusion of a subargument
of another argument. 〈P1, c1〉 counterargues at c the argument 〈P2, c2〉, denoted
by 〈P1, c1〉 �↪→c 〈P2, c2〉, if and only if there is a subargument 〈P, c〉 of 〈P2, c2〉
such that 〈P2, c2〉 �	K 〈P, c〉 (i.e., 〈P, c〉 ⊂ 〈P2, c2〉 and K ∪ {c1, c} � ⊥).

In case two arguments are such that one counterargues the other, it is neces-
sary to determine which of the two is to be maintained. An argument 〈P1, c1〉
defeats at c an argument 〈P2, c2〉, denoted by 〈P1, c1〉 >>c 〈P2, c2〉, if and only if
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there is a subargument 〈P, c〉 of 〈P1, c1〉 such that (1) 〈P1, c1〉 �↪→c 〈P2, c2〉 (that
is, 〈P1, c1〉 counterargues 〈P2, c2〉 at c); and (2) 〈P1, c1〉 �c 〈P, c〉 (〈P1, c1〉 is
more specific than 〈P, c〉). In a dialectical tree (see below), defeat is represented
by “ �−→” directed from the conclusion of the argument that defeats to the node
which is defeated. The specificity relation “�c” is an order relation over argu-
ments, defined so that arguments containing more information, i.e., which are
more specific, are preferred over other. An argument 〈P1, c1〉 is strictly more
specific than 〈P2, c2〉, denoted by 〈P1, c1〉 �c 〈P2, c2〉 if and only if (1) ∀e ∈ KC
such that KN ∪ {e} ∪ P1 |∼ c1 and KN ∪ {e} |�∼ c1, also KN ∪ {e} ∪ P2 |∼ c2; and
(2) ∃e ∈ KC such that: (2.1) KN ∪{e}∪P2 |∼ c2; (2.2) KN ∪{e}∪P1 |�∼ c1; (2.3)
KN ∪ {e} �� c2.

Justification. Argument defeat is employed when attempting to justify a par-
ticular conclusion. The justification process consists of recursively defining and
labeling a dialectical tree T 〈P, c〉 as follows:

1. A single node containing the argument 〈P, c〉 with no defeaters is by itself a
dialectical tree for 〈P, c〉. This node is also the root of the tree.

2. Suppose that 〈P1, c1〉 , . . . , 〈Pn, cn〉 each defeats 〈P, c〉. Then the dialectical
tree T 〈P, c〉 for 〈P, c〉 is built by placing 〈P, c〉 at the root of the tree and
by making this node the parent node of roots of dialectical trees rooted
respectively in 〈P1, c1〉 , . . . , 〈Pn, cn〉.

3. When the tree has been constructed to a satisfactory extent by recursive
application of steps 1 and 2 above, label the leaves of the tree undefeated
(U). For any inner node, label it undefeated if and only if every child of that
node is a defeated (D) node. An inner node will be a defeated node if and
only if it has at least one U node as a child. Do step 4 below after the entire
dialectical tree is labeled.

4. 〈P, c〉 is a justification (or, P justifies c) if and only if the node 〈P, c〉 is
labeled U .

Dialectical trees are shown in the UML-TAM traceability templates in Figures 4
and 5, in §6; arguments are drawn enclosed in boxes, a dialectical tree relates
such boxes with the defeat relationship. The content of arguments is informally
expressed, and can be replaced (pending some adjustments) with first-order for-
mulae. However, the informal character thereof does not affect the ability to man-
ually determine relationships between arguments, as they have been presented
above, and consequently to proceed to justification. Having formal foundations, as
suggested in the present subsection contributes to the precision of the conceptual
bases for the argumentation and justification activities.

5.3 UML-TAM Connectors

Connectors in UML-TAM relate information used and produced with the de-
sign rationale, and argumentation and justification techniques to the content of
the UML diagrams whose rationale traceability is to be ensured. Fig.3 shows
the metamodel, written in UML class diagram notation, integrating the rele-
vant concepts of UML-TAM and relating them to the UML 2.0 metamodel [18]
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Fig. 3. Metamodel relating UML-TAM to the UML 2.0 metamodel

through the UMLDiagram class. Although the illustration §6 discusses the trace-
ability in use case and class diagrams, the metamodel does not limit the potential
for bridging UML-TAM and other UML diagrams.

The part of the metamodel proper to UML-TAM integrates the concept of
ProblemStatement, AlternativeSolution, Argument, and Justification, each following the
definitions given in previous subsections. Note the ProblemStatement can be asso-
ciated to no UMLModelElement, which occurs when the ProblemStatement results in
the addition of new UMLModelElement instances into a UMLDiagram instance. The
metamodel is linked to a part of the metamodel underlying the bi-directional link
traceability approach from Briand and colleagues [3]: AtomicChange is a modifi-
cation applicable to the UML diagram, whose execution gives rise to a number
of traceability links to ensure that information about what changed and how is
captured. The types of atomic changes given in the figure are the basic ones,
whereby more extensive taxonomies are suggested by refining each of the four
activities, and this depending on the syntax of the underlying UML diagram [3].
An important practical consequence of the above metamodel is that UML-TAM
can be thus be combined to automated traceability methods and applied selec-
tively, when stakeholders explicitly identify problems which in turn entail the
use of UML-TAM for resolution.

As the content of arguments can be informal or formal, labels are used to
highlight the relevant elements of the UML model being mentioned in arguments,
alternative solutions, and/or problem statement. The UMLElementLabel concept
is thus introduced in the metamodel in Fig.3. In Fig.4, labels are placed within
arguments and the alternative solution, whereas the problem statement (the title
of the UML-TAM traceability template) does not contain explicit references to
elements of the use case diagram, and therefore contains no labels.

The approach to relate the UML artifacts and those produced in UML-TAM
is straightforward: as soon as a justified alternative solution is found, and the
stakeholders no longer provide arguments to defeat it (i.e., the justification pro-
cess ends), change is performed in the corresponding UML diagram. A tem-
plate is filled out—it contains a snapshot showing the original structure of the
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Fig. 4. The modified use case diagram with accompanying rationale traceability infor-
mation produced with UML-TAM
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Fig. 5. The modified class diagram with accompanying rationale traceability informa-
tion produced with UML-TAM

part of the diagram that is being changed, the problem statement, the alterna-
tive solutions, the justification, and all arguments provided for each alternative
solution.
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6 Applying UML-TAM

It has been observed earlier that the initial use case diagram shown in Fig.1(a)
is incomplete in several respects. Using UML-TAM, two changes were performed
leading to the use case diagram in Fig.4. There, labels are placed on the elements
of the diagram to relate them to traceability templates used in UML-TAM to
summarize information used and produced in moving from the initial version of
the diagram to that presented in Fig.4. Each template contains four parts: (i)
a label (e.g., T1, T2) for relating the elements of the diagram to the template;
(ii) a title, which is the problem statement requiring diagram change; (iii) the
dialectical tree for the justified alternative solution; and (iv) the dialectical trees
for the rejected alternative solutions. Following the metamodel in Fig.3, infor-
mation referring to UML diagram elements and appearing in the template is
labeled following the kind of UML element the information refers to.

Figures 4 and 5 are self-explanatory and show modified initial use case and
class diagrams obtained by applying UML-TAM. Each has been constructed
by applying the UML-TAM. Practical experience with UML-TAM that goes
beyond the simple, yet illustrative case presented here leads to several obser-
vations about the practical use of the proposed method. For instance, it has
been empirically observed that nonmonotonic reasoning is hard for humans [8].
Effort involved in finding arguments in UML-TAM is considerable and appears
to confirm the cited empirical result. Some techniques derived from theory are
particularly hard to apply in practice: for instance, comparing arguments for
specificity appeared counterintuitive and was thus seldom used. Prior experi-
ence and resources about the debated domain are relevant sources of arguments,
so that referring to these is suggested. Although the difficulties are considerable
when applying argumentation and justification, a significant benefit is that these
techniques lead to the externalization of information usually left implicit in UML
modeling. The information made explicit is available to a number of stakehold-
ers who can, through argumentation and justification, question and revise the
modeling decisions. Moreover, lessons can be learned from past modeling prob-
lems as sources of the problems (such as, e.g., fallacious argumentation) can be
identified by going back to the recorded arguments. UML-TAM is therefore of
interest for projects in which particularly high degree of rigor is required, as in
the case of, e.g., safety-critical systems.

7 Conclusion and Future Work

The UML Traceability through Argumentation Method presented herein intro-
duces rigorous argumentation and justification when tracing the rationale be-
hind UML modeling decisions. The main contributions are: (1) The information
about the design rationale used in modeling is usually lost or, when available,
stated in an unstructured manner. UML-TAM provides a simple, yet precise
means for representing this information, analyzing it for problematic rationale
(by justification), and using it to arrive at justifiably appropriate modeling de-
cisions. (2) Both qualitative and quantitative, informal and formal information
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can be put into arguments allowing the application of the method to a wide
range of settings. (3) When combined with traceability approaches focused on
answering how, what, when, and who modified a UML diagram, UML-TAM
allows answering and discussing why a change was needed. (4) By applying ar-
gumentation and justification activities, the modeler can claim that a modeling
choice is appropriate or not, while relying on solid and well understood concep-
tual foundations and rigorous processes for their use. Modeling choices can thus
be claimed as justified, or questioned through a step-by-step process. Follow-
ing the outline of related research efforts §2, the proposed method advances the
rationale traceability literature, while ensuring compatibility with approaches
focusing on traceability of other types of information—this is accomplished by
focusing the method on a precise traceability issue, proposing connection points
for relating the method to compatible approaches, and avoiding overlap with
related techniques.

Current effort includes the exploration of benefits of formalizing arguments in
combination with various UML formalizations, to attempt automated analysis of
argument and associated UML diagram structures. Experimentation is currently
performed to improve usability in industrial settings.
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