
Why and How to Make Modelling Languages for Requirements Engineering?
An Introductory Tutorial ∗†‡

Ivan J. Jureta
Fonds de la Recherche Scientifique – FNRS

and
Department of Business Administration

University of Namur
ivan.jureta@unamur.be

October 26, 2014

Abstract

You have a Requirements Problem (RP) to solve, if you have information about
unclear, abstract, incomplete, potentially conflicting expectations of various stake-
holders and about the environment in which these expectations should be met,
you know that there is presently no system which meets these expectations, and
you need to define and document a set of clear, concrete, sufficiently complete,
consistent requirements, which are approved by the stakeholders as appropriately
conveying their expectations, and will guide the engineering, development, release,
maintenance, and improvement of the system which will in fact meet stakeholders’
expectations.

An RP is a complex problem solving task, as it involves, for each new system, the
discovery and exploration of, and decision making in new and ill-defined problem
and solution spaces. Requirements Engineering (RE) is the field concerned with
understanding how RPs are solved and how to do so more efficiently and for better
results, that is, higher quality systems.

Solving an RP involves various activities, such as elicitation, categorisation, evalu-

∗Go to http://jureta.net/requirements-modelling-languages for all tutorial material. Ivan Ju-
reta holds copyright for this text and all tutorial material, except photographs in the slides. Request permis-
sion if you wish to use any of the tutorial material in its original or changed form.

†This text is part of the material for the tutorial titled “How to make Requirements Modelling Languages?”,
at the 33rd edition of the International Conference on Conceptual Modelling, Atlanta, GA, held from the 27th
to 29th October 2014.

‡I am grateful most of all to John Mylopoulos and Alexander Borgida, who were very patient in many
discussions that we have had on these topics since 2007. I have co-authored papers on RMLs with them, as
well as with Neil Ernst, Alberto Siena, Anna Perini, Angelo Susi, Stéphane Faulkner, Pierre-Yves Schobbens,
and many others. They have all influenced the content of this tutorial in one way or another. This does not
mean that we agree on the ideas which I present here.

ation, prioritisation, negotiation, prediction, and so on, all of which use and produce
primarily information. Requirements Modelling Languages (RMLs) are modelling
languages used to facilitate such activities, by representing information so that com-
putations can be performed on it, in order to answer questions encountered during
problem-solving. RMLs have been a key part of RE research and practice since the
earliest days of the field. Various RMLs have been proposed, from those that provide
a visual syntax and guidelines for using the visual syntax, but offer no automated
reasoning on their models, to more complicated ones, built on top of formal logics.

This tutorial is an introduction to why and how to make RMLs. It covers recur-
ring topics in RML design, all illustrated by defining and moving from simpler to
more complicated RMLs. The motivation for the tutorial is to make RML design
more accessible, and help understand the challenges involved in designing new and
changing existing RMLs.

1

http://jureta.net/requirements-modelling-languages

Contents

1 Introduction 4
1.1 Purpose . 4
1.2 Objectives . 4
1.3 Outline . 5

2 General Background 7
2.1 Requirements Engineering . 7
2.2 Requirements Problems . 7
2.3 Requirements Models and Requirements Modelling Languages 8
2.4 Specifications as Solutions . 8
2.5 Why Make (New) Requirements Modelling Languages? 8

3 Example 10

4 Preliminaries 11
4.1 Language Services . 11
4.2 Naming Conventions . 11

5 Relations 13
5.1 How to Define a Language with One Category and One Relation? 13
5.2 How to Define Languages with Modules? 16
5.3 How to Define Different Kinds of Influence Relations? 20
5.4 How to Show the Rationale for Model Content? 25
5.5 How to Combine Relations? . 34
5.6 Summary on Relations . 36

6 Guidelines 37
6.1 How to Find Guidelines in Recurring Arguments? 37
6.2 How to Make Composite Guidelines? . 39
6.3 How to Strengthen or Weaken Guidelines? 41
6.4 Summary on Guidelines . 42

7 Categories 44
7.1 How to Have Independent Categories? 44
7.2 How to Define Taxonomies of Categories? 47
7.3 What Are Categories and Relations in Meta-Models and Ontologies? . . 49
7.4 When Are Categories and Relations Derived? 50
7.5 How to Enforce Intended Use of Categories? 52
7.6 Summary on Categories . 53

8 Alternatives and Combinations 54
8.1 How to Represent and Use Simple Alternatives? 54
8.2 How to Have Alternative Composites? . 56
8.3 What Are and How to Find Combinations? 59
8.4 Summary on Alternatives . 63

9 Valuation 65
9.1 How to Propagate Binary Satisfaction Values in a Model? 65
9.2 How to Combine Several Binary Value Types? 73
9.3 What If a Value Type Is a Set of Values? . 77
9.4 What If Some Values Cannot Be Assigned After Others? 78
9.5 What If a Value Type Is Over Reals? . 79
9.6 Summary on Valuation . 80

10 Uncertainty and Probability 81
10.1 How to Have Independent Random Variables in Models? 82
10.2 What If Random Variables Are Dependent? 85

11 Preferences 90
11.1 What Are Preferences and Criteria? . 90
11.2 Why Local Preferences? . 92
11.3 Why Mixed Local Preferences? . 94
11.4 Why Bridge Preferences? . 97
11.5 Why and How to Use Mixed Bridge Preferences? 99
11.6 Where to Find Criteria in Requirements? 101
11.7 How to Find a Better and the Best Outcome? 106
11.8 Summary on Preferences . 108

12 Formal Theories 115
12.1 How to Map Models to Theories When Fragments Map to Atomic Propo-

sitions? . 116
12.2 What If Fragments Map to Sentences? . 118
12.3 Are There Risks of Mapping Models to Theories? 118
12.4 Summary on Formal Theories . 119

13 Problem Classes 120
13.1 How to Define Requirements Problem Classes? 120
13.2 Why Match Problem Classes and Languages? 122
13.3 What and How Can Problem Classes Inherit from Each Other? 124

14 Discussion 125

A Language Modules and Languages in the Tutorial 126

2

List of Figures

1 A visualisation of a model in L.D1. 17
2 Visualisation of a model in L.Alpheratz_Influence. 22
3 A visualisation of a model in L.Ankaa. 23
4 A visualisation of a model in L.Schedar. 25
5 A visualisation of a model in L.Diphda. 29
6 Illustration of how to compute acceptability values. 32
7 A visualisation of a model in L.Hamal. 40
8 A visualisation of a model in L.Acamar. 42
9 A visualisation of a model in L.Menkar. 48
10 Taxonomy of categories defined in Sections 7.1 and 7.2. 50
11 Two ontologies and a meta-model. 51
12 A visualisation of a model in L.Mirfak. 57
13 A visualisation of a model in L.Aldebaran. 60
14 Illustration of Combinations in a model. 62
15 Application of f.find.all.cb to a model from Figure 12. 64
16 Models and value assignments in L.Rigel. 71
17 Models and v.Satisfaction value assignments in L.Capella. 74
18 A model in L.Adhara with assignments of probability values. 86
19 Bayesian network from positive influence relation instances. 89
20 Local Preferences in a model in L.Bellatrix. 95
21 Local Preferences and Mixed Local Preferences in a model in L.Elnath. 97
22 Local Preferences and Bridge Preferences. 100
23 Local Preferences, Mixed Local Preferences, and Mixed Bridge Prefer-

ences. 102
24 A model before and after adding two Criteria. 105
25 Conditional preferences and the corresponding CP-Net. 109
26 Preference graph induced from the CP-Net in Figure 25(b). 110
27 Best approval Outcome, assuming 1 is the preferred approval value on

all relation instances. 111
28 Best Outcome which includes the best combination of satisfaction

values according to conditional preferences. 112
29 Best Outcome which ignores conditional preferences. 113

List of Tables

1 Combinations of v.Satisfaction and v.Approval values. 75
2 Some categories of preference relations. 93
3 All Language Modules and languages in this tutorial. 127
4 All Language Modules and languages in this tutorial (continued). . . . 128

3

1 Introduction

1.1 Purpose

You have a Requirements Problem (RP) to solve, if you have information about
unclear, abstract, incomplete, potentially conflicting expectations of various stake-
holders and about the environment in which these expectations should be met,
you know that there is presently no system which meets these expectations, and
you need to define and document a set of clear, concrete, sufficiently complete,
consistent requirements, which are approved by the stakeholders as appropriately
conveying their expectations, and will guide the engineering, development, release,
maintenance, and improvement of the system which will in fact meet stakeholders’
expectations.

If you need to solve RPs repetitively, perhaps in coordination with others and, or
are interested in the research on modelling languages that can help solve RPs, then
this tutorial should be relevant.

Alternatively, you can see this as a tutorial for professionals and researchers who
need to set rules on how to document the inputs, decisions, and outcomes during
early phases of system design. You need to set such rules if you are repeatedly
involved in situations that have these characteristics:

• there are individuals, called stakeholders hereafter, who have expectations
which should be met,

• there is a need to design, and then make a system which should meet their
expectations,

• it is necessary to document information about these expectations and design
decisions for how to meet them, so that the system can be made to meet these
expectations and to evaluate if the system does, in fact, meet them.

Such rules may recommend, for example, how to document the information about
the expectations, that is, about requirements, environment constraints, design op-
tions for satisfying the requirements, and how to, among others, refine requirements,
identify how requirements interact with environment constraints, determine the
consequences of these interactions, which design options satisfy which requirements

and how well, and so on. In other words, the rules will recommend how to make
models, which represent information used in problem-solving during early system
design.

The rules are typically used by interdisciplinary teams. These include represen-
tatives of disparate groups with various interests. For example, investors may want
arguments and predictions about how alternative system design decisions will influ-
ence their return on investment. Product designers need information on customer
expectations, environment constraints, feasibility evaluations of design options,
and so on, in order to make informed design decisions. Engineers from relevant
fields (construction, software, hardware, and so on, depending on the purpose of
the system) need to evaluate the feasibility of alternative designs and requirements,
propose concrete processes and technologies that can satisfy requirements, identify
technology or other constraints which may require changes to designs, etc. Govern-
ment representatives and legal professionals may want to determine if the chosen
system design will make the system comply with relevant laws. Business analysts and
requirements engineers will need to ensure that the relevant information from the
said participants is documented in a clear way, that design options are known, and
that it can be demonstrated, from that documentation, that if the system is made
and run according to the specification, then it will satisfy its requirements.

The rules should help coordinate these disparate groups and interests towards
producing, and agreeing on a system design. They are applied in order to facilitate
collaborative problem-solving during design, by clearly representing the information
relevant for design, the design options, relative merits of the options, and in order to
produce documentation of the adopted design.

The documentation is used, for example, as input to the engineering and devel-
opment of the system, when choosing subcontractors, for quality evaluation and
assurance, to assess compliance to regulations and/or standards. The rules are usu-
ally applied in early phases of system design, because they normally do not produce
a system design specification which is sufficiently complete and detailed to serve as a
blueprint to make the system. Instead, they result in a clear definition of the system’s
purpose, of the main constraints it has to live with, and of (some) constraints on
how it should achieve its purpose. All these are inputs for engineers responsible
for producing the specification of the system’s detailed design, for which formal
methods [27] are more relevant than the kinds of modelling languages discussed in
this tutorial.

1.2 Objectives

Using more specialised terminology, this tutorial is on how to make Requirements
Modelling Languages (RMLs). RMLs are rules on how to represent and analyse
information which is used when solving RPs. RPs are a class of problems studied in

4

Requirements Engineering (RE). The default view in RE is that there is an RP instance
to solve when:

1. there are requirements that a system-to-be should satisfy for its stakeholders,

2. there is information about the environment in which that system will run, and

3. the system needs to be designed, so that it can then be made according to the
design.

Solving an RP amounts to producing an specification of a design of the system-
to-be. The specification is a representation of the system design. The specification
should be such that its makers can demonstrate, that if the resulting system is imple-
mented according to that specification, then that system will satisfy its requirements
as well as feasible, within the constraints of the environment.

The tutorial has the following objectives:

• to show how to make new RMLs, through a progression from simple to more
complicated ones,

• to review and illustrate major topics and challenges when making RMLs, and

• to discuss, in light of the above, the designs of oft-cited RMLs in RE research.

1.3 Outline

The tutorial has three parts:

• Part 1 runs through Sections 2 to 4, and sets the stage for the tutorial itself:

– Section 2 gives the general background on Requirements Engineering and
Requirements Problems, the role of Requirements Models and Require-
ments Modelling Languages in problem-solving, and presents the main
motives for this tutorial.

– Section 3 presents the example used throughout the paper. The example
is inspired by the problem of designing the London Ambulance Service’s
Computer-Aided Dispatch (LASCAD) system [2], a case study which is
commonly used in RE research. All Requirements Models in this paper
represent parts of the information from the example.

– Section 4 introduces the notion of Language Service, explains how it is
used to organise the tutorial, and sets up some naming conventions used
in subsequent parts.

• Part 2 runs through Sections 5 to 13. Each section focuses on a recurrent topic
and challenge in RML design, and defines new RMLs for illustration:

– Section 5 focuses on defining relations in RMLs, the relations being over
bits and pieces of information used in problem-solving. The discussion
revolves around how to define individual relations, issues in defining
languages that have many relations, and on three RE concerns, which
have usually been addressed via specialised relations in RMLs.

– Section 6 is on how to embed guidelines for problem-solving into RMLs.
Guidelines recommend how to do something in problem-solving.

– Section 7 looks at how bits and pieces of information in problem-solving
can be categorised (for example, as “requirement”, “domain knowledge”,
“specification”, “goal”, and so on), why this can be useful, and how cate-
gories can be defined in RMLs.

– Section 8 is on how to represent alternative design options in models,
critical capability that a language should have, if it is to assist decision-
making.

– Section 9 looks at how to associate variables to model parts, and functions
to relations between them, so that the value assigned to one model part
depends on the values assigned to other parts. In other words, the focus is
on valuation, which makes it possible to ask such questions of models as,
for example, if the conditions described in a model part will be satisfied, if
conditions described by some other model parts are satisfied as well, the
allowed values being “satisfied” and “not satisfied”. The section looks at
different value types and the combined use of several value types in the
same language.

– Section 10 looks at how to represent that some value assignments in
models are uncertain, that is, how to have random variables in models. It
shows how models can include independent random variables, and how
to work with dependent random variables.

– Section 11 is concerned with how to represent the relative desirability
of value assignments in models, so as to say, for example, that satisfying
some requirement is strictly more desirable than satisfying another. The
section discusses various kinds of preferences, criteria, and how to use
preferences to find the most desirable value assignments in models.

– Section 12 discusses how models in languages of this tutorial can be
mapped to theories in formal logic. The aim is to show one way how
RMLs can be related to formal logics, and illustrate why and when that
may be interesting, as well as the risks it carries.

– Section 13 illustrates how to define RP classes, and why and how to relate
them to RMLs.

5

• Part 3 is condensed in Section 14. It uses the terminology and languages intro-
duced in the tutorial, to discuss the designs of well-known RMLs.

6

2 General Background

This section recalls the usual background to the terms RE (Section 2.1), RP (Section
2.2), RML (Section 2.3), and Specification (Section 2.4), and reiterates common
arguments from RE about why RPs and RMLs are important in the engineering of
systems in general. The section closes by arguing why it is relevant to make new
RMLs (Section 2.5).

2.1 Requirements Engineering

RE focuses on how to elicit, model, and analyse the requirements and environment
of a system-to-be in order to design its specification.

It is on the basis of its specification that the system is built, updated, changed,
its new releases planned, made, announced, rolled out. The system’s scope may be
limited to specific (parts of) software and/or hardware, or widened to include such
issues as work guidelines, business processes, responsibilities, incentives, contracts,
or other concerns.

Specifications can take different forms, from minimalistic to-do lists that hint at
stakeholders’ expectations and subsume implicit engineering solutions, to elabo-
rately structured documentation on contracts with employees and suppliers, respon-
sibilities of positions in the value chain, guidelines for employee coordination and
collaboration, as well as software specifications made using formal methods.

The design of the specification, usually called the RP, is a complex problem solving
task, as it involves, for each new system-to-be, the discovery and exploration of, and
decision making in new and ill-defined problem and solution spaces.

Difficulties involved in solving an RP instance are illustrated by the variety of topics
studied in RE research, such as requirements elicitation [53, 66, 35], categorization
[33, 140, 79], vagueness and ambiguity [98, 90, 77], prioritization [82, 9, 65], negoti-
ation [89, 11, 75], responsibility allocation [33, 21, 48], cost estimation [12, 15, 118],
conflicts and inconsistency [100, 64, 131], comparison [98, 90, 91], satisfaction evalu-
ation [14, 98, 84], operationalization [51, 48, 44], traceability [54, 107, 28], and change
[24, 136, 18].

RE issues are present when designing new and changing existing systems; they
are there whatever the system class and domain, and regardless of the extent to

which people are involved in the system: from autonomic Internet-scale clouds, to
traditional desktop applications, industrial expert systems, and embedded software,
all enabling anything from massive mobile apps ecosystems, global supply chains,
medical processes, business processes, mobile gaming, and so on. Moreover, RE
issues are present regardless of how the software in the system is designed and made,
from a military waterfall to a startup’s own agile dialect, and from organisations where
developers talk directly to customers, to those where product designers, salespeople,
or others mediate between requirements and code. In all these cases, there will be
information on the requirements and the environment, and it will be necessary to
design how the requirements will be satisfied in the given environment.

2.2 Requirements Problems

The de facto default view in RE is that the specification is produced incrementally,
starting from incomplete, inconsistent, and imprecise information about the require-
ments and the environment, and that each design step reduces incompleteness,
removes inconsistencies, and improves precision, towards the specification of the
system [13, 33, 56, 100, 46, 140, 130, 21, 111, 76, 44]. This general view of the design
process, that we start with less detailed and somehow deficient information, and
increase detail and remove deficiencies, is also shared in other domains interested in
design, such as architecture [123, 86] and civil engineering [3].

This important and general conceptualisation of the aim in RE is most clearly
formulated in Zave & Jackson’s seminal paper, “Four dark corners of requirements
engineering” [140] and is echoed in discussions on the philosophy of engineering
[121]. Their view, denoted ZJ hereafter, is aligned with some of the most influential
research in the field, which both preceded and followed the said paper, including,
for example, contributions from Boehm et al. [13, 11], van Lamsweerde et al. [33, 34,
131, 132, 130, 90], Mylopoulos et al. [98, 56, 21], Robinson et al. [111], Nuseibeh et al.
[100, 71], to name some.

According to the ZJ view, in any concrete engineering project, RE is successfully
completed when the following conditions are satisfied [140]:

1. “There is a set R of requirements. Each member of R has been validated
(checked informally) as acceptable to the customer, and R as a whole
has been validated as expressing all the customer’s desires with respect
to the software development project.

2. There is a set K of statements of domain knowledge. Each member of
K has been validated (checked informally) as true of the environment.

3. There is a set S of specifications. The members of S do not constrain
the environment; they are not stated in terms of any unshared actions
or state components; and they do not refer to the future.

7

4. A proof shows that K ,S ` R. This proof ensures that an implementa-
tion of S will satisfy the requirements.

5. There is a proof that S and K are consistent. This ensures that the spec-
ification is internally consistent and consistent with the environment.
Note that the two proofs together imply that S, K , and R are consistent
with each other.”

These conditions lead to the following compact formulation of the default problem
that one solves in RE; it is called the Default Requirements Problem hereafter.

Definition 2.1. Default Requirements Problem (DRP): Given a set R of requirements,
and a set K of domain knowledge, find a specification S, such that S satisfies the
following conditions:

1. There is a proof of R from K and S, written K ,S ` R,

2. K and S are consistent, written K ,S 6` ⊥.

2.3 Requirements Models and Requirements Modelling Languages

Representations of information about RP instances, called Requirements Models,
are intended to facilitate problem-solving: when requirements are elicited, they are
documented in such models; when they are negotiated, the parties involved use
models in communication; the models are a basis for estimating costs, risks, and
deadlines of alternative designs; they are used to evaluate completeness and clarity
of requirements and designs, to determine if we have identified a solution, or more
alternative solutions, to rank alternative solutions to the RP, to track the progress of
system implementation, and so on.

Requirements Models are made using RMLs. Research on RMLs goes back to the
original framework for requirements models, RMF [57]. Many different RMLs have
been proposed since, including ERAE [42], NFR [98], KAOS [33], i* [139], LQCL [71],
and Techne [76].

RMLs have different shapes and forms. RMF is a custom formal language with
built-in abstraction mechanisms, including aggregation, classification, and generali-
sation. KAOS uses the language of first-order linear temporal logic, and categorises
ground formulae as instances of concepts, such as goals, requirements, constraints,
while categorising proof patterns as goal refinement, conflict, or other relations of
interest when doing RE. i* has a custom visual notation, which comes together with
axioms constraining the making and reading of i* models. LQCL uses the language
of classical propositional logic to represent requirements, imposes no classification
to requirements, and uses a set of inference rules that are paraconsistent, so that it
allows automated reasoning over inconsistent sets of requirements. Techne has its
own formal language, where expressions are a subset of propositional Horn clauses,
with a mechanism to assign types of requirements to facts and clauses.

2.4 Specifications as Solutions

In the DRP, the specifications set S is a representation of the solution to the problem.
We will adopt this same stance here, and write Specification to denote the description
of the solution to an RP.

The format and content of a Specification depend on the RML used to make
it, and of the knowledge of requirements and environment. The RML influences
how the information about the solution is represented, while the knowledge of
requirements and environment influences the content, that is, the information
which is represented.

Specifications made with RMLs are usually not sufficiently complete and detailed,
to serve as the blueprint for making the system-to-be. Instead, each is a synthesis
of design decisions that are intended to narrow down the purpose of the system-
to-be, and impose some constraints on how it should realise that purpose. It is
still necessary to subsequently produce detailed specifications that will say how
exactly the system should work, in order to realise its purpose within the constraints
of its environment. If the system is, or includes software, then formal methods
[27, 138] could be used to make detailed specifications. If the system involves making
buildings, then architectural drawings, construction and mechanical engineering
schemas, and so on, will be parts of detailed specifications. This is apparent from the
modelling toolsets of RMLs. An RML will rarely, if ever, include the same conceptual
tools, as, for example, formal methods, and therefore, are not intended to replace
formal methods, or more generally, specialised languages for the specification of
detailed designs.

2.5 Why Make (New) Requirements Modelling Languages?

The relevance of RMLs for describing and solving RPs depends on the influence these
languages have on individuals who learn them, when they are thinking about, and
solving RPs.

That RMLs do influence thinking during RE, is usually an implicit assumption, as
well as an important motivation for the research and teaching on these languages,
and on the creation of guidelines, processes, methods for making and manipulating
the resulting models.

The assumption is very much related to research on the relationship between
language and thought, in linguistics and cognitive science. It is aligned with the
Sapir–Whorf hypothesis [83], which is that “[s]tructural differences between language
systems will, in general, be paralleled by nonlinguistic cognitive differences” and that
“[t]he structure of anyoneâĂŹs native language strongly influences or fully determines
the world-view he will acquire as he learns the language”. It is related to the linguistic
relativism position [59, 49], which is that [102] “use of the linguistic system [...]
actually forces the speaker to make computations he or she might otherwise not

8

make.”1 In cognitive science, there are empirical results [142, 31, 74] supporting
the claim that “external representations” (what Requirements Models are in RE) are
relevant when solving complex problems, and not only as memory aids, but that
they also influence how people discover, describe, and explore problems and their
solutions. Similar views were echoed in programming language design, for example,
in Kenneth E. Iverson’s 1979 Turing award lecture, on notation as a tool of thought
[73].

If RMLs do in fact influence how one thinks about and solves RPs, then there are
two related motives for learning how to make RMLs:

• The practice-oriented motive is to be able to create new RMLs, change and
extend existing ones, in order to better solve RPs specific to domains, system
classes, projects, organisations, and so on.

• The theory-oriented motive is that trying to teach how to make RMLs makes it
necessary to build a body of knowledge on how to relate, extend, compare, and
analyse RMLs in a systematic way. Existing research on these topics is sparse
[60, 111, 76].

1Linguistic relativism is usually related to the nativist position; the latter argues that concepts are prior to
and progenitive of natural language. The two positions are usually not seen as conflicting. As Gleitman &
Papafragou note [52]: “To our knowledge, none – well, very few – of those who adopt a nativist position on
these matters reject as a matter of a priori conviction the possibility that there could be salience effects of
language on thought. For instance, some particular natural language might formally mark a category whereas
another does not; two languages might draw a category boundary at different places; two languages might
differ in the computational resources they require to make manifest a particular distinction or category.”

9

3 Example

All Requirements Models in this tutorial represent information from the example
in this section. The example draws on the London Ambulance Service’s Computer-
Aided Dispatch (LASCAD) system [2], which has often been used in RE to illustrate
RMLs [71, 131, 132, 90]. The description of the example below borrows Beynon-
Davies’ presentation of LASCAD [10].

LASCAD was intended to replace manual dispatching of ambulances to incident
locations. A manual dispatching system consists of the following [10]:

• “Call taking. Emergency calls are received by ambulance control.
Control assistants write down details of incidents on pre-printed
forms. The location of each incident is identified and the reference
co-ordinates recorded on the forms. The forms are then placed on a
conveyor belt system that transports all the forms to a central collection
point.

• Resource identification. Other members of ambulance control collect
forms, review details on forms, and on the basis of the information
provided decide which resource allocator should deal with each in-
cident. The resource allocator examines forms for his/ her sector and
compares the details with information recorded for each vehicle and
decides which resource should be mobilised. The status information
on these forms is updated regularly from information received via the
radio operator. The resource is recorded on the original form that is
passed on to a dispatcher.

• Resource mobilisation. The dispatcher either telephones the nearest
ambulance station or passes mobilisation instructions to the radio
operator if an ambulance is already mobile.”

The rationale for replacing manual dispatching is that the manual identification
of the precise incident location, production of paper-based records, and tracking
of ambulance locations were seen as time-consuming and error-prone. Replacing
the manual system with a computer-aided one was considered as a way to improve
service to patients.

A computer-aided dispatch system would be designed to support the following
[10]:

1. “Call taking: acceptance of calls and verification of incident details
including location.

2. Resource identification: identifying resources, particularly which am-
bulance to send to an incident.

3. Resource mobilisation: communicating details of an incident to the
appropriate ambulance.

4. Resource management: primarily the positioning of suitably equipped
and staffed vehicles to minimise response times.

5. Management information: collation of information used to assess
performance and help in resource management and planning.”

The example describes the problem of designing the computer-aided dispatch
system, within an environment where dispatching is done manually. In the rest of the
paper, Computer-Aided Dispatch System (CADS) refers to the system that needs to
be designed.

Although there is relatively little of it, the information above is rich: it mentions
various activities that dispatching involves (for example, call taking and resource
identification), the normal sequence of these activities (call taking precedes resource
identification), the organisational positions involved in these activities (control
assistants, resource allocators, dispatchers), the responsibilities of the positions
(resource allocator decides which ambulance to mobilise), and so on.

10

4 Preliminaries

The tutorial starts with simple and progresses towards more complicated languages.
The difference between languages is described using the concept of Language Service.
Simpler languages deliver fewer of these. Section 4.1 explains what Language Services
are, and how I use them in modelling language design. Section 4.2 explains the
naming convention for all languages in the tutorial.

4.1 Language Services

Let Q be the abbreviation of a question, such as, for example, “Which requirements
are satisfied in the given Requirements Model?”.

The Language Service Q is a capability of an RML X, which consists of the following:
given a model made with language X, any person who asks the question Q, about that
model X, will obtain the same answer.

I refer to a Language Service by that question Q, which an RML should help its
users answer; so I will say “language X delivers Language Service Q”. Language
Services are central to this tutorial, as they influence the design of all RMLs in it, and
the sequence in which I present these RMLs.

The introduction and use of Language Services is motivated by the assumption
mentioned in Section 2.5, that an RML should influence how one thinks about and
solves RPs. More specifically, I will assume that an RML will effectively do so, if it can
do something for its user, that is, if its user can delegate part of the problem-solving
effort to the RML.

Think of it this way: there is a language user, a person who needs to solve an RP,
and suppose that there is software, which she uses to make Requirements Models.
To find the solution to the RP, as well as to properly formulate the RP to solve, she
invests some effort. Problem-solving is the name for what she does.

Part of that effort goes into making and changing the model itself, the modelling,
and part of it goes into asking questions and finding answers to them, by inspecting
the model, the reasoning. Such questions can be, for example, “Which requirements
in the model cannot be satisfied together?”, or “Does the model describe how to
satisfy some requirement X in it?”, and so on. Now, she can probably find answers to
many such questions by having natural-language be her modelling language, and

ordinary text her models; she brings the text up on a screen, or prints it out, then
searches through it and reads it to find the answer.

But there are two problems with this, if not more. If another person tries to find
the answer to the same question, from the same model, what guarantees that the
answer will be the same? Yet it should, unless you want models to cause confusion.2

And if the model gets big – the text is long – will it not become, at some point, too
difficult to find answers, and will there not be questions to which you want answers,
yet cannot find them within some reasonable time?

To make problem-solving easier, I can add rules on how to make diagrams that
represent things, actions, and so on, in the text, and can change the software to
enable it to answer questions by doing some processing on the models. The software
will then process a model, and return an answer. To abstract from implementation
specifics, I will say that the engineer delegates part of the effort to the RML, and the
RML has to say what its models are, and how to process them to answer questions.

Language Services are used to describe parts of the problem-solving effort, which
the engineer can delegate to an RML. If an RML can answer some specific question,
then I can define a Language Service, and I will say that that RML delivers that
Language Service. Languages can be compared in terms of Language Services that
each delivers.

Language Services are not defined as some specific concepts, relations, rules, or
algorithms that are part of a language. It follows that two languages may be said to
have the same Language Service, even if they have very different components and
work in different ways to answer the corresponding question.

4.2 Naming Conventions

Every language defined in this tutorial has two names. One is its so-called module
name and the other is its common name.

The module name lists the abbreviations of all modules in that language. Section
5.2 explains what a language module is. For now, it is enough to know that a module
is a self-contained part of a language, which can appear in more than one language.
That is, it can be reused when making different languages.

For example, a module name for one of the language in Section 5.3 is L.(F, r.inf.pos,
r.inf.neg, f.map.abrel.g). This says that the language is made of four modules, denoted
by F , r.inf.pos, r.inf.neg, and f.brel2g. Each language module in the paper has a
unique abbreviation, and those abbreviations are used to form the module names

2Any model probably can be read in different ways by different people, but it is feasible, when making
models that have to answer very specific questions, to make sure that they do not give confusing answers to
those questions. If one writes x +5 = 7, and says to another that these are numbers of apples, the other might
debate if they are of the Granny Smith or Golden Spire variety, but both would answer 2 if asked for the value
of x.

11

of languages. The point is to know what modules a language includes, simply by
looking at the name.

The common name has nothing to do with the module name of a language, in
that neither is inspired by the other. The common name is chosen simply to make
it easier to refer to a language, when the module name is unnecessary. Common
names are the common names of navigational stars in celestial navigation, taken
from the Nautical Almanac [72].

Appendix A lists all language modules and languages defined in this tutorial, with
their module names and common names.

12

5 Relations

Overview and Motivation

This section is on how to define relations over bits and pieces of information used in
problem-solving. The discussion revolves around how to define individual relations,
issues in defining languages that have many relations, and on two RE concerns, called
influence and rationale below, which have usually been addressed via specialised
relations in RMLs. More specifically, the section is on:

1. How to represent in Requirements Models that we start design with less detailed
information, and incrementally add details to it? (in Section 5.1),

2. How to define oft-needed relations in such a way, that they can be reused when
defining new RMLs? (Section 5.2),

3. How to represent that satisfying some requirements influences the satisfaction
of others? (Section 5.3),

4. How to represent the rationale for design decisions? (Section 5.4), and

5. If an RML includes several relations, then how to avoid errors in using these
relations together? (Section 5.5).

Problem-solving in RE involves working with information, obtained through in-
terviews, observation, simulation, role-playing, from documentation, through re-
flection, creativity, and so on. You need to organise this information in order to
understand the concrete problem to solve, to design its one or alternative solutions,
compare them, and do all else that might be necessary, in order to produce a solution
(Section 2.1 mentioned some of many potential tasks).

You can organise this information by making representations of it, splitting rep-
resentations into pieces, and stating relations over the pieces. The first part of the
tutorial focuses on how you can define relations in RMLs, so that their models can
represent instances of these relations over pieces of information. In turn, relations
let you reconstruct, from the pieces, your initial understanding of the initial whole,
and also, to identify interactions between these pieces, which was not feasible when
they were not split up.

There are two practical reasons to start the tutorial by focusing on relations only,
and so have only one category of information. Firstly, I can postpone the discussion
of such issues as, when a piece of information should be called a requirement, a goal,
a task, a specification, or otherwise, that is, the issue of categorisation, to which I
return in Section 7. 3 Secondly, committing already now to some specific categories
would bias the discussion to a specific class of RPs. This is because RP classes come
with their own information categories: in DRP, for example, they are “requirement”,
“domain knowledge”, and “specification”. There is no need to privilege one RP class
over others this early in the tutorial.

5.1 How to Define a Language with One Category and One Relation?

As usual, a relation R over some sets X1, . . . , Xn of things, be they requirements, laws,
(or representations of) people, cars, buildings, or clouds, of same or of different kinds,
is a subset of the Cartesian product of these sets, that is, R ⊆ X1 × . . .×Xn . A relation
is used to indicate that the things it relates share the property which the relation
stands for. For example, if in love with denotes a binary relation over people, and
people are identified by first names, then Pierre in love with Marie is an instance of
the in love with relation, and is intended to convey that they share the property that
we conventionally understand as Pierre being in love with Marie, and that that Marie
is the person whom Pierre is in love with. With this simple idea in mind, consider the
following exercise. The rest of this section shows one way to solve it.

Exercise 1: Define a language which has one category and one relation

Define the simplest RML which lets you show that information about
requirements increases incrementally as system design progresses. By
simplest, I mean something that is easy for others to understand. It can
help to consider the following questions.

• What is, or are the Language Services that this language should
deliver? Why? Define them.

3While I am discussing relations before categories, I do not suggest, for example, that in general, relations
should be the primitives in RMLs. I already introduced the notion of Fragment as a primitive, and Fragments
are not relations. Also, when I start introducing more categories later, I do not define categories only in
terms of relations. So I am not saying, for example, that pieces of information are in relations because they
satisfy some monadic properties first and foremost, and that them having these properties influences the
relations in a language. For example, this amounts to saying that it is is because there are things called
requirements and others called specifications, that I am interested in relations that indicate how doing
according to specifications influences if we satisfy requirements. The opposite approach, where relations are
primitives, would be to say that I have to distinguish categories of information that describe what to satisfy
(requirements), from those on what to do (specifications), because I am interested in relations that reflect
correlation of satisfaction.

13

• How would you represent that information increases? Try with a
relation.

• What is the domain of that relation, what is the relation over?

• How should relation instances read informally? What is it that
they should be saying to other people who are using models in
that language?

• What are the formal properties of that relation? Is it, for example,
transitive?

5.1.1 Choosing a Language Service

I will start by choosing the Language Service which the language should deliver.
To do this, recall, from Section 2, that the default view in RE is that RPs are solved
incrementally, moving from incomplete or otherwise deficient information, towards
less deficient information that describes the problem and its solution.

At each iteration, I want to add information to the model. This new information
may be adding details to the information already there. The additional detail may
come from explaining how to satisfy some requirement, that satisfying a requirement
involves satisfying several more specific requirements, making a requirement less
ambiguous, and so on. The same applies to any information in the model, be it
requirements or otherwise (such as domain knowledge and specifications in the
Default RP).

It is relevant have models which show how information was added during design.
Discovery and indecision in problem-solving are two reasons for this, among others.

• Discovery refers to starting with relatively little, and progressively increasing
knowledge of, for example, the relevant requirements and domain knowledge,
their relative importance, their completeness, about ways to satisfy require-
ments, and so on. At a given time during problem-solving for the CADS, you
may not know the various possible ways to identify the incident location; as you
learn more about them, you would be adding more details about them to the
model.

• Indecision refers to the unwillingness, at some time in problem-solving, to
commit to, for example, resolve some conflict between requirements in one
way and reject all alternative ways to do so, to give a particular interpretation to
an ambiguous requirement, or to some specific way of satisfying a requirement.
For example, you may decide not to describe in the model a process for choosing
the ambulance to dispatch, until you have interviewed the control assistants
who have experience in that task.

As I proceed with discovery and postpone commitments, I am adding more de-
tailed information to the model. Instead of deleting the less detailed information
when this happens, it is relevant to keep both in the model. More specifically, it is
useful to indicate in the model which information adds details to which other. Doing
so results in a record of what I am adding details to and why I am adding the more
detailed information in the first place.

Modelling the increase in information in a model raises a number of design chal-
lenges and is related to many Language Services that various well-known RMLs
deliver. For example, in KAOS, the ability to answer “Which requirements are more
detailed than (that is, refine) the given requirement?”; in i*, to answer “Which tasks
are more detailed than (decompose) the given task?”. This leads me to the follow-
ing Language Service for the new RML. Let x and y be parts of a model M in that
language.

Language Service

AddsDetails: Does x add information to y in M?

The Language Service does not define exactly what the model or its parts are, and
thereby remains independent of a particular language.

5.1.2 Models over Arbitrary Representations of Information

Natural language text is an accessible and neutral way to represent information
about RPs and their solutions, because, respectively, there is no need for additional
learning to use it, and it comes with no rules on how to represent, categorise, or work
with that information.

If natural language is a casual means of requirements representation, then does
ordinary text as a means of representation deliver s.AddsDetails? Consider the fol-
lowing pieces of information, called Fragments, about the CADS.

Emergency calls are responded to. (AddRepEm)

Receive emergency calls. (RecEmCal)

Switch emergency calls to ambulance dispatch centre. (SwtchCal)

No calls are dropped because of timeout. (NoDropCal)

Identify the incident location. (IdIncLoc)

Check if double location. (ChkDblLoc)

14

Fill out the incident report. (FillIncRep)

Fill out incident report form via software. (FillSwIncRep)

Above, Fragments are ordinary sentences, with an abbreviation for easier refer-
encing. I impose no rules about, for example, how to decompose and combine
Fragments. Later, I will in some languages. Moreover, while Fragments can be
representations of propositions4, not all of them are: questions arise during problem-
solving, and while they cannot be propositions [125, 50, 129] (What do you answer
to “Is that question Q true or false?”?), it is relevant to have a record of them, and
inevitably, then, have them in models.

But Fragments need not only be parts of natural language text. Datasets, diagrams,
photographs, videos, can all be representations of requirements, or of other informa-
tion which is relevant when defining requirements, solving conflicts between them,
getting stakeholders to approve requirements, and so on [32, 109].

Consequently, a Fragment is any available representation of information, as long as
the model user judges it to be relevant for problem-solving in RE. This is important to
keep in mind, as all languages in the rest of this tutorial create models over Fragments.
While the present format makes Fragments in natural language text the easiest to
use, there is nothing in the languages defined here, which restricts Fragments to text
only.

Example 5.1. The CADS example suggests that addressing each emergency involves
(at least) taking the emergency call, identifying the incident location, and so on.

It follows that RecEmCal, SwtchCal, NoDropCal, IdIncLoc, ChkDblLoc, FillIncRep,
FillSwIncRep describe one way of satisfying AddRepEm.

AddRepEm thus looks to be less detailed than every one of the former statements.
Equivalently, AddRepEm is more abstract than each of these statements. Also, each
of the latter statements is more concrete, or more detailed than, and adds details to
AddRepEm. FillSwIncRep is one of some alternative ways of doing FillIncRep, which
makes FillSwIncRep more detailed than, and adding detail to FillIncRep.

The following paragraph summarises this.

RecEmCal, SwtchCal, NoDropCal, IdIncLoc, ChkDblLoc, and FillIncRep de-
scribe what to do, in order to satisfy AddRepEm. Each informs AddRepEm.
FillSwIncRep adds details to FillIncRep, because it describes one way of
satisfying FillIncRep.

If you replace each abbreviation above with the corresponding Fragment, you get
an ordinary paragraph of text. •

4I take McGrath’s view on propositions [95], so that they are “sharable objects of the attitudes and the
primary bearers of truth and falsity. This stipulation rules out certain candidates for propositions, including
thought- and utterance-tokens, which presumably are not sharable, and concrete events or facts, which
presumably cannot be false.”

Taken as a representation of information about ambulance dispatching, the para-
graph in Example 5.1 is subject to no particular rules which would influence how
you and I represent and communicate about differences in detail. For example, the
paragraph can be seen as a single Fragment, or multiple Fragments, neither of which
can be unambiguously established by looking at it alone.

To be able to find the same answer to s.AddsDetails, you and I need to agree
on at least two rules, on (i) how to distinguish between Fragments, and (ii) how
to record that one adds details to another. Once we do, the result is that we will
be no longer documenting our communication about the adding of details using
unconstrained text, but text that has to satisfy the new rules. Since these rules are
specific to s.AddsDetails, I will call the resulting representations models.

5.1.3 A Trivial Modelling Language

One way to distinguish Fragments is to visually separate them. You can write each in
a different paragraph. For referencing, you could have a unique identifier for each
paragraph.

To record which Fragments add information to others, you and I can agree to
write sentences in this format “x informs y”, where we replace x and y with relevant
Fragment identifiers.

“x informs y” reflects the conclusion of comparing two Fragments x and y , and
concluding that x adds information about y . In other words, saying “x informs
y” equates to stating a relation between x and y , and begs the question of what
properties this relation has.

It makes no sense to say that “x informs x”, so the relation is irreflexive. It is also
not the same to say that “x informs y” or that “y informs x”; it is one or the other,
so that the relation is antisymmetric. It is also transitive, as the following seems
reasonable: if you say that x informs y , and that y informs z, then you are also saying
that x informs z. Finally, I will not be saying which Fragment informs another, for
every pair of Fragments. I might do it for some Fragments only. In conclusion, the
“informs” relation on a given set of Fragments is a strict partial order relation.

This gives a language which delivers s.AddsDetails. The language is called L.D1,
and is defined only by the rules which you and I agreed on so far:

Every model M in L.D1 is a graph (X , r.ifm), where:

1. every Fragment in X is a node,

2. every edge is an instance of r.ifm over X ,

3. r.ifm is a strict partial order on members of X , and

4. (x, y) ∈ r.ifm reads “Fragment x adds details to Fragment y”.

L.D1 delivers the following Language Services:

15

• s.AddsDetails: Yes, iff there is a path from x to y in the transitive
closure of M , no otherwise.

Using L.D1 takes me from natural language to a controlled language, and in the
process restricts considerably what I can say about why some Fragments add detail
to others, for example. This is apparent by comparing models in Example 5.1 and
Example 5.2; the latter was made using L.D1 on Fragments in the former example.

Example 5.2. The graph G = (X , r.ifm(X)) is a model in L.D1, where:

• X = { RecEmCal, SwtchCal, NoDropCal, IdIncLoc, ChkDblLoc, FillIncRep, Ad-
dRepEm, FillSwIncRep} is the set of all Fragments,

• The set of edges is this set of r.ifm instances:

r.ifm(X) = { (RecEmCal,AddRepEm), (SwtchCal,AddRepEm),

(NoDropCal,AddRepEm), (IdIncLoc,AddRepEm),

(ChkDblLoc,AddRepEm), (FillIncRep,AddRepEm),

(FillSwIncRep,FillIncRep) }

Figure 1 gives a visualisation of this model. The visualisation shows a graph, where
nodes are Fragments, and edges labeled “D” are r.ifm instances. •

The main point of Language Services is that if I made the model in Example 5.2,
and gave it to you, and you know L.D1, then you would not need to ask me for my
answer to s.AddsDetails, since you can get to the same answer as I. That is, L.D1
delivers s.AddsDetails.

As an aside, observe that L.D1 cannot be used to solve the Default RP. Delivering
s.AddsDetails is not enough, as other Language Services are needed. If you consider
that a language is not an RML if it cannot be used to solve the Default RP, then L.D1 is
not one.5 L.D1 models cannot be used to answer seemingly simple questions, such
as which of all the Fragments are the most detailed (that is, no other Fragments add
detail to them). L.D1 does have important limitations, but the tutorial needs to start
from something simple.

5.2 How to Define Languages with Modules?

I defined a simple language in response to Exercise ex:one-category-one-relation.
What if I wanted to define new languages, perhaps many of them, all of which would
reuse the relation r.ifm in the same way as L.D1? The challenge is summarised in the
following exercise.

5i*, for example, also fails this criterion, but is considered an RML. There is, to the best of my knowledge,
no widely-accepted set of criteria for when a modelling language is also an RML, despite some suggestions
[140, 60, 79, 76].

Exercise 2: Define a relation as a reusable module

Define the relation r.ifm in such a way that it is independent of the
syntax of L.D1, and that it can be reused when defining another lan-
guage, which may have an entirely different syntax, symbolic, visual,
or otherwise, than L.D1. You can consider the following more specific
questions.

• What are the necessary parts of a definition of a relation? What
does one need to know about a relation, in order to use it in
modelling?

• When defining a relation, do you consider it necessary to define
how its instances are represented? Must a definition of a relation
define also the syntax for representing its instances?

• What should be omitted from a definition of a relation, if it is to
be reused in different languages?

To solve the exercise, go back to L.D1 and r.ifm, and consider what had to be
decided and put into the definition of that relation. I defined r.Inform by answering
the following questions:

• What is the name of the relation?

• How a person should read its instances?

• What is its domain?

• What is its dimension (arity)? Is it unary, binary, ternary, n-ary?

• What are its formal properties? More generally, what properties does it have to
satisfy?

• Which Language Services I want to deliver with it?

I will answer the same questions for all relations in this tutorial. Hence the Lan-
guage Module template for relations. Slots in it reflect the questions. Below, it is filled
out for r.Inform.

Relation

Inform (r.ifm)

16

Figure 1: A visualisation of a model in L.D1.

Domain & Dimension

r.ifm⊆ F×F, where F is a set of Fragments.

Properties

irreflexive, antisymmetric, and transitive.

Reading

(x, y) ∈ r.ifm reads “x adds information to y”.

Language Services

• s.AddsDetails: Yes, if (x, y) ∈ r.ifm is in M .

There is a slot for the domain and dimension. Properties are the rules that all
relation instances have to satisfy. If some relation r.rel is irreflexive, then you have an
error in the model, if it includes (x, x) ∈ r.del. The properties slot will include all sorts
of rules about relation instances, not only common formal properties (as above).
Hence the slot’s generic name. The “reading” slot says how to read an instance of the
relation.

The template includes the abbreviated relation name, r.ifm above. I usually use
that abbreviation to refer to the relation, or in general, to Language Module names

in the tutorial.

Exercise 3: Define the language which has only r.ifm

Define the simplest language whose models can represent instances
of r.ifm. The language definition should not redefine, or repeat the
properties of r.ifm.

The template shown with r.ifm focuses on the relation alone. It tries, as much as
feasible, to avoid other concerns. For example, it is silent about how sets of rela-
tion instances should or could be represented, as sets of symbols denoting relation
instances, as graphs where edges denote relation instances, or in some other way.
The template avoids issues related to the syntax of the language. When I want to
use a relation in a language, I will simply use the name of the relation, and leave its
definition in its own module, rather than repeat it in the language definition. Below
is the definition of a language which does the same as L.D1.

Language

Alpheratz

Language Modules

17

F, r.ifm

Domain

Set F of Fragments and r.ifm⊆ F×F.

Syntax

A model M in the language is a set of symbols M = {φ1, . . . ,φn }, where every
φ is generated according to the following BNF rules:

α ::= x | y | z | . . .

β ::= (α,α)

φ ::= α |β

Mapping

D(α) ∈ F and D(β) ∈ r.ifm, that is, every α represents a Fragment from F and
every β an instance of r.ifm.

Language Services

Same as r.ifm.

The template has the common name L.Alpheratz and the module name (F, r.ifm).
This follows the conventions in Section 4.2. The module name is in parentheses and
says that the language takes Fragments and r.Inform. There is the symbolic syntax,
defined using BNF notation. You can define it otherwise if you prefer.

I follow Harel & Rumpe [63] on syntax and semantics, and there are consequently
slots for syntax, semantic domain, and a function which maps elements of the former
to those of the latter. The function is denoted D in all languages in this tutorial, but
its definition is always local to a language. The example below gives a model in
L.Alpheratz.

Example 5.3. The following is a model in L.Alpheratz:

M = { RecEmCal,SwtchCal,NoDropCal, IdIncLoc,

ChkDblLoc,FillIncRep,AddRepEm,FillSwIncRep,

(RecEmCal,AddRepEm), (SwtchCal,AddRepEm),

(NoDropCal,AddRepEm), (IdIncLoc,AddRepEm),

(ChkDblLoc,AddRepEm), (FillIncRep,AddRepEm),

(FillSwIncRep,FillIncRep) }

M includes individual Fragments and the pairs are instances of r.ifm. •

For every model of L.Alpheratz, you can make a corresponding graph. The graph
can be a visualisation of the model, but more importantly, it can be used to compute
answers to new Language Services, such as those in the following exercise.

Exercise 4: Find most and least detailed Fragments

How would you change L.Alpheratz, to deliver these Language Service:

• s.MostDetails: Which Fragments in M are the most detailed?

• s.LeastDetails: Which Fragments in M are the least detailed?

Suppose that G(M) is the graph where everyα from M is a node and everyβ= (x, y)
is an edge directed from x to y . Let C l (G(M)) be the transitive closure of that graph.
You can then deliver s.MostDetails and s.LeastDetails as follows:

• s.MostDetails: All nodes in C l (G(M)) which have no incoming edges.

• s.LeastDetails: All nodes in C l (G(M)) which have no outgoing edges.

There are well-known algorithms for finding transitive closures of directed acyclic
graphs, and for finding paths in them [1, 6]. Use them to compute answers to the
Language Services above.

In the rest of the tutorial, I define the translations from one syntax to another, or
other transformations of models, via Language Modules. These Language Modules
are functions, taking (parts of) models as input, making changes, and producing new
models or otherwise. When I suggested above that you can make a graph from r.ifm
and do computations on those graphs, the more general point is that you may want
a language to deliver the following Language Service.

18

Language Service

RelGraph: What graph is induced by the relation r.R over Fragments in F ?

Below is the definition of a function which takes a binary relation and returns a
labelled directed graph. It delivers s.RelGraph.

Function

Map a binary relation to a graph
(f.map.abrel.g)

Input

Set F of Fragments and a binary antisymmetric relation r.R⊆ F×F.

Do

Let G(F, r.R) = (N ,E , lN , lE) be an empty labelled directed graph. For every
Fragment fi ∈ F, add a node ni to N and let the Fragment label the node,
lN (ni) = fi . For every relation instance (fi , f j) ∈ r.R, add an edge (ni ,n j) ∈ E
to the graph, and label the edge r.R.

Output

G(F, r.R).

Language Services

• s.RelGraph: G(F, r.R).

A language which would deliver s.MostDetails and s.LeastDetails would also need
additional functions which traverse the graph, and return the sink and source nodes.

The more general point is that templates such as the above promote a modular

definition of languages. The template for functions is self-explanatory, giving the
inputs, the actions to take on these inputs, the result of those actions, and the
Language Services of interest.

You can also have templates for families of languages. You can define analogous
languages to L.Alpheratz for many other antisymmetric binary relations in this tuto-
rial. The template for all these languages is as follows, where R is the name of the
relation. I added the function f.map.abrel.g, which enables these languages to deliver
more Language Services than L.Alpheratz could. I will not spend much time with
such languages, as you can define them with the template below.

Language

Alpheratz(R)

Language Modules

F, r.R, f.map.abrel.g

Domain

Set F of Fragments and r.R⊆ F×F.

Syntax

Same as in L.Alpheratz.

Mapping

D(α) ∈ F and D(β) ∈ r.R.

Language Services

s.AddsDetails, s.RelGraph, s.MostDetails, s.LeastDetails.

I illustrated above how to define a relation as a Language Module, and then use
this module in a language. Sections 5.3 and 5.4 define several other relations. They
are all inspired by well-known ideas such as, say, refinement in programming and

19

correlation in statistics, which are not specific to RE, as well as relations that are
central in well-known RMLs. The aim is to give more examples of the modular
definition of relations, and then combine these sample relations into new languages
in Section 5.5.

5.3 How to Define Different Kinds of Influence Relations?

A recurrent concern in RE is to represent that satisfying some x has consequences
on satisfying some other y . (x and y may be one or more requirements, domain
knowledge, specifications, or otherwise; their categorisation does not matter at the
moment.) Satisfying abbreviates “successfully doing what x describes”, or if you
prefer making it clear that these are models of hypothetical actions, conditions, and
such (precisely because they are representations), then it abbreviates “as-if what x
describes is successfully done”.

This capability is critical for solving the Default RP, for example, since both con-
ditions in that problem are about how the satisfaction of domain knowledge and
specifications influences the satisfaction of requirements.

Satisfying some x in a Requirements Model can be independent from the ability
to satisfy some other y in the same model. If it is not, then the idea is to have an
influence relation between x and y . This relation can indicate positive or negative
influence, and various relations have been proposed to do so [111].

Exercise 5: Define one or more relations to represent influence

Define a relation which represents that the satisfaction of a Fragment
depends on the satisfaction of another Fragment. What kinds of influ-
ence can there be between Fragments? If there are different kinds of in-
fluences, would you define a new relation for each? What if you wanted
to represent that a Fragment’s satisfaction depends more strongly on
the satisfaction of some Fragment x than that of some Fragment y?

You can think of satisfaction as being a value assigned to a Fragment. Let SatVal
denote the satisfaction value of a Fragment, and suppose that V is the set of all
allowed satisfaction values, so that SatVal : X −→ V , where X is a set of Fragments.
There should be an influence relation from x to y iff SatVal(x) = f (. . . ,SatVal(y)),
that is, if the satisfaction value assigned to x is function of, among others, the value
assigned to y .

Due to discovery and indecision in problem-solving, I may incrementally be find-
ing out, or making decisions about the exact function SatVal(x) = f (. . . ,SatVal(y)).
To be able to represent partial information about influence, I will define several types

of influence relations. Some of them will require that I know very little about how
SatVal(x) is sensitive to changes of SatVal(y), while others may require that I know
more, such as the direction and perhaps strength of that influence.

5.3.1 Presence of Influence

The first influence relation can be used when you know only that a function
SatVal(x) = f (. . . ,SatVal(y)) does or should exist. The corresponding Language Ser-
vice is as follows.

Language Service

DoesInfluence: Does the satisfaction of x influence the satisfaction of y in
M?

Exercise 6: Define the relation which delivers s.DoesInfluence

Define a relation which conveys only that the satisfaction of a Fragment
somehow influences the satisfaction of another Fragment. Whether
this influence is positive or negative, or is stronger or weaker than the
influence of another Fragment, is not relevant in this exercise.

To deliver s.DoesInfluence, you need a relation for influence. It can be defined as
follows.

Relation

Influence (r.inf)

Domain & Dimension

r.inf⊆ F×F, where F is a set of Fragments.

Properties

20

irreflexive and transitive.

Reading

(x, y) ∈ r.inf reads “the satisfaction of x influences the satisfaction of y”, or
equivalently, “there is a function SatVal(y) = f (. . . ,SatVal(x))”.

Language Services

• s.DoesInfluence: Yes, if (x, y) ∈ r.inf is in M .

Example 5.4. In Example 5.1, the Fragments RecEmCal, SwtchCal, NoDropCal, IdIn-
cLoc, ChkDblLoc, and FillIncRep described parts of what needs to be done in order to
satisfy AddRepEm. This suggests the following r.Influence instances:

(RecEmCal,AddRepEm), (SwtchCal,AddRepEm), (NoDropCal,AddRepEm),

(IdIncLoc,AddRepEm), (ChkDblLoc,AddRepEm), (FillIncRep,AddRepEm).

Let L.Alpheratz_Influence be a language made using the template L.Alpheratz_R from
Section 5.2, and r.Influence. Let M be a model in that language, which includes all
influence relation instances above and all the Fragments that these instances relate.
The corresponding graph is shown in Figure 2. For brevity, edges are labeled “I”,
rather than “r.inf”. •

The example illustrates that it is only necessary to assume that there exists a func-
tion f such that SatVal(y) = f (. . . ,SatVal(x)). When this is done, it is not necessary
to also know how exactly the satisfaction of y depends on that of x. It is also not
necessary to define the set V of allowed satisfaction values. This is useful when that
set is still unknown or undecided in problem-solving.

5.3.2 Direction of Influence

While you may not know exactly how the satisfaction of y depends on that of x, you
may know, or wish to hint that the correlation of their satisfaction values is positive
or negative. That is, you want to deliver the following Language Services:

• s.PosInfluence: Does satisfying x influence positively the satisfaction of y in
M?

• s.NegInfluence: Does satisfying x influence negatively the satisfaction of y in
M?

Exercise 7: Define one or more relations that deliver s.PosInfluence and
s.NegInfluence

Do you need one relation, or more to deliver s.PosInfluence and
s.NegInfluence? If more, then how are they different? Or could you
define one influence relation, whose parameter would define the direc-
tion of influence?

To deliver s.PosInfluence and s.NegInfluence, I define a new relation which can
indicate positive or negative influence. I define it as an influence relation that has a
parameter. The parameter gives the direction of influence.

Relation

Influence.d (r.inf.d)

Domain & Dimension

r.inf.d⊆ F×F, where F is a set of Fragments.

Properties

irreflexive and transitive.

Reading

d is either “pos” for positive or “neg” for negative, and therefore

• (x, y) ∈ r.inf.pos reads “the satisfaction of x positively influences that of
y”,

• (x, y) ∈ r.inf.neg reads “the satisfaction of x negatevely influences that of
y”.

21

Figure 2: Visualisation of a model in L.Alpheratz_Influence.

Language Services

• s.PosInfluence: Yes, if (x, y) ∈ r.inf.pos is in M .

• s.NegInfluence: Yes, if (x, y) ∈ r.inf.neg is in M .

Example 5.5. How would you define a language that can represent both positive and
negative influence relations over Fragments? How would you define it by making
minimal changes to the definition of L.Alpheratz? The language L.Ankaa below does
this.

Language

Ankaa

Language Modules

F, r.inf.pos, r.inf.neg, f.map.abrel.g

Domain

Set F of Fragments. r.inf.pos and r.inf.neg are both over Fragments, so that
r.inf.pos⊆ F×F and r.inf.neg⊆ F×F.

Syntax

Same as L.Alpheratz.

Mapping

α symbols denote Fragments, D(α) ∈ F, β symbols denote r.inf.pos or r.inf.neg
instances, D(β) ∈ r.inf.pos∪ r.inf.neg.

Language Services

s.PosInfluence, s.NegInfluence.

Figure 3 shows a graph made by merging G(F, r.inf.pos) and G(F, r.inf.neg) made
from the same model M in L.Ankaa. The graph shows positive and negative influence
relation instances. Positive influences are labeled with “+” and negative with “-”.
Note that the merge of G(F, r.inf.pos) and G(F, r.inf.neg) could be a hypergraph, since
L.Ankaa lets me have positive and negative influence relation instances between
same Fragments. •

The difference between (x, y) ∈ r.inf and (x, y) ∈ r.inf.d (whichever d is) reflects a
difference in the information available about the satisfaction of x and of y . While

22

Figure 3: A visualisation of a model in L.Ankaa.

(x, y) ∈ r.inf says simply that I believe that satisfying x somehow influences satisfying
y , (x, y) ∈ r.inf.d says that I have decided the direction of influence.

5.3.3 Relative Strength of Influence

If you have information about how strongly the satisfaction of a Fragment influences
that of another Fragment, this information cannot be represented in models which
can show that there is influence, and, or, the direction of influence. The following
exercise summarises the problem.

Exercise 8: Represent strength of influence between Fragments

Define a relation, or otherwise, which can be used to convey that the
satisfaction of a Fragment more or less strangly influences that of an-
other Fragment. Can this be done with a new relation? What is the
scale for strength of influence? Is it absolute or relative? If relative, then
what is it relative to?

I will consider the case when the strength of influence of a Fragment on some
Fragment x, is relative to the strength of influence of all other Fragments which also
influence x.

Suppose that the satisfaction of y is influenced by the satisfaction of several other
Fragments x1, . . . , xn . How would you indicate that some of them have stronger

influence on the satisfaction of y than others? That is, how would you deliver the
following Language Service?

Language Service

InfStrength: If the satisfaction of each of x1, . . . , xn influences the satisfaction
of y in M , then is the satisfaction of y more sensitive to the satisfaction of xi
than to the satisfaction of x j , where xi , x j ∈ {x1, . . . , xn }?

s.InfStrength is about the relative strength of influence. To deliver it, it is necessary
to compare the strength of influence of satisfying each x1, . . . , xn on the satisfaction
of y . If you knew the exact function SatVal(y) = f (SatVal(x1), . . . ,SatVal(xn)), then
this would not be difficult to do. You could compare the covariance of each xi to y .

I need a new relation to say that xi has stronger influence on the satisfaction of
y than some x j . The new relation cannot be over Fragments, because it does not
compare Fragments, but the strength of their influence on y . So the new relation,
call it r.Stronger_Influence, is over instances of r.inf or those of r.inf.d.

23

Relation

Stronger influence (r.str.inf)

Domain & Dimension

r.str.inf⊆ R ×R, where R is one of r.inf, r.inf.pos, r.inf.neg.

Properties

irreflexive, antisymmetric, and transitive.

Reading

((xi , y), (x j , y)) ∈ r.str.inf reads “the satisfaction of y is more sensitive to the
satisfaction of xi than to the satisfaction of x j ”.

Language Services

• s.InfStrength: Yes, if ((xi , y), (x j , y)) ∈ r.str.inf is in M .

Example 5.6. Let L.Schedar be a language made by adding f.str.inf to L.Ankaa. The
language is defined as follows.

Language

Schedar

Language Modules

F, r.inf.pos, r.inf.neg, f.map.abrel.g, r.str.inf

Domain

Set F of Fragments, r.inf.pos⊆ F×F, r.inf.neg⊆ F×F, and

r.str.inf⊆ (r.inf.pos× r.inf.pos)∪ (r.inf.neg× r.inf.neg).

Syntax

A model M in the language is a set of symbols M = {φ1, . . . ,φn }, where every
φ is generated according to the following BNF rules:

α ::= x | y | z | . . .

β ::= (α,α)

γ ::= (β,β)

φ ::= α |β | γ

Mapping

D(α) ∈ F , D(β) ∈ r.inf.pos∪ r.inf.neg, and D(γ) ∈ r.str.inf.

Language Services

s.PosInfluence, s.NegInfluence, s.InfStrength.

Figure 4 is a visualisation of a model made in L.Schedar. The figure shows that the
satisfaction of AddRepEm is more sensitive to the satisfaction of IdIncLoc than it is to
all other Fragments, whose satisfaction influences that of AddRepEm. •

The relation r.str.inf gives no indication about how to evaluate the relative strength
of influence. Strength can be a function of covariance, for example. You then need to
guess covariance values (in case you have no say about how exactly the satisfaction
of xi influences that of y) or to decide these values (when you can choose exactly
how the satisfaction of xi influences that of y). Both discussions are specific to
the concrete RP instance that you are solving. For the former case, multivariate
statistics [99, 124] provides general guidelines for estimating covariance. For the
latter case, another discipline may provide relevant suggestions, and the discipline in
question depends on what the Fragments are about. For example, if x1, . . . , xn reflect
decisions on the architecture of an information system and y is a requirement about
the scalability of that information system, then research on software architecture
[113] is relevant.

24

Figure 4: A visualisation of a model in L.Schedar.

You can see the absence of precise instructions in r.str.inf as a deficiency. However,
this simply reflects the fact that it is in many cases required to call upon experts,
among stakeholders or elsewhere, in order to produce relevant models. A language
which uses that relation, rough as it is, is only pointing in the direction of relevant
areas of expertise, rather than attempting to include some of the knowledge from
them.

5.3.4 Summary on Influence Relations

The purpose of influence relations defined above is to represent that the satisfaction
of some Fragments depends on the satisfaction of others. I defined several influence
relations and a function which illustrated how to assign relative strength of influence
to instances of positive and negative influence relations.

None of the influence relations came with with predefined levels of satisfaction.
I said how to read the satisfied and not satisfied values, when there are only two
levels of satisfaction, but I said nothing about cases when there are many levels of
satisfaction.

This was acceptable precisely because influence relations are used when we have
partial knowledge, due to discovery or indecision about how exactly to compute the
satisfaction value SatVal(y) of a Fragment y .

The story was that, as my knowledge about SatVal(y) increases, I will want to stop
using r.Influence, and want to use r.Influence[d] instances. As it further increases, I will
want to use f.str.inf to indicate the relative strength of influence. If I knew even more, I

could formulate a concrete function SatVal(y) = f (SatVal(x1), . . . ,SatVal(xn)), which
I might revise at later iterations in problem-solving.

When you can formulate SatVal(y) = f (SatVal(x1), . . . ,SatVal(xn)), you have
reached a point in problem-solving when influence relations alone represent less
than you know about the influence of x1, . . . , xn on the satisfaction of y . At that
point, you need a language with more complicated satisfaction scales, and functions
assigning those values. I will return to this in Section 9.

5.4 How to Show the Rationale for Model Content?

A recurring concern in RE is to make justified models. A model is justified if the
rationale for its content is acceptable to everyone involved in making and using that
model (or at least to those having the authority to complain about the content of a
model). The rationale explains why something is in the model. If the content of a
model is contested, and nothing is given to settle the debate, then the model is not
justified. If it is not justified, it is unclear whether the problem and solution it may
represent are relevant at all.

Exercise 9: Show, in a model, information which justifies the content of that model

Define relations which can be used to show, in models, that some
Fragments are arguments, reasons for having other parts of the model,
such as other Fragments or relation instances. Can you do this with

25

one relation? If not, then why? How would you use these relations to
determine if a model part is justified or not?

Checking if a model is justified can be done once it is completed. Another ap-
proach is to check every change of the model, to make sure that the change itself
is justified. In both cases, the idea is that there are some properties that the model
should have, and which must be satisfied in order to say that the model is justified.
These ideas about justification are closely related to a central notion in program
refinement.

Program refinement [137, 38, 68, 37] consists of replacing a piece of abstract pro-
gram with a piece of more concrete program, the benefit being to delay lower-level
detail to later steps of program development. This is related to the idea of incremen-
tally adding detail discussed earlier, but I want to focus on another important idea in
program refinement.

A central notion in program refinement are proof obligations. They are properties
for which it is necessary to produce a formal proof, in order to claim that a particular
program refinement is correct. The more concrete program a refines a more abstract
program b if and only if all the specific proof obligations for that refinement relation
are satisfied. In other words, you can say that there is a program refinement relation
from a more concrete program a to a less concrete b if and only if all proof obligations
are satisfied.

All relations defined so far in this tutorial come with conditions that must be
satisfied by model elements, in order to have a relation instance between them.
These appear in the slots of the corresponding Language Modules. For example, the
“Reading” slot for r.ifm says that (x, y) ∈ r.ifm reads that x adds details to y , and thus,
that this relation instance should be in a model if the given informal condition is
satisfied, namely, that x does add details to y .

The issue is that these conditions are not equally precise and unambiguous for
all relations, and from there, not equally convincing to all those making and using
models. Proof obligations remove, or at least reduce the need to debate whether a
program a refines a program b: if proof obligations are satisfied, then it does, and
anyone using the model can check for themselves if they are satisfied.

However, if I write (x, y) ∈ r.ifm in a model, then my justification for the existence
of that relation instance is, just as the definition of r.ifm says, my own judgment that x
adds details to y . This might be fine if I am the only person using that model. But you
cannot know from that model and its language why I concluded that x adds details
to y . And this is a practical problem, because if you wanted to know, you would need
to ask me, and that would take time and other resources away from more relevant
uses.

As should be clear by now, problem-solving in RE involves working with partial in-

formation. So it is often simply not feasible to provide conditions as clearly verifiable
as proof obligations.6

5.4.1 Support and Defeat

Justification can perform a similar role to proof obligations when information is
partial or otherwise deficient. Justification consists of recording reasons for and
against the inclusion of Fragments and relations in a model, and checking which
of these are “accepted”. I will consider “accepted” and “justified” to be synonyms.
Reasons may come from model users, other stakeholders, or from anyone else
who gives them. Justification comes with rules which define when something is
“accepted”.

To do justification, I will use a pair of relations called r.Support and r.Defeat. With
them, I will be able to record arguments for and against parts of models. They will be
used to deliver the following Language Services.

Language Service

DoesSupport: Does accepting x support accepting y as well in M?

Language Service

DoesDefeat: Does accepting x support rejecting (not accepting) y in M?

r.Support and r.Defeat also make it possible to define languages that can deliver
such Language Services as, for example, “Why is it that x adds details to y?”, “Why

6There are at least two reasons for this. One is that I may not know a clear enough and complete set of
conditions to satisfy, for a relation instance to be present. This makes it less relevant to use a formal language,
such as a formal logic, to define proof obligations. The issue is not that I cannot formalise something because
the formalism is limited in some way, but that I do not know what exactly to formalise. So just as I have
partial information about the problem to solve, I also have partial information about the problem-solving
method that I am applying. Another reason is that partial information may change quickly. For example,
stakeholders may say something at a meeting one day, and change their mind at the next. In such cases,
formalisation may be left for later phases of problem-solving, and be restricted only to problem and solution
information which is considered as more stable. For example, it may involve formalising some aspects of a
system design which the stakeholders approved (more on this in Section 9).

26

is it that x influences y positively?”, “Do stakeholders agree that x influences y
positively?”, and similar. The relations are defined as follows.

Relation

Support (r.sup)

Domain & Dimension

r.sup⊆ X ×X , where X is either a set of Fragments or relation instances.

Properties

irreflexive, antisymmetric, and transitive.

Reading

(x, y) ∈ r.Support reads “if x is accepted, then y should be”.

Language Services

• s.DoesSupport: Yes, if there is (x, y) ∈ r.Support in M .

In contrast to r.sup, r.def is intransitive. This is an important property, and comes
from the idea that if x defeats y and y defeats z, then it cannot be that x defeats z.
By defeating y , x removes the argument against z, and thereby is not defeating z.

Relation

Defeat (r.def)

Domain & Dimension

r.def⊆ X ×X , where X is either a set of Fragments or relation instances.

Properties

irreflexive, antisymmetric, and intransitive.

Reading

(x, y) ∈ r.Defeat reads “if x is accepted, then y should not be”.

Language Services

• s.DoesDefeat: Yes, if there is (x, y) ∈ r.Defeat in M .

The following example illustrates how to use r.sup and r.def to give reasons for and
against instances of the r.ifm in a model.

Example 5.7. How would you define a language which should represent the incre-
mental adding of detail to models, and reasons for and against the additional details
that are added?

Let L.Diphda be a new language that can represent r.ifm instances, and Fragments
as reasons for and against these instances. Moreover, it can be used to say that one
Fragment is an argument for, or against another Fragment.

Language

Diphda

Language Modules

F, r.ifm, r.sup, r.def, f.map.abrel.g

Domain

F is a set of Fragments. r.ifm is over Fragments, so r.ifm⊆ F×F. A Fragment can
act as a reason, or argument in favour or against a r.ifm instance or another
Fragment, so that

r.sup ⊆ (F× r.ifm)∪ (F×F),

r.def ⊆ (F× r.ifm)∪ (F×F).

27

Syntax

A model M in the language is a set of symbols M = {φ1, . . . ,φn }, where every
φ is generated according to the following BNF rules:

α ::= x | y | z | . . .

β ::= (α,α)

γ ::= (α,β)

φ ::= α |β | γ

Mapping

α symbols denote Fragments, so D(α) ∈ F. β symbols denote r.ifm instances,
or instances of r.sup or r.def between Fragments, that is,

D(β) ∈ r.inf∪ r.sup∪ r.def.

γ symbols denote r.sup or r.def from a Fragment to a r.ifm instance,

D(γ) ∈ r.sup∪ r.def.

Language Services

s.DoesSupport, s.DoesDefeat.

A way to see L.Diphda, is that I take a model of L.Alpheratz as a basic model in
L.Diphda, and then add arguments in favour or against r.ifm relation instances in the
L.Alpheratz model.

In Example 5.1, Fragments RecEmCal, SwtchCal, NoDropCal, IdIncLoc, ChkD-
blLoc, and FillIncRep described parts of what needs to be done, in order to satisfy
AddRepEm. In Example 5.2, I added instances of r.ifm over these Fragments. A reason
why I added these relation instances is that each of RecEmCal, SwtchCal, NoDrop-
Cal, IdIncLoc, ChkDblLoc, and FillIncRep said how to satisfy AddRepEm. Moreover,
SwtchCal says that the telecom switches the call, so that it says who is involved in
satisfying AddRepEm. Similarly, RecEmCal and IdIncLoc also identified other posi-
tions, respectively, the dispatch centre and dispatcher, who have responsibilities in
satisfying AddRepEm.

This leads to the following new Fragments that justify the said r.ifm instances:
SwtchCal says (is part of the answer to) how to satisfy AddRepEm.

(HowSwtchCal)
SwtchCal says who is involved in satisfying AddRepEm. (WhoSwtchCal)
SwtchCal says when some events happen when satisfying AddRepEm.

(WhenSwtchCal)
NoDropCal says how to satisfy AddRepEm. (HowNoDropCal)
RecEmCal says how to satisfy AddRepEm. (HowRecEmCal)
RecEmCal says who is involved in satisfying AddRepEm. (WhoRecEmCal)
IdIncLoc says how to satisfy AddRepEm. (HowIdIncLoc)
IdIncLoc says who is involved in satisfying AddRepEm. (WhoIdIncLoc)
ChkDblLoc says how to satisfy AddRepEm. (HowChkDblLoc)
FillIncRep says how to satisfy AddRepEm. (HowFillIncRep)

All of the above give reasons in favour of the various r.ifm instances. The following
are these instances of r.sup:

(HowSwtchCal, (SwtchCal,AddRepEm)), (WhoSwtchCal, (SwtchCal,AddRepEm)),

(WhenSwtchCal, (SwtchCal,AddRepEm)), (HowNoDropCal, (NoDropCal,AddRepEm)),

(HowRecEmCal, (RecEmCal,AddRepEm)), (WhoRecEmCal, (RecEmCal,AddRepEm)),

(HowIdIncLoc, (IdIncLoc,AddRepEm)), (WhoIdIncLoc, (IdIncLoc,AddRepEm)),

(HowChkDblLoc, (ChkDblLoc,AddRepEm)), (HowFillIncRep, (FillIncRep,AddRepEm)).

Figure 5 shows a visualisation of the resulting L.Diphda model. r.sup relation
instances give arguments in favour or r.ifm relation instances. r.sup instances are
shown as white circles labeled “A+”, connected to the Fragment that is the argument,
and to the relation instance which the argument supports. •

Example 5.7 illustrated how to give one or more arguments in favour of individual
r.ifm instances. I did not, for example, give arguments for or against other arguments,
yet this can be done. It follows that I can represent that x is an argument in favour of
y , and that z is an argument in favour of x, and then, that w is reason against z. In
general terms, it allows me to represent the outcome of argumentation, the adding of
arguments, as chains of r.sup and r.def instances. The following example illustrates
this.

Example 5.8. James and Jill are modelling requirements for CADS. James made the
model discussed in Example 5.7, visualised in Figure 5. Jill disagrees that FillIncRep
adds details to AddRepEm by answering how AddRepEm should be satisfied. The
reason why Jill disagrees, is that FillIncRep is not in the scope of AddRepEm, and is
an administrative matter, to be discussed separately from how to satisfy AddRepEm,
that is, of how to respond to emergency calls. This can be recorded in the model by
adding the Fragment RepFillOutScp.

28

Figure 5: A visualisation of a model in L.Diphda.

29

To respond to an emergency call, it is not necessary to fill out an incident
report. (RepFillOutScp)

And then, by adding the r.def instance

(RepFillOutScp,HowFillIncRep) ∈ r.def

This would result in updating Figure 5 by adding a Fragment node for RepFillOutScp
and an r.def instance from it to HowFillIncRep. •

r.sup and r.def are similar in purpose to relations in existing languages in RE and
elsewhere, which are used to represent the design rationale [85, 29, 87, 88, 106, 115,
114, 93, 81, 78, 75], that is, reasons for and against the content of models, or if we look
at it from the perspective of the modelling process, then a record of why different
model elements were added or removed.

The idea of representing design rationale with arguments for and against model
elements is related to two important observations [110]. Firstly, many design and
engineering problems are ill-defined, so-called wicked problems, lacking a clear
scope and formulation, known optimal solutions, or known systematic processes
for producing solutions. Secondly, solving such problems, therefore, cannot involve
a known systematic process, but involves finding pieces of the problem and pieces
of potential solutions, and collaboratively debating their pros and cons by giving
arguments for and against these pieces, or their combinations. Such problem-solving
ends rarely because one finds the best solution, but because of practical time and
resource constraints. This makes it interesting to record the design rationale as argu-
ments that led to modelling decisions, whereby the resulting models represent the
problem and its solutions, together with explanations of why you were solving that
problem instance and not another, and why you produced that or those solutions,
and not others.

5.4.2 Accepted or Rejected

Having chains of r.Argue[p] instances raises the issue of acceptability. Acceptability is
interesting, because something being acceptable is synonymous to it being justified.
In Example 5.8, there was a chain made from (RepFillOutScp,HowFillIncRep) ∈ r.def
and

(HowFillIncRep, (FillIncRep,AddRepEm)) ∈ r.sup

that is, HowFillIncRep was in favour of saying that FillIncRep adds details to Ad-
dRepEm, and then an argument against HowFillIncRep. Asking about acceptability
in this case equates to asking this: Should (FillIncRep,AddRepEm) ∈ r.ifm be used in
problem-solving, given the said r.sup and r.def instances, or should it be ignored (do
as-if it were not in the model at all)? So we need rules to compute acceptability.

Exercise 10: Define a procedure which computes if a model part is acceptable

L.Diphda can represent arguments for and against in models. Given
a model which includes arguments, which arguments are acceptable
(justified), and which are not? How can you compute this? How can
the ability to compute this be built into a language?

I will see acceptability as a value assigned to relata of r.sup and r.def instances.
There is a nuance to how to use that value in problem-solving. Instead of saying

that acceptable elements should stay in a model, and unacceptable ones be removed,
I will remove nothing from a model. (You can have different visualisations of the same
model, some showing all, some only parts, so there really is no need to remove model
parts.) Instead I will say that only acceptable elements should be used in problem-
solving. The reason for this is that new elements and r.sup and r.def instances
may change the acceptability of existing elements. This is because argumentation,
in the form outlined above with a relation for supporting arguments and another
for counterarguments, is a form of non-monotonic reasoning, a point made in
philosophy, in relation to, for example, informal logic [134, 8, 67], and in artificial
intelligence, in relation to argumentation systems [43, 25, 7] and defeasible logics
[104, 117, 105].

While acceptability and satisfaction are values assigned to model elements, they
are different kinds of values, because they are used differently in problem-solving. I
said earlier that satisfying x amounted to doing successfully what x describes. If you
think in terms of satisfaction, then the acceptability value of x tells you if you should
worry about the satisfaction of x at all. If x is not acceptable, then it is irrelevant
to problem-solving, and it does not matter, for example, how it influences other
model elements. This makes it unnecessary to evaluate the satisfaction of x. If x is
acceptable, then it makes sense to evaluate the consequences of satisfying or not
satisfying it.

The following gives a rough idea about how to compute acceptability. Suppose
that y supports x, and z defeats y , and that nothing else relates via argues relations
to any of x, y , and z. What is the acceptability of x, y , and z? A common rule in
argumentation systems in artificial intelligence [25] is that z is acceptable, since
there is no argument against it. So because z is acceptable, and is an argument
against y , then y is not acceptable (rejected). Finally, as y was in favour of x, and
y is now not acceptable, then the convention is that x is rejected also, as the only
argument in its favour is rejected. This is usually a bit more complicated, as there
can be more than one arguments in favour and against any one element.

Example 5.9. To illustrate the computation of acceptability, I start with the simpler
case, when a model has only one so-called “extension”. An extension includes all

30

acceptable model parts. Depending on the language in which the model is made,
and on the content of the model, it is possible to have models with more than one
extension.

Figure 6(a) shows a visualisation of a L.Diphda model which takes the Fragments
AddRepEm, FillIncRep, HowFillIncRep, and RepFillOutScp from earlier examples, and
adds six new Fragments x1 to x6. The rationale relations matter for this example, not
the specifics of actions or conditions these new Fragments describe.

Which Fragments in Figure 6(a) are acceptable? Consider first the leaves, and
observe that there are no arguments against AddRepEm, FillIncRep, x2, x3, x5 and x6,
so that they are acceptable. x6 supports x5. Since x5 is acceptable and is against x4,
x4 is not acceptable. Consequently, it does not matter for the acceptability of x1 that
x4 is against x1.

However, x3 is acceptable and attacks x1. I therefore need to choose if arguments
against or arguments for are stronger, since this determines whether x1 is accept-
able (as x5 is an acceptable argument in its favour). I take the cautious approach,
and decide that negative arguments cancel positive ones, and therefore, x1 is not
acceptable. It follows that RepFillOutScp is acceptable, and HowFillIncRep is not. So
HowFillIncRep is no longer an acceptable argument in favour of the r.ifm relation
from FillIncRep to AddRepEm. This leads me to a second decision, which is whether
the absence of a positive argument in favour of a model part, also means that that
model part is not acceptable. I will assume that it is acceptable, as I did the same for,
for example, x6 which also lacks positive arguments in its favour.

The resulting acceptability values are shown as additional markers on model
elements in Figure 6(b). The model there has exactly one extension, and it includes
all model parts which are marked with the acceptability value 1.

Figure 6(c) shows what happens when there is an additional r.def instance, which
leads to two extensions. For a designer of the language, the possibility for alternative
extensions means that the language could suggest which of the extensions to choose.
•

I use Dung’s definition of acceptability [43]. This is convenient because it is simple
and generalises many others in artificial intelligence. The rough idea is similar (but
not the same, as explained in Example 5.10) to that explained above with x, y , and z
and in Example 5.9. The main difference is that in his graphs, all edges are instances
of the so-called “attack” relation. Attack corresponds to my r.def, but there are no
relations in to capture supporting arguments. This is not a major issue, but will
influence how I convert my models into his. I will call his models “argumentation
frameworks”.

I need a function that delivers the following Language Service.

Language Service

IsAcceptable: Is w acceptable in W , given relations r.sup and r.def over W ?

The function f.acc below takes instances of r.sup and r.def over some set W , and
determines if some w ∈W is acceptable or not.

Function

Accepted
(f.acc)

Input

A Fragment or relation instance w , a set W such that w ∈W , A+ ⊆ r.sup, and
A− ⊆ r.def, where r.sup⊆W ×W and r.def⊆W ×W .

Do

1. Let G(W, r.sup) and G(W, r.neg) be graphs made with f.map.abrel.g.

2. Let G(w, W, r.sup) be the subgraph of G(W, r.sup), which includes only
the paths of G(W, r.sup) which end in w .

3. Let G(w, W, r.neg) be the subgraph of G(W, r.neg), which includes only
the paths of G(W, r.neg) which end in w .

4. Let C include all connected components of G(w, W, r.sup).

5. Let K include every node from G(w, W, r.sup), which is not in a con-
nected component in C .

6. Make an empty set, call it Arg, and let lArg be a function which will return
the label of each element in Arg.

7. For each c ∈C , add a to Arg and let lArg(a) = c.

31

(a) A visualisation of a model discussed in Example 5.9. (b) Acceptability values for the model in Figure 6(a).

(c) There are now two extensions. (d) Dung argumentation framework made by applying f.acc to the model in Figure 6(c).

Figure 6: Illustration of how to compute acceptability values.

32

8. For each element k ∈ K , add a to Arg and let lArg(a) = k.

9. Make the graph AF = (Arg,Att), with Att ⊆ Arg×Arg and let Att be empty.

10. For each (wi , w j) ∈ r.def in G(w, W, r.def), add an edge (ai , a j) ∈ Att to
AF, so that ai is such that, either

• lArg(ai) = wi , if wi ∈ K , or

• lArg(ai) = ci , if ci ∈C if wi is a node in the connected component
ci ,

and a j is such that, either

• lArg(a j) = w j , if w j ∈ K , or

• lArg(a j) = c j , if c j ∈C if w j is a node in the connected component
c j .

11. The graph AF = (Arg,Att) is a Dung argumentation framework.

12. Use an existing algorithm [96] to compute the acceptability of arguments
in AF.

13. If an argument a in AF is acceptable, lArg(a) = k and k ∈ K , then that
element in W is acceptable.

14. If an argument a in AF is acceptable, lArg(a) = c and c ∈ C , then all
elements of W which are in c are acceptable.

15. Let Acc(W) include all acceptable elements of W .

Output

The set Acc(W).

Language Services

• s.IsAcceptable: Yes, if w is in the set Acc(W).

Example 5.10. To clarify how f.acc works, recall that a Dung argumentation frame-
work AF = (Arg,Att) is a graph where nodes represent arguments and edges the attack

relations. If an argument attacks another, then believing in the former tells us that we
should not believe in the latter, or that the former is evidence against the latter. So the
attack relation equates in use to r.def. But there is no relation in an argumentation
framework which corresponds to r.sup. I therefore have to decide what we do with
r.sup when making a Dung argumentation framework. f.acc shows one way to do
this.

Applying f.acc to the model in Figure 6(c) gives the argumentation framework
visualised in Figure 6(d). Tha figure also shows the acceptability values in two
extensions of the framework. Note the differences between the extensions in the
Dung argumentation framework and the extensions in Figure 6(c). They are due to
the choice, in f.acc, to equate a Dung argument to a connected component over r.sup
instances. •

There are algorithms to find connected components of a graph [69] and to com-
pute extensions of Dung argumentation frameworks [96]. All nodes in a Dung argu-
mentation framework (called arguments there) are considered as acceptable if they
are in an extension of the given argumentation framework.7

Asking that a relation instance x in a model is acceptable according to f.acc can
be seen as an analogue to a single proof obligation, in the sense that it is a sin-
gle condition that the relation instance needs to satisfy in order to be relevant for
problem-solving.8 In contrast to proof obligations, which can depend on the prop-
erties of x and so be specific to the type of x, acceptability is independent from the
properties of x and therefore, it can apply to any x, in any model, in any modelling
language. For example, if x is a relation instance, proof obligations may be sensitive
to x being reflexive or not, symmetric or not, and so on, while acceptability of x de-
pends solely on those concrete reasons for and against x that we have in a particular
model (not a modelling language, and so not any model, but exactly that model).
The benefit is that we can build acceptability into a language when we lack a clear
idea for proof obligations. The limitation is precisely that it is independent from
the properties of x and so involves collecting and confronting anew reasons for and
against.

7I leave it to the reader to look up the types of extensions, how they differ, and what consequences using
one or another type of extension in f.acc would have [43, 116].

8It is an analogue, because it is a justification and not a deductive proof, as in a formal logic with a
monotonic syntactic consequence relation. Namely, if you have a deductive proof of some x in a monotonic
logic, then you can still prove x regardless of any new formulas that you are adding, while having a justification
for x is sensitive to new formulas, in that new formulas can block proofs which we previously had. As Pollock
observes, justification is defeasible reasoning [104]: “[...] inductive reasoning is not deductive, and in
perception, when one judges the colour of something on the basis of how it looks to him, he is not reasoning
deductively. Such reasoning is defeasible, in the sense that the premises taken by themselves may justify
us in accepting the conclusion, but when additional information is added, that conclusion may no longer
be justified. For example, something’s looking red to me may justify me in believing that it is red, but if I
subsequently learn that the object is illuminated by red lights and I know that that can make things look red
when they are not, then I cease to be justified in believing that the object is red.”

33

5.5 How to Combine Relations?

Suppose you have a language that can represent r.ifm and r.inf instances over Frag-
ments, and that it lets you have two relation instances between same Fragments. For
example, you could have a model with (x, y) ∈ r.ifm and (x, y) ∈ r.inf. First of all, would
you want the language to allow this in models? And if you do, then, does knowing
that x both influences and informs y tell you something more than what these two
relation instances tell you each on its own? When it does tell you more, then I will
say that the relations interact.

When a language has more than a single relation, the challenge is to decide if these
relations interact or not, and if the they do, then how to use their interactions.

If relations interact, then it matters for instances of a relation r.A that there exist
instances in the model of another relation r.B. Section 5.5.1 focuses on the simpler
case of independence, and Section 5.5.2 on interaction.

5.5.1 Independent Relations

L.Diphda included three relations and they were not interacting. It is a permissive
language, as it imposes no constraints at all on how the presence of some relation
between two Fragments x and y influences the presence or direction of other relation
instances between the same pair of nodes. In other words, the definition of the
language is silent on how, if in any way, the relations in it are interacting.

This is unlikely to cause problems if its models are such that there is only one
relation instance over any two Fragments. When there are two or more edges between
two nodes, then it may be unclear how to read this combination of relation instances.
If there are two nodes, x and y , such that (x, y) ∈ r.ifm and (x, y) ∈ r.def, then what
can you conclude about these two nodes? The language itself does not say if this is a
modelling error, or is somehow useful in a model.

5.5.2 Interacting Relations

The problem with fitting different relations together in a language, and especially
if the relations are only informally defined, is that it may allow models that convey
unintended information to their users. There is no guarantee that all unintended
information will be benign in problem-solving, so we are obliged to worry about how
relations interact and to sanction problematic interactions.

I will use L.Achernar below to illustrate this discussion. It has the inform relation
and the positive and negative influence relations.

Language

Achernar

Language Modules

F, r.ifm, r.inf.pos, r.inf.neg, f.map.abrel.g

Domain

Set F of Fragments, r.ifm⊆ F ×F , r.inf.pos⊆ F ×F , and r.inf.neg⊆ F ×F .

Syntax

Same as L.Alpheratz.

Mapping

D(α) ∈ F and D(β) ∈ r.ifm∪ r.inf.pos∪ r.inf.neg.

Language Services

Same as r.ifm, r.inf.pos, and r.inf.neg.

L.Achernar simply puts together several relations, while still making sure that the
language deliver all the Language Services that the relations separately could. But, it
will be clear below that the modeller has to invest significant effort with this language
in order to make unambiguous models. One reason for this is that the language
definition does not say how relations interact.

For example, suppose that a L.Achernar model includes, among others, the Frag-
ments x and y and the following two relation instances.

(x, y) ∈ r.inf.pos

(x, y) ∈ r.inf.neg

Does, then, x influence positively or negatively y? The answer is not in the defini-
tions of L.Achernar and of the influence relations, as they say nothing about such
cases. It is also irrelevant to look outside these definitions, since I they are neither
equivalent, nor subtypes of others that are defined outside this tutorial. The only
remaining option is that the influence relations, and therefore the L.Achernar lan-
guage, leave it up to the model user to decide for herself if x positively or negatively
influences y .

34

Exercise 11: Define rules for how r.inf.pos, r.inf.neg, and r.ifm interact

Suppose a model can represent positive and negative influence, and in-
form relations between Fragments. Consider all possible combinations
of relation instances between two Fragments, and define rules for what
to do in each case. How would you define these rules in a language?
How would you define a new language from L.Achernar which includes
these rules?

If the language definition does not explain what to do with relation interactions,
then the language does not provide support to its users, on how to deal with these
combinations. The language can include Language Services focused on interactions,
such as the following.

Language Service

NegWins: If (x, y) ∈ r.inf.pos and (x, y) ∈ r.inf.neg, then does x influence posi-
tively or negatively y?

Suppose that the answer is: x influences y negatively, and remove (x, y) ∈ r.inf.pos.
This answer can be added to a language as a function, for example, to L.Achernar.
The new language would deliver s.NegWins.

The more general point is that once there is more than one relation in a language,
it is useful to explain how to use each possible interaction between these relations.
This may simply result in explicitly stating in the language definition that it is up to
the modellers to decide what to do with interactions.

Consider now all possible interactions of relations in L.Achernar. For each interac-
tion, I give a rule which could be applied.

1. (x, y) ∈ r.ifm and (x, y) ∈ r.inf.pos is allowed, and indicates that x informs y , and
in such a way that satisfying it positively influences the satisfaction of y .

2. (y, x) ∈ r.ifm and (x, y) ∈ r.inf.pos can be handled in different ways, of which two
are below:

• One option is to decide that is not allowed, and one of the two should be
removed from the model. This can be motivated as follows: if y is adding
details to x, this is because it is clearer how to satisfy y and less clear how

to satisfy x, so that I will not be looking to satisfy y by satisfying x. (If the
language had the relations for justification, then it would not be necessary
to remove one of the two relation instances from the model. It would be
enough to make one of the two unacceptable.)

• Another option is to allow this if y adds such details to x by explaining the
consequences which will occur if x is not satisfied, so that if x is satisfied,
these consequences will occur, which is captured by the positive influence
relation.

3. (x, y) ∈ r.ifm and (y, x) ∈ r.inf.pos should be handled in the same way as the case
(y, x) ∈ r.ifm and (x, y) ∈ r.inf.pos.

4. (x, y) ∈ r.ifm and (x, y) ∈ r.inf.neg can be handled via analogous options to those
for (y, x) ∈ r.ifm and (x, y) ∈ r.inf.pos, except that there is negative influence.

5. (y, x) ∈ r.ifm and (x, y) ∈ r.inf.neg should be handled in the same way as the case
(x, y) ∈ r.ifm and (x, y) ∈ r.inf.neg.

6. (x, y) ∈ r.inf.pos and (x, y) ∈ r.inf.neg is not allowed, and one of the two should
be removed.

7. (y, x) ∈ r.inf.pos] and (x, y) ∈ r.inf.neg can be handled in different ways, and two
are below for illustration:

• Remove one of the two influence relations.

• Consider that these two influence relations represent a feedback mecha-
nism, and leave them in the model.

The discussion above leads to three important remarks. The first is about in-
completeness in language definition, the second on how completing a language
definition suggests new Language Services, and the third on how to define new
relations from combinations of existing ones.

• The discussion of relation interactions shows that the definition of L.Achernar
was incomplete. It is necessary to consider each of the possible interactions,
check if the language definition says something about them, and if not, then
decide what to do with the interaction, that is, make new language design deci-
sions. So I decided that when x both positively and negatively influences y , one
of these two influence relations should be removed.

• The second important remark is that looking at all possible interactions suggests
new Language Services. For example, adding these new rules for interactions to
the language can answer, for example, “Is a model M in L.Achernar correct?”. A
model in L.Achernar was correct as long as the model did not violate the actual

35

definitions of the individual relations (for example, it could violate them if it
had two positive influence relations between same two nodes). If the rules
on interactions are added to the language, then model correctness gets a new
definition in it.

• A particular case of interaction, or more of them, can be used to define new
relations in a language. For example, I can define a new relation called
r.Feedback[mixed] as a binary relation that exists between Fragments x and y if
and only if there are (x, y) ∈ r.Influence[positive] and (y, x) ∈ r.Influence[negative].
This new relation is not a primitive of the language, as it is equivalent to a
particular pattern of instances of other relations in the language.

5.6 Summary on Relations

The following are the main ideas from the preceding sections on relations:

• When defining a relation, it is useful to say, at least, what it relates, what to do
to add its instances to models, and its formal properties (which are necessary if
you want to do computations over graphs induced by the relation instances.

• The influence relations illustrated how you can have relations that reflect differ-
ences in how much you know when making a model. For example, if you think
there is influence of satisfying x on satisfying y , and you do not if that influence
is positive or negative, or how strong it may be relative to others that influence
the satisfaction of y , then you can use r.inf. If you then decide or discover that
the influence is positive, then you can represent this with an instance of r.inf.pos.

• Rules for the use of a relation are central to its definition, as they give the
conditions to satisfy, in order to add a relation instance to a model. Ideally, use
rules should be such that any model user can check if a relation instance is
correct with regards to its use rules, that is, if it satisfies the required conditions.
When you have use rules that are difficult to verify, you can augment them with
a justification process, which was illustrated with f.Accepted.

• When a language has two or more relations, and when instances of different
relations can be between the same model elements, then it is necessary to
consider all possible relation interactions, decide how to read and use them,
and how to capture these instructions in the language definition.

There are many other topics on defining relations in RMLs, and some of them
will be discussed in the next sections. Section 6 focuses on how guidelines for
modelling can be added to language definitions, but shows also how guidelines
can suggest new relations and appear in the definitions of these relations. Section
7 introduces categories, and illustrates how relations can be restricted to specific

Fragment categories, which can reduce the number of relation interactions. Section
?? looks at how to produce proofs of satisfaction from models, which is required to
solve DRP instances, and shows one way of mapping relation instances to formulae
in a formal logic. Section 8 uses n-ary relations in order to represent alternatives in
models.

36

6 Guidelines

Overview and Motivation

This section is on how to define guidelines for problem-solving in RMLs. Guidelines
recommend how to do something in problem-solving, so as to move closer to a
solution. The section looks at the following questions.

1. How to find guidelines for problem-solving, and embed them in RMLs? (Section
6.1)

2. How to combine guidelines into new, more complicated ones? (Section 6.2)

3. How to strengthen or weaken guidelines, and why? (Section 6.3)

Guidelines suggest how to do problem-solving in RE. They may recommend how
to elicit requirements, how to make them more precise, how to prioritise them, how
to validate them with stakeholders, and so on.

Guidelines have a narrow scope when they focus on a specific task in problem-
solving. An example is f.Accepted. Guidelines that have broader scope address
complicated problem-solving tasks. Suppose, for example, that you know the follow-
ing rough recommendation:

Add details to the model until all stakeholders have agreed that the most
detailed elements are detailed enough.

To help you apply this recommendation, a language clearly needs r.ifm, so that you
can represent the adding of detail and identify the most detailed model elements. The
language also needs to enable stakeholders to express agreement and disagreement,
to represent reasons for agreeing or disagreeing, and to help you identify what the
stakeholders agree and disagree on. You can do the first two with r.sup and r.def, and
if you say that any acceptable model element is also agreed upon, then the language
can use f.acc to find what is agreed and disagreed on.

RMLs and guidelines are intertwined, in that it is difficult to design one while
ignoring the other. If a language should help us address an issue during problem-
solving, then it will be designed to fit ideas and experience of how such issues should
be addressed. An Language Service summarises the issue to address, guidelines tell

you what to do to address the issue, and the language should deliver the Language
Service.

For example, the inclusion of a relation in a language reflects decisions about what
the language should help its users with, that is, which Language Services it should
deliver. A guideline may suggest that you should first add details to model elements,
and then look for, for example, how the satisfaction of some influences that of others.
To apply the guideline, you need a language that can represent the increase in details
in model elements, and how the satisfaction of some influences that of others.

Sections 6.1 and 6.2 illustrate how to go from identifying an issue, to guidelines for
addressing it, and to new Language Services and Language Modules which help apply
these guidelines and embed them in language definitions. Section 6.3 illustrates the
ideas of strengthening and weakening guidelines and why that may be relevant.

6.1 How to Find Guidelines in Recurring Arguments?

L.Alpheratz can be used to represent that some Fragments add details to others. But
it did not suggest how to find new Fragments which inform existing ones. It could
not deliver the following Language Services:

• s.HowToAddDetails: Given a Fragment x, how to find a new Fragment y which
adds details to x, that is, such that (y, x) ∈ r.ifm?

• s.WhyAddsDetails: Given two Fragments x and y such that (y, x) ∈ r.ifm, why
does y add details to x?

More detailed Fragments can be found, for example, through further elicitation,
analysis of comparable RP instances, by drawing on experience with comparable
systems and in related domains, and so on.

Exercise 12: Define a language which delivers s.HowToAddDetails and
s.WhyAddsDetails

What does a language need to deliver s.HowToAddDetails and
s.WhyAddsDetails? Does it need new relations, new functions, or oth-
erwise? How are these new relations or functions related to r.ifm?

If I want guidelines that are independent from the specific domain or RP class, I
can look at various existing models that represent the increase in details of Fragments.
The aim is to find regularities in the differences between Fragments that are related
by r.ifm instances.

37

Take Example 5.7. There are patterns in the arguments given for r.ifm instances.
The arguments are similar in HowSwtchCal, HowNoDropCal, HowRecEmCal, HowId-
IncLoc, HowChkDblLoc, and HowFillIncRep, in that they argue for the presence of
r.ifm instances by saying each time, that a Fragment x adds details to Fragment y by
indicating how actions or conditions that y describes are, respectively, executed and
satisfied. There are also similarities in the rationale WhoSwtchCal, WhoRecEmCal,
and WhoIdIncLoc, where the additional details always say something about who is
involved in satisfying the conditions that the informing Fragment describes.

While looking for rationale patterns may not lead to universally applicable guide-
lines that are good for all languages, it can still help deliver additional Language
Services relative to L.Alpheratz.

If I find recurring reasons for adding new Fragments, and you and I agree that
they are sufficiently relevant and generic to build them into a language, then I can
document parts of how you and I use the language into that language. The language
embeds more of our conventions on its use. While this may result from our joint
work on models, it also means that we will be recommending those ways for use
to anyone interested in making models with that language. For example, if you use
L.Alpheratz, then you also accept that the inform relation is irreflexive, antisymmetric,
and transitive; otherwise, you are using another language, not L.Alpheratz.

Given some Fragments about the CADS in Example 5.7, I can ask several questions
for any given Fragment x, including who does the action or satisfies the condition
that x describes, how, when, where, and for whose benefit. If another fragment y
answers at least one of these questions for the action or condition in x, then y is
adding details to x. If you and I agree that asking such questions is relevant, we can
define the following Language Module.

Function

Add details
(f.add.ifm)

Input

Fragment x.

Do

1. Ask the following questions about x:

• Who: Who does (satisfies) x?

• How: How is x done (satisfied)?

• When: When is x done (satisfied)?

• Where: Where is x done (satisfied)?

• WhoFor: Who needs x to be done (satisfied)?

Above, “does” is used if x describes actions; “satisfies” if it describes
conditions.

2. Define sets Fq and Rq , for q ∈ {Who,How,When,Where,WhoFor}, such
that:

(a) each y ∈ Fq answers the question q for x,

(b) if y answers the question q for x, then there is (y, x) ∈ r.ifm in Rq .

Output

Sets Fq and Rq , for q ∈ {Who,How,When,Where,WhoFor}.

Language Services

• s.HowToAddDetails: Apply f.add.ifm to Fragments in a given model M ,
and add the resulting sets back to M .

• s.WhyAddsDetails: If Rq is output by applying f.AddsDetails, and (y, x) ∈
Rq , then y adds details to x because it answers the question q for x.

The function f.add.ifm suggest finding more detailed Fragments via five questions.
All new Fragments go in the sets Fq . When a Fragment y ∈ Fq answers a question q
for x, then I also add a relation instance (y, x) ∈ r.ifm and it goes in Rq .

In order to keep the information in models, about which Fragment answers which
questions, I define five new unary relations on instances of r.ifm. The idea is that,
if (y, x) ∈ r.ifm and y answers the question q for x, then there will be an instance
of a unary relation r.q on (y, x) ∈ r.ifm. The relations are defined with the following
template, where q ∈ {Who,How,When,Where,WhoFor}.

38

Relation

Answers question q (r.q)

Domain & Dimension

r.q⊆ R, where R is a set of r.ifm instances.

Properties

None.

Reading

r ∈ r.q, where r = (y, x), reads “y adds details to x by answering question q for
x”.

Language Services

• s.WhyAddsDetails: If (y, x) ∈ r.q, then y adds details to x because it an-
swers the question q for x.

Example 6.1. How would you define a language that has r.ifm and all five r.q relations?
The language L.Hamal below has these relations.

Language

Hamal

Language Modules

F, r.ifm, r.Who, r.How, r.When, r.Where, r.WhoFor, f.add.ifm

Domain

F is a set of Fragments. r.ifm⊆ F ×F , r.q ∈ r.ifm, for every

q ∈ {Who,How,When,Where,WhoFor}

Syntax

A model M in the language is a set of symbols M = {φ1, . . . ,φn }, where every
φ is generated according to the following BNF rules:

α ::= x | y | z | . . .

β ::= (α,α)

γ ::= Who | How | When | Where | WhoFor

δ ::= γ.β

φ ::= α |β | δ

Mapping

α symbols denote Fragments, D(α) ∈ F . β are for r.ifm instances,
that is, D(β) ∈ r.ifm. δ symbols denote r.q instances, D((Who.β)) ∈
r.Who, . . . ,D((WhoFor.β)) ∈ r.WhoFor.

Language Services

• s.WhyAddsDetails: If q.(y, x) ∈ r.q, then y adds details to x because it
answers the question q for x.

Figure 7 is a visualisation of a model in L.Hamal. It shows r.ifm instances and
questions associated to each of these instances. The model was made by applying
f.add.ifm to the Fragments in Example 5.1. •

6.2 How to Make Composite Guidelines?

The function f.add.ifm gave guidelines on how to add instances of one relation, r.ifm,
with the side-effect that you added new relations, r.q over instances of r.ifm. The aim
now is to define guidelines which rely on several relations and functions. As with
f.add.ifm, the result will be a function.

Adding details to model elements, and then evaluating how the satisfaction of

39

[t]

Figure 7: A visualisation of a model in L.Hamal.

some influences that of others, are closely related to the issue of operationalisation
in RE. The basic guideline in operationalisation can be stated as the rule Op below,
and is inspired by analogous notions in KAOS, Tropos, and Techne.

Op: Add details to model elements until the most detailed ones are judged
as detailed enough that it is known how to satisfy them, and satisfying
them results in satisfying all the least detailed model elements.

The guideline assumes that I start with Fragments that say what needs to be satisfied
and, or executed, but that it is not clear how or who will do it. Operationalisation is
the process by which I need to find and decide who and how make sure that these
initial Fragments are satisfied.

Exercise 13: Define a function for operationalisation

Define a function which checks if a Fragment in a model is opera-
tionalised, according to the rule Op in the text. Which relations do
you need to have over Fragments in a model, in order to check if a
Fragment is operationalised? Are there other guidelines which this
operationalisation function uses?

To make a function inspired by the operationalisation guideline, you need r.ifm
and r.inf.pos to represent, respectively, the increase in detail and the influence on
satisfaction. You also need f.add.ifm to find new more detailed Fragments. Finally,
you want this function to deliver the following Language Service.

Language Service

AreOpr: Are all Fragments in W operationalised?

The function is f.opr.all and is defined as follows.

Function

Operationalise all Fragments in a set
(f.opr.all)

40

Input

Set W of Fragments.

Do

1. Let X be an empty set, add all members of W to X .

2. Apply f.add.ifm to every Fragment w ∈ X , and add to X all new Fragments
which you thereby find. If a Fragment y ∈ X is detailed enough that it is
known how to satisfy and, or execute what it describes, and it is known
who takes the responsibility to do so, then do not apply f.add.ifm to y .

3. For every (a,b) ∈ r.ifm, where a,b ∈ X , check if there should be (a,b) ∈
r.inf.pos or (a,b) ∈ r.inf.neg and if yes, then add it. Stop when it is known
how the satisfaction of each more detailed Fragment influences the
satisfaction of the Fragment to which adds details.

4. If there is a set Z ⊆ X such that satisfying all Fragments in Z positively
influences the satisfaction of all Fragments in W , and there are no Frag-
ments in W \ Z which inform those in Z , then stop. Otherwise, go back
to step 1 above.

Output

Set Z of Fragments which are said to operationalise all Fragments in W .

Language Services

• s.AreOpr: Yes, if there is a set Z made by applying f.opr.all to W .

Example 6.2. f.opr.all can work with models of languages which have r.ifm, r.inf.pos,
and r.inf.neg. L.Acamar below has these relations, and so can include f.opr.all.

Language

Acamar

Language Modules

F, r.ifm, r.inf.pos, r.inf.neg, f.add.ifm, f.opr.all

Domain

F is a set of Fragments, r.ifm⊆ F×F, r.inf.pos⊆ F×F, and r.inf.neg⊆ F×F.

Syntax

Same as L.Alpheratz.

Mapping

D(α) ∈ F and D(β) ∈ r.ifm∪ r.inf.pos∪ r.inf.neg.

Language Services

Those of r.ifm, r.inf.pos, and r.inf.neg.

Figure 8 is a visualisation of a model in L.Acamar, made by applying f.opr.all to the
Fragment AddRepEm. •

6.3 How to Strengthen or Weaken Guidelines?

f.opr.all uses f.add.ifm, and therefore, produces also graphs GI [q] for various questions
q . f.opr.all also says that we should not apply f.add.ifm to those Fragments that
are detailed enough, and a Fragment is, if it is known how to satisfy it and who is
responsible for doing so. Notice, then, that f.opr.all did not define “being detailed
enough” by the presence or absence of r.q relations, for, for example, How and Who
questions. Instead, f.opr.all made no commitment about what exactly needs to be
satisfied, in order for a Fragment to be “detailed enough”.

If you want to define more precisely the conditions that a Fragment should satisfy,
to be detailed enough, this can be done with another function. In that function, call
it f.opr.all.b, all is identical to f.opr.all, except that the second step is replaced by the
following:

Apply f.add.ifm to every Fragment w ∈ X , and add to X all new Fragments
which you thereby find. A Fragment a is detailed enough if both Who and

41

[t]

Figure 8: A visualisation of a model in L.Acamar.

How questions are answered for that Fragment, and do not apply f.add.ifm
to that Fragment.

Above, the italics mark the part which differs relative to f.opr.all. The difference is
that now use r.q in judging if a Fragment is detailed enough.

Verifying if a Fragment is detailed enough is simpler in f.opr.all.b than in f.opr.all, as
it involves checking for the presence of r.Who and r.How instances, while in f.opr.all,
you would have had to read the individual Fragments, to say if they are detailed
enough.

While f.opr.all.b did make it easier to check if a Fragment is detailed enough, it
did not necessarily result in a better guideline, since it is easy to find examples of
Fragments which would be detailed enough for f.opr.all.b and not for f.opr.all. For
example, answering a Who question does not necessarily identify who is responsible,
only who is involved in satisfying what the Fragment describes. In short, the guideline
documented in f.opr.all.b gives more precise and clearer instructions on what to do
than f.opr.all, but neither function gives precise and clear sufficient conditions for a
Fragment to be detailed enough.

Suppose that there are new conditions (which are neither in f.opr.all, nor f.opr.all.b)
that a Fragment has to satisfy, in order to be considered detailed enough. Let f.opr.all.c
be the function made by adding these new conditions to f.opr.all.b. For example, the
new conditions are that a Fragment is detailed enough if and only if all q questions
are answered for it. I will say that f.opr.all.c is stronger than f.opr.all.b, and that the
former was made by strengthening the latter.

Strengthening a guideline involves adding conditions to check when applying

the guideline, or to check in order to establish if the guideline is correctly applied.
Weakening is the opposite, and consists of removing conditions that need to be
checked.

As an additional illustration, remark that I said nothing about negative influences
among Fragments. It follows that any of the three operationalisation functions can
produce a set Z that operationalises its input set X , and we could have had negative
influence relations between members of Z . One way to strengthen each of these
functions is to add to each of them the condition that there can be no negative
influences between members of Z .

6.4 Summary on Guidelines

The following are the main ideas discussed for guidelines:

• Guidelines recommend how to put the language to work when doing problem-
solving. I can embed guidelines into the definition of the language, and in that
way force specific ways of using it.

• You can define narrow guidelines on, for example, how to add a new relation
instance to a model. In this tutorial, such guidelines appeared in use rules for
relations. You can also combine narrow guidelines into broader ones, which
use several relations, functions, or otherwise (other kinds of Language Modules
introduced later in this tutorial), to deliver more complicated Language Services.

42

• Guidelines can be strengthened or weakened. I made no suggestions about
universal rules on whether to strengthen or weaken a guideline. The stronger
a guideline is, the more demanding it is on those involved in modelling, as
there are more conditions to satisfy to use the language correctly. There may be
situations in which this is not realistic, and consequently makes the language
difficult to apply correctly, or makes it inapplicable.

• While experienced users of a language can suggest guidelines, it is also possible
to identify guidelines by looking at recurring arguments for modelling decisions.

43

7 Categories

Overview and Motivation

This section looks at why and how to organise Fragments into categories. “Require-
ment”, “domain knowledge”, “specification”, “goal”, and so on, are examples of recur-
rent categories in RE. I focus on the following issues, moving from simpler to more
complicated topics on categories.

1. Why and how to use independent categories? (Section 7.1)

2. What to do when there is a taxonomy of categories? (Section 7.2)

3. What is the meta-model, and what the ontology of a language? (Section 7.3)

4. Why and how to define derived categories and relations in a language? (Section
7.4)

5. How to enforce the intended use of categories in a language? (Section 7.5)

A category groups Fragments which share the same properties, and thus distin-
guishes these same Fragments from others which do not.

In absence of categories, it is not possible, for example, to make a language which
represents instances of the Default RP. This is because the Default RP distinguishes
three categories, namely, “requirement”, ”domain knowledge”, and “specification”.
As I will argue below, categories cut up the information used in problem-solving, and
thereby reflect the language designer’s understanding of which way to cut up the
information is useful to identify and solve RP instances. I will continue this argument
much later, in Section 13, where I will discuss how the choice of categories enables a
language to represent and solve some RP classes, and not others.

7.1 How to Have Independent Categories?

Categories are independent if, when adding them to a language, you do not also
need to add new relations. This also means that, when there is a set of independent
categories, you can choose any of its subsets to add to a language.

Categories in the Default RP are independent, even though they are used together
in that problem, and even though that problem would not be the same if we removed
any of these categories from it. They are independent, because whether a Fragment
belongs to the “requirement” category is independent from there being the categories
“domain knowledge” and “specification”. This, in turn, is determined by how each of
these categories is defined [140]:

“The primary distinction necessary for requirements engineering is captured
by two grammatical moods. Statements in the ‘indicative’ mood describe the
environment as it is in the absence of the machine or regardless of the actions
of the machine; these statements are often called ‘assumptions’ or ‘domain
knowledge.’ Statements in the ‘optative’ mood describe the environment
as we would like it to be and as we hope it will be when the machine is
connected to the environment. Optative statements are commonly called
‘requirements.’ [...] A specification is also an optative property, but one that
must be implementable.”

Exercise 14: Define the minimal set of categories needed to represent those of
the Default RP

Define the minimal set of categories which a language would need, to
make the distinctions suggested in the quote from Zave & Jackson. How
many categories are needed? What are the properties which decide if
a Fragment is in one of these categories? Can a Fragment be in two
or more of these categories? If yes, which conditions does it have to
satisfy? If not, then why not?

Below, I define each of the three categories as a Language Module. The Language
Module has the same slots as for relations. This is because I see categories as being
unary relations over the things that they categorise. However, because it should
be clear when I am talking about relations, and when about categories, I call the
modules “categories”. Here is a definition of the requirement category, inspired by
the definition of requirement in Default RP.

Category

Requirement (c.r)

44

Domain

c.Requirement⊆ F, where F is a set of Fragments.

Membership conditions

x is in the optative mood, and describes “the environment as we would like
it to be and as we hope it will be when the machine is connected to the
environment” [140].

Reading

x ∈ c.r reads “x is a requirement”.

Language Services

• s.IsReq: Is x a requirement? Yes, if x ∈ c.r.

The rules slot above carries over the informal definition from Zave & Jackson, that
the requirement must be an optative statement. Following this same approach, there
is a category for domain knowledge.

Category

Domain knowledge (c.k)

Domain

c.Domain knowledge⊆ F, where F is a set of Fragments.

Membership conditions

x is in indicative mood and describes “the environment as it is in the absence
of the machine or regardless of the actions of the machine” [140].

Reading

x ∈ c.k reads “x is domain knowledge”.

Language Services

• s.IsDomK: Is x domain knowledge? Yes, if x ∈ c.k.

And finally, there is a category for specifications.

Category

Specification (c.s)

Domain

c.Specification⊆ F, where F is a set of Fragments.

Membership conditions

x is a statement in optative, which is implementable, that is, it is known who
and how will do what the statement says.

Reading

x ∈ c.s reads “x is a specification”.

Language Services

• s.IsSpec: Is x a specification? Yes, if x ∈ c.s.

The three categories above can be used together, in a function that categorises
sets of Fragments to deliver the following Language Service.

45

Language Service

WhichKSR: Which Fragments in X are requirements, which are domain
knowledge, and which are specifications?

s.WhichKSR is similar to asking if one specific Fragment is in any of the three cate-
gories. Such questions are relevant when solving the Default RP, because we need to
check, for example, if satisfying Fragments for domain knowledge and specifications,
positively influences the satisfaction of requirements Fragments. The function below
delivers s.WhichKSR.

Function

Categorise in Default RP categories
(f.cat.ksr)

Input

Set X of Fragments.

Do

For each x ∈ X :

• if x is in c.r, then let cat(x) = c.r, else

• if x is in c.k, then let cat(x) = c.k, else

• if x is in c.s, then let cat(x) = c.s.

Output

Function ksr.

Language Services

• s.WhichKSR: Function ksr says, for each Fragment in X , if it is a require-
ment, domain knowledge, or specification.

Example 7.1. For illustration, below is the language L.Menkar, which has r.inf.pos,
r.inf.neg, r.str.inf, and f.cat.ksr.

Language

Menkar

Language Modules

F, r.inf.pos, r.inf.neg, r.str.inf, f.map.abrel.g, f.cat.ksr

Domain

Fragments are partitioned onto requirements, domain knowledge, and speci-
fications, that is, F= c.r∪c.k∪c.s and c.r∩c.k∩c.s=;. Influence relations
are over Fragments, r.inf.pos ⊆ F×F, r.inf.neg ⊆ F×F. Relative strength of
influence is a relation over influence relations of the same type:

r.str.inf⊆ (r.inf.pos× r.inf.pos)∪ (r.inf.neg× r.inf.neg).

Syntax

A model M in the language is a set of symbols M = {φ1, . . . ,φn }, where every

46

φ is generated according to the following BNF rules:

α ::= x | y | z | . . .

β ::= r | k | s

γ ::= β(α)

δ ::= (γ,γ)

ε ::= (δ,δ)

φ ::= γ | δ | ε

Mapping

α symbols denote uncategorised Fragments. γ symbols denote categorised
Fragments, so D(r (α)) ∈ c.r, D(k(α)) ∈ c.k, and D(s(α)) ∈ c.s. δ symbols de-
note influence relations, D(δ) ∈ r.inf.pos∪ r.inf.neg. ε symbols denote relative
strength of influence, D(ε) ∈ r.str.inf.

Language Services

Those of r.inf.pos, r.inf.neg, r.str.inf, f.map.abrel.g, and f.cat.ksr.

Figure 9 is a visualisation of a model in L.Menkar. Label “R” marks c.r Fragments,
“K” those of c.k, and “S” those of c.s. •

7.2 How to Define Taxonomies of Categories?

A taxonomy of categories is a set of categories related by the specialisation, also called
is-a, relation. If a category A is a specialisation of the category B, then all members of
B are also members of A, but not all members of A are necessarily members of B.

For illustration, note that it is common in RE to distinguish between functional and
nonfunctional requirements. I can have two categories for them, both specialisations
of c.r.

Exercise 15: Define categories which are specialisations of an existing category
in a language

Choose an existing category in L.Menkar and identify at least two cat-
egories which are its specialisations (its sub-categories). How would

you define these new categories? How would you indicate in their
definitions that they specialise another category of a language?

I will consider that a requirement is functional, if it can either be satisfied or not.
A requirement is nonfunctional, if it can be satisfied to some extent, and different
stakeholders may judge the requirement to be satisfied to different extents, by the
same system. Being able to communicate via radio with an ambulance is a functional
requirement, while quickly responding to incidents is a nonfunctional requirement.

Category

Functional requirement (c.r.f)

Domain

c.Functional requirement⊆ X , where X ⊆ c.r.

Membership conditions

x is a member of c.r such that it is either satisfied or not.

Reading

x ∈ c.r.f reads “x is a functional requirement”.

Language Services

• s.IsFunctReq: Is x a functional requirement? Yes, if x ∈ c.r.f.

Category

Nonfunctional requirement (c.r.nf)

47

Figure 9: A visualisation of a model in L.Menkar.

48

Domain

c.Nonfunctional requirement⊆ X , where X ⊆ c.r.

Membership conditions

x is a member of c.r such that it is can be satisfied to some extent, rather than
either satisfied or failed, and different stakeholders may judge it to be satisfied
to different extents by the same system.

Reading

x ∈ c.r.nf reads “x is a nonfunctional requirement”.

Language Services

• s.IsNFunctReq: Is x a nonfunctional requirement? Yes, if x ∈ c.r.nf.

Note that, if you let all Fragments be partitioned onto requirements, domain
knowledge, and specifications, then the latter three categories are specialisations of
a category for Fragments. You can see that Fragments category as the most general
category, as shown in the taxonomy in Figure 10.

If a category is a specialisation of another one, then the former inherits the prop-
erties of the latter. Modules above captured inheritance by restricting domains, in
that functional requirements are some of the requirements. This is clear from the
slot “categorises” in the Language Modules above.

An important design decision concerns the coverage of the taxonomy. If c.r is
specialised onto functional and nonfunctional requirements, are these its only sub-
categories? The taxonomy in Figure 10 says these are the only categories, but the
Language Modules do not. To add this constraint, you could add a function to the lan-
guage, which categorises any requirement either as a functional or a nonfunctional
one.

7.3 What Are Categories and Relations in Meta-Models and Ontologies?

A meta-model is a conceptual model which represents all the categories and relations
of a language. An ontology is a specification of a conceptualisation, and in RMLs,
it is the specification of the categories and relations of the domain of the language,
that the things in the domain that language expressions, the formulas, are used to

represent. The categories and relations are chosen so as to help the representation
and resolution of RPs [79]. In formal ontology, such a specification is written in a
formal logic [58, 119, 120].

The meta-model and ontology of a language should not be confused [36]. The
meta-model will usually represent also the considerations which are purely practical,
and concern, for example, the structure of expressions in a language. In the termi-
nology of the languages discussed in this tutorial, a meta-model will, for example,
include a category “Graph”, which may then be specialised into categories of graphs
specific to each relation. However, the fact that graphs are used to represent relation
instances is usually simply a practical matter, not something that fundamentally
determines the conceptualisation of the requirements problems, which a language is
defined for. In other words, a meta-model of the language may include all categories
and relations from the ontology of the language, but will usually include also other
categories and relations, concerned purely with practical issues of how to represent
or do some transformations of the instances of the categories and relations in the
ontology of the language.

If a sufficiently expressive ontology specification language is used, it may be that
the formal ontology of the language could define the language in its entirety. To the
best of my knowledge, this has not been done in RE. The ontology of a language has
usually been equated to the set of all categories and all relations in the language,
together with axioms as constraints on how to correctly use the categories and
relations. This is the case in i*, KAOS, Techne, NFR, among others.

One way, then, to think of the ontology of an RML, is that it is the definition of the
categories and relations needed to define instances of the requirements problem
which the language is defined to solve, and potential solutions to these problems.
For example, the definition of L.D1a is a specification of what that language is, and
so, a specification of a conceptualisation. The other view, and more common in
RE, is to see the ontology of the language only as all categories and relations of
the language. In RMLs, this has often equated to a meta-model of the language, a
conceptual model showing all categories and relations of the language. To represent
the language ontology in such a way complements category and relation definitions
with Language Modules, as Language Modules include information use rules and
Language Services, which the said models do not represent.

Example 7.2. Figure 11(a) shows the categories and relations of three different
languages, where for two, the Figure shows ontologies (Figures 11(a) and 11(b)), and
for one, its meta-model (lower part of the Figure). Nodes represent categories and
links represent relations.

Figure 11(a) shows the ontology of a language in which r.ifm, r.inf.pos, and r.inf.neg
are over the members of any category in the taxonomy in Figure 10.

Figure 11(b) shows an ontology with same categories as in Figure 11(a), but now,
the influence relations can go only from specification Fragments to requirement

49

[htb]

Figure 10: Taxonomy of categories defined in Sections 7.1 and 7.2.

Fragments.
Finally, Figure 11(c) shows a meta-model of a language, which has r.ifm, its speciali-

sations, and the fragment, requirement, domain knowledge, specification, functional
requirement, and nonfunctional requirement categories. Note the presence of “Re-
lation”, “Model” categories, which are interesting only for the creation of models in
this language, but would normally not be part of the ontology of this language. •

7.4 When Are Categories and Relations Derived?

When new categories and relations are defined only as combinations of other parts of
a language, I call them derived. Those which are not derived are called core language
components. The core includes the minimal set of categories and relations, needed
to define the others in that language. Derived relations will therefore inherit the
properties of the core ones.

Derived categories and relations can be used to emphasise specific ideas in a
language, or, for example, to simplify modelling. They are syntactic sugar in an RML.
The following example illustrates this.

Example 7.3. Figure 11 shows that there can be an influence relation over problem-
solving information, and consequently, over any pair of Fragments, regardless of
either of them being a requirement, domain knowledge, or otherwise. If you want
to emphasise that there is a difference between having an influence relation from a
specification to a requirement, as opposed to having it between requirements, you
can add a derived relation as follows. Call it r.rls.

Relation

Realise (r.rls)

Domain & Dimension

r.rls⊆ S ×R, where S ×R ⊆ r.inf, S ⊆ c.s and R ⊆ c.r.

Properties

irreflexive and transitive.

Reading

(x, y) ∈ r.rls reads “specification x realises the requirement y”.

Language Services

Inherits from r.inf.

r.Realise is the abbreviation of an influence from a specification to a requirement.
You may want to distinguish r.rls from others in an RML, because there may be
guidelines which rely on it, and so it may be simpler to talk of realisation every time
the guidelines are applied, rather than of all that it abbreviates. Or, it may be that

50

(a) Ontology of one language. (b) Ontology of another language.

(c) A meta-model of a language.

Figure 11: Two ontologies and a meta-model.

51

there is a convention among stakeholders, who speak of requirements being realised
or not, and you interpret this as being about the presence or absence of influence
relations from specifications to these requirements. •

A derived category can be defined from categories and relations only, but also from
combinations of other language components, categories and functions for example.
I look at the former first.

Example 7.4. Suppose that I am particularly interested in requirements which are
negatively influenced by environment conditions. If I assume that I cannot change
the environment conditions, then such requirements will likely need to be revised, to
avoid that the system fails them too often at run-time. To highlight them in models, I
define a new derived category c.r.clsh. •

Category

Clashing requirement (c.r.clsh)

Domain

c.Clashing requirement⊆ X , where X ⊆ c.r.

Membership conditions

x is such that there is (y, x) ∈ r.inf.neg, and y ∈ c.k.

Reading

x ∈ c.r.clsh reads “x is a requirement which clashes with environment condi-
tions”.

Language Services

• s.IsClshReq: Does x clash with environment conditions? Yes, if x ∈
c.r.clsh.

Example 7.5. Now suppose that I want to categorise a requirement as irrelevant, if
that requirement is not acceptable. Acceptability works as in Section 5.4.2. I use

f.Accepted to define the category c.r.irrl. •

Category

Irrelevant requirement (c.r.irrl)

Domain

c.Irrelevant requirement⊆ X , where X ⊆ c.r.

Membership conditions

x is not acceptable in a given model M according to f.acc.

Reading

x ∈ c.r.irrl reads “x is an irrelevant requirement”.

Language Services

• s.IsIrrlReq: Is x an irrelevant requirement? Yes, if x ∈ c.r.irrl.

7.5 How to Enforce Intended Use of Categories?

Categories are interesting because they distinguish Fragments in terms of how they
are used in problem-solving. So categorising a Fragment is only part of how cate-
gories are used. The other part is to define rules about how to use these categories.
This can, for example, be functions which say what to do, when there is an instance
of some category, or if instances of a category are in some specific relations with
instances of other categories.

Another way to view this, is that you are adding new functions to a language, in
order to make sure that the categories in it are used as you intended. In the following
example, I use c.r as a completeness check of models.

Example 7.6. Knowing that a Fragment is a requirement leads me to ask if this
requirement is operationalised in the given model model. If it is not, then I might

52

want to conclude that this is negative, and say that the model is incomplete. If I want
to force this notion of model completeness on language users, I can build it into the
language with the following function.

Function

Completeness of requirements operationalisation
(f.chk.rop)

Input

A set X of Fragments, G(X, r.ifm), and G(X, r.inf.pos).

Do

1. Let H be a hypergraph made by merging G(X, r.ifm) and G(X, r.inf.pos).

2. If there is x ∈ X such that x is in c.r and there is no path in H from z ∈ X
to x, such that z is in c.s, then the model which includes exactly the
Fragments in X is incomplete with regards to requirements operationali-
sation and v = 1.

Output

v .

Language Services

• s.IsROpComp: Is the model that includes exactly the Fragments X in-
complete with regards to requirements operationalisation? : Yes, if v = 1,
no otherwise.

I can use f.chk.rop as a way to check how close we are to identifying a solution to
the RP being solved. If some requirements are not operationalised, then I have to
look further for specifications, as I have not solved the problem yet. •

7.6 Summary on Categories

The following are the main ideas discussed on categories:

• To add some category C to a language, it is necessary to define how it is used.
At the very least, this involves answering the following questions:

1. What conditions have to be satisfied for x to belong to the category C ?

2. Can members of C be members of other categories in the given language?
If yes, then why and of which categories? This is answered by defining
taxonomic (is-a) relations between categories.

3. How are category instances, if in any way, related to those of other cate-
gories?

• Using categories for classification is only part of the motivation for having them
in languages. After adding a category, such as c.r, you may want to add new
relations, functions, and so on, in order to use that category in problem-solving.
For example, having a category for requirements and for specifications begs
the question of how the satisfaction of the latter influences that of the former,
and to answer it, you need influence relations. Having domain knowledge and
requirements categories begs the question of what to do if there is negative
influence from the latter to the former, and so requires guidelines for resolving
this.

• It is useful to distinguish core categories and relations from derived ones in
a language. It is otherwise hard to know what is absolutely necessary in a
language, in order to deliver Language Services, as well as to compare languages
in terms of their components.

53

8 Alternatives and Combinations

Overview and Motivation

This section is on how to represent mutually exclusive information in models. I look
at two specific notions. One, called “Alternative”, allows me to represent that, say,
two relation instances are mutually exclusive. The other, called “Combination”, lets
me say that sets of Fragments and, or relation instances, are mutually exclusive. I
discuss the following questions.

1. How to represent simple Alternatives, where an Alternative equates to a smallest
part of a model? (Section 8.1)

2. How to represent composite Alternatives in models, that is Combinations, where
a Combination can include various model parts? (Section 8.2)

3. How to find all Combinations in a model which includes Alternatives? (Section
8.3)

If you want to represent different ways to satisfy a requirement, or to solve a
conflict between requirements, or entire designs which, for example, you want stake-
holders to choose from, then it is necessary to have a language that can represent
mutually exclusive information.

Exercise 16: Represent that two relation instances are mutually exclusive

Choose any language defined so far in this tutorial. Without changing
that language, how would you represent that two relation instances are
mutually exclusive in a model in that language?

For example, there are different ways to fill out an incident report. It can be
printed on paper and manually filled out, or there could be a template document of
the report for use in word processing software, or by having a dedicated functionality
for this in the dispatch software, or in some other way. For each of these, you can

probably think of alternative organisational positions whom this responsibility can
be assigned, such as dispatcher or administrative assistant, for example.

To represent different ways of doing FillIncRep, and do so with languages defined
so far, I would have to make one model per Alternative. This is impractical, because
suppose that there are three different ways to fill out a report, and two ways to
allocate responsibility for doing so. This gives gives eight alternatives, and they cover
only some options and only for FillIncRep, not other Fragments. Moreover, if the
RML cannot represent alternatives, it will not be able to represent relations between
alternatives. So there can be many models, one per alternative, but no information
in the same language, about which alternative is, for example, more desirable than
another one over some criterion, such as cost to implement.

Problem-solving involves making decisions, that is, given various possible ways
to act, committing to one only. A basic notion of decision-making is that of an
Alternative. Some x, whatever it may be, can be called an Alternative when there are
m ≥ 1 other things, say y1, . . . , ym that can perform the role of x, we have the ability
to choose any of x, y1, . . . , ym for that role, and x, y1, . . . , ym are mutually exclusive,
that is, neither is compatible with others, and neither is part of another.

To use models for decision-making, it is necessary to be able to represent Alter-
natives and to represent relations between them. The model becomes a record of
Alternatives which were encountered during problem-solving. This allows you to
postpone choosing any one Alternative before discovering others and comparing
them. For example, I may want to postpone choosing an Alternative, because I need
more information to find others, or I need to present the Alternatives to stakeholders
who have the authority to decide, or I want first to find criteria for the comparison of
the alternatives (more on this in Section 11), before doing anything else with them.

8.1 How to Represent and Use Simple Alternatives?

In languages discussed so far, individual Fragments and individual relation instances
were the smallest useful parts of models. I focus in this section on how to represent
that these smallest model parts are Alternatives. To illustrate this, suppose that you
want a language to deliver the following Language Service.

Language Service

InfPosAlt: Which Fragments in the model M show different ways to satisfy
x?

54

L.Ankaa can show positive and negative influence relations over Fragments. It can
show that different Fragments positively influence some Fragment x. But it cannot
show that these Fragments are mutually exclusive ways to satisfy x.

Exercise 17: Make a new language from L.Ankaa which can show mutually
exclusive relation instances in models

How would you represent in models that two or more relation instances
are mutually exclusive? Would you do it with a relation, or otherwise?
What would you add or remove from L.Ankaa to enable it to show in
models that some influence relation instances are mutually exclusive?
Would the resulting language deliver s.InfPosAlt? If yes, then how?

To deliver s.InfPosAlt, notice first that it is not the Fragments x1, . . . , xn themselves
which are mutually exclusive, but the instances of the positive influence relation.
s.InfPosAlt is not about choosing one Fragment, but about choose which of these
Fragments should positively influence x.

A relation instance becomes an Alternative by being related in some way to other
relation instances, all being mutually exclusive. This relation will be called r.xor.
When it is over n other relation instances, it says that these are mutually exclusive. I
define it as follows.

Relation

Mutually exclusive relation instances (r.xor)

Domain & Dimension

r.xor⊆ Rn , where R is a set of relation instances.

Properties

If w ∈ r.xor, then there can be no e ∈ r.xor such that e = (. . . , w, . . .), that is, there
can be no r.xor instances over other r.xor instances.

Reading

(r1, . . . ,rn)r.xor reads “relation instances r1, . . . ,rn are mutually exclusive”.

Language Services

• s.IsAlt: Are ri , . . . ,rm Alternatives? : Yes, if there is w ∈ r.xor and every
ri , . . . ,rm is in w .

Example 8.1. I define below the language L.Mirfak, which can represent positive and
negative influence over requirements, domain knowledge, and specifications, just as
L.Menkar. It differs from L.Menkar in that it does not represent strength of influence,
but can also represent mutually exclusive influence relation instances. The omission
of strength of influence is motivated by simplicity in visualisations, in Figures.

Language

Mirfak

Language Modules

F, r.inf.pos, r.inf.neg, r.xor, f.cat.ksr, f.map.abrel.g

Domain

Fragments are partitioned onto requirements, domain knowledge, and speci-
fications, F= c.r∪c.k∪c.s and c.r∩c.k∩c.s=;. Positive and negative influ-
ences are over Fragments, r.inf.pos⊆ F×F, r.inf.neg⊆ F×F. r.xor is over n > 1
influence relation instances of the same type,

r.xor⊆ (r.inf.posn)∪ (r.inf.negn).

Syntax

A model M in the language is a set of symbols M = {φ1, . . . ,φn }, where every

55

φ is generated according to the following BNF rules:

α ::= x | y | z | . . .

β ::= r | k | s

γ ::= β(α)

δ ::= (γ,γ)

ε ::= (δ,δ, . . .)

φ ::= γ | δ | ε

Mapping

α symbols denote Fragments, and r (α) denote requirements D(r (α)) ∈ c.r,
k(α) denote domain knowledge D(k(α)) ∈ c.k, and s(α) denote specifications,
D(s(α)) ∈ c.s. δ denote positive and negative influence relation instances,
D(δ) ∈ r.inf.pos∪ r.inf.neg. ε symbols denote r.xor instances, D(ε) ∈ r.xor.

Language Services

s.IsAlt.

Figure 12 shows a visualisation of a model made with L.Mirfak. There, if the circle is
labelled “+”, then it is an instance of r.inf.pos, and if “-” then of r.inf.neg. A black circle
labeled “X” and its dashed lines represent an instance of r.xor. All relation instances
connected to a black circle via dashed lines are Alternatives.

The content of the model comes from the CADS example, and looks at how to
satisfy the requirement AmbArrIncLoc. The model has 14 instances of r.inf.pos, no
instances of r.inf.neg, and six instances of the meta-relation r.xor.

Consider first the following two r.xor instances:

((AutoAmbList, IdAmb), (ManTrckAmb, IdAmb)) ∈ r.xor

((UpdAutoAmbList, IdAmb), (ManTrckAmb, IdAmb)) ∈ r.xor

Together, this pair of r.xor shows two Combinations to satisfy (to influence positively,
but I will say satisfy for simplicity) IdAmb. One option consists of doing according
to AutoAmbList together with UpdAutoAmbList. The other is to do according to only
ManTrckAmb.

The remaining four r.xor instances are:

((DispSoftwRnkAmb,ChoAmb), (NoAutAmbRnk,ChoAmb) ∈ r.xor

((DispSoftwRnkAmb,ChoAmb), (NoAmbRecomm,ChoAmb) ∈ r.xor

((DispAmbRnk,ChoAmb), (NoAutAmbRnk,ChoAmb) ∈ r.xor

((DispAmbRnk,ChoAmb), (NoAmbRecomm,ChoAmb) ∈ r.xor

Given these four instances, there are two Combinations for satisfying ChoAmb. One
includes DispSoftwRnkAmb, DispAmbRnk, and CAsstChoAmb. The other includes
CAsstChoAmb, NoAutAmbRnk, and NoAmbRecomm.

In total, then, the model visualised in Figure 12 shows four Combinations. Section
8.3 has more on Combinations. •

8.2 How to Have Alternative Composites?

How to represent that sets of relation instances are mutualy exclusive? For example,
in Figure 12, I could not say that the joint satisfaction of ClIncRep, ConfMob, MobAmb,
AsAmb, ChoAmb, and IdAmb positively influences the satisfaction of AmbArrIncLoc.
All that I could say with positive influence relations, is that the satisfaction of each of
these, independently of others, positively influences the satisfaction of AmbArrIncLoc.

Also in Figure 12, I had four r.xor instances over the positive influence relations
targeting ChoAmb, to convey, only in part, the idea that there are two ways to satisfy
ChoAmb. One is described by DispSoftwRnkAmb, DispAmbRnk, and CAsstChoAmb
together, and the other by CAsstChoAmb, NoAutAmbRnk, and NoAmbRecomm to-
gether.

If I could say in a model that Fragments belongs to some set, then I can define
relations over such sets. There could, for example, be a positive influence relation
from a set of Fragments to a single Fragment, which would help in the first case
above. I could also define a relation that makes sets into Alternatives, and I would
need only one such relation instance in the second case, over the set that includes
DispSoftwRnkAmb, DispAmbRnk, and CAsstChoAmb, and the set with CAsstChoAmb,
NoAutAmbRnk, and NoAmbRecomm.

Exercise 18: Compose Fragments and relation instances into wholes

Choose any language defined so far. What do you need to add to that
language, in order to represent that some Fragments and, or relation
instances are parts of some whole? Would you do it with one or more
new relations? If yes, which? Do you need one or more new categories?
If yes, which?

56

Figure 12: A visualisation of a model in L.Mirfak.

57

I will use the term Composite and say that Fragments can be parts of a Composite.
The smallest part of a Composite is a single Fragment, and a Fragment can be in more
than one Composite. This lets me represent, for example, Alternatives which overlap.
An example is CAsstChoAmb in Figure 12, which is there both with DispSoftwRnkAmb
and DispAmbRnk, and with NoAutAmbRnk and NoAmbRecomm. As Composites can
overlap, and individual Fragments can be Composites themselves, it follows that
Composites can be parts of other Composites.

Enabling the above requires a relation between a Composite and its parts, which
will be called r.po, and a category for Composites, c.Composite.

r.po is a partial order. It is reflexive, because a Composite can include a single
Fragment. It is antisymmetric, because Composites with same parts should be
considered as same Composites. It is transitive, because there is no reason why we
should not conclude that if a Fragment x is part of Composite y , and y is part of
Composite z, that x is not part of z. With these formal properties, r.po fits mainstream
theories in mereology [133]. This gives the following r.po definition.

Relation

Fragment part of Composite (r.po)

Domain & Dimension

r.po⊆ F×C , where F is a set of Fragments and C is a set of Composites.

Properties

reflexive, antisymmetric, and transitive.

Reading

(x,c) ∈ r.po reads “x is part of c”.

Language Services

• s.IsPartOf: Is x part of c? : Yes, if there is (x,c) ∈ r.po.

• s.HasParts: Does x have parts? : Yes, if there is (y, x) ∈ r.po.

A Composite will be any Fragment which has parts. x “has parts” when there is at
least some other y such that there is also (y, x) ∈ r.po.

Category

Composite (c.cp)

Domain

c.Composite⊆ F , where F is a set of Fragments.

Membership conditions

There is y ∈ F such that (y, x) ∈ r.po.

Reading

x ∈ c.cp reads “x is a Composite”.

Language Services

s.HasParts.

The category c.cp is a specialisation of c.Fragment, as it is a Fragment with parts.
The example below illustrates these Language Modules in a language.

Example 8.2. The following language adds r.po and c.cp to L.Mirfak.

Language

Aldebaran

Language Modules

F, r.inf.pos, r.inf.neg, r.xor, f.cat.ksr, f.map.abrel.g, r.po

58

Domain

Same as L.Mirfak, and add r.po⊆ F×C and C ⊂ F.

Syntax

Same as L.Mirfak.

Mapping

Same as L.Mirfak, and replace D(δ) with

D(δ) ∈ r.inf.pos∪ r.inf.neg∪ r.po.

Language Services

s.IsAlt, s.IsPartOf, s.HasParts.

Figure 13 shows a visualisation of a model in L.Aldebaran. If the circle is labeled
“Po”, it represents an instance of r.po. c1, c2, and c3 are the only Composites. Other
symbols read as in Figures used earlier in this tutorial.

Compare the model in Figure 13 to that in Figure 12. The L.Aldebaran model shows
the same Combinations, but now includes three new Fragments, c1, c2, and c3. Each
of them is a Composite. The main difference between the two models, is that Figure
13 says that Alternatives are combinations of influence relation instances, rather
than individual relation instances, and thereby lets me convey a bit more closely
the idea that, for example, the satisfaction of ChoAmb is positively influenced by the
satisfaction of DispSoftwRnkAmb, DispAmbRnk, and CAsstChoAmb together. •

L.Aldebaran illustrates that having Composites, r.po, and r.xor allows the language
to represent Alternative Composites.

8.3 What Are and How to Find Combinations?

Given some sets A1, . . . , An , such that each Ai is a set of Alternatives, that is, of
mutually exclusive things, a Combination is a set C obtained as follows: in each
A1, . . . , An , pick exactly one member and add it to C .

Exercise 19: Define a procedure which finds all Combinations in a L.Mirfak

Define a new category in L.Mirfak for Combinations. Define a procedure
which takes a model in L.Mirfak and returns the set of all Combinations
in that model.

Each member of a Combination is also called a Choice. It is called a Choice,
because it is one Alternative, which was picked out from a set of Alternatives.

Example 8.3. In Figure 12, there are six instances of r.xor. Each instance gives a set
of Alternatives, and each of these sets includes two Alternatives. In the terminology
above, the figure shows the following:

A1 = { (AutoAmbList, IdAmb), (ManTrckAmb, IdAmb) }

A2 = { (UpdAutoAmbList, IdAmb), (ManTrckAmb, IdAmb) }

A3 = { (DispSoftwRnkAmb,ChoAmb), (NoAutAmbRnk,ChoAmb) }

A4 = { (DispSoftwRnkAmb,ChoAmb), (NoAmbRecomm,ChoAmb }

A5 = { (DispAmbRnk,ChoAmb), (NoAutAmbRnk,ChoAmb) }

A6 = { (DispAmbRnk,ChoAmb), (NoAmbRecomm,ChoAmb) }

A1 includes two Alternatives. If I choose (AutoAmbList, IdAmb) in A1, then that is my
Choice with regards to A1. Some Combination Ci is, for example:

Ci = {(AutoAmbList, IdAmb), (UpdAutoAmbList, IdAmb), (DispSoftwRnkAmb,ChoAmb),

(DispAmbRnk,ChoAmb)}

Ci was made by taking one Alternative from each of A1, . . . , A6, that is, by choosing
one Alternative in each of these sets. •

I define Combination as a new category, as follows. Example 8.4 further illustrates
Combinations.

Category

Combination (c.cb)

Domain

c.Combination⊆ R, where ℘(R) is a set of sets of relation instances.

Membership conditions

59

Figure 13: A visualisation of a model in L.Aldebaran.

60

If W ∈ c.cb , then there is for every w ∈W an instance r ∈ r.xor, such that w is
one of the Alternatives in r , and no member of W \ {w} is also in r .

Reading

W ∈ c.cb reads “W is a Combination”.

Language Services

• s.IsCombination: Is x a Combination? : Yes, if x ∈ c.cb.

Example 8.4. Figure 14 shows all four Combinations in the model in Figure 12. The
bold black relation instances are those that the Combination does not include. This
shows what is removed from the model Figure 12, in order to obtain the respective
Combination. When the bold relation instances are excluded, each Combination
satisfies the rules in c.cb. •

Having clarified the notions of Alternative, Choice, and Combination, the aim now
is to enable the following Language Service.

Language Service

AllCombinations: Which are all the Combinations in model M?

Let a model M be a triple (X ,R, A), where X is a set of Fragments, R a set of relation
instances which cannot include r.xor instances, and A is a set of r.xor instances,
each over the members of R. For such models, I can deliver s.AllCombinations by
generating sub-models of M , each of which is exactly one Combination, that is, a
sub-model in which there are no r.xor instances (its set A is empty). f.find.all.cb does
this.

Function

Find all Combinations
(f.find.all.cb)

Input

M = (X ,R, A), where X is a set of Fragments, R a set of relation instances
which cannot include r.xor instances, and A is a set of r.xor instances, each
over the members of R.

Do

Let

• a be some (any) member of A,

• Alt(a) ⊆ R be the set of relation instances from R which are all relata of a
(that is, a is over all members of Alt(a)). For example, if a = (r1, . . . ,rm),
and {r1, . . . ,rm } ⊆ R, then Alt(a) = {r1, . . . ,rm },

• a(ri) be some (any) member of Alt(a), that is, one of the Alternatives
according to a,

• O be an empty set, in which every member will be a Combination from
M ,

• M = (XM ,RM , AM) be the only member of a set Q. I write XM ,RM , AM ,
to make it clear that they are those of M .

For each member G of Q:

• if XG is empty, then G includes no r.xor instances and is a Combination,
so remove G from Q and add G to O,

• else, for each r.xor instance a ∈ AG :

– For each a(ri) ∈ Alt(a):

1. Let G(a(ri)) = (X ,RG (a(ri)), AG (a)) where:

* RG (a(ri)) = RG \ (Alt(a) \ {A(ri)}), so RG (a(ri)) has all rela-
tions that RG has, minus all but one relation, ri , which is
an Alternative according to a, and

* AG (a) = AG \{a}, so AG (a) includes all r.xor instances that
AG does, except for a;

2. If G(a(ri)) includes one or more r.xor instances, each of which
has a(ri) as one of its Alternatives, then remove also all of
these r.xor instances from G(a(ri)) and remove all Alternatives
except a(ri) in all these r.xor instances;

61

(a) One of four Combinations in Figure 12. (b) A second of four Combinations in Figure 12.

(c) A third of four Combinations in Figure 12. (d) A fourth of four Combinations in Figure 12.

Figure 14: Illustration of Combinations in a model.

62

3. Add G(a(ri)) to Q.

Output

The set O, which includes exactly all the Combinations in M .

Language Services

• s.AllCombinations: Set O which this module outputs.

In f.find.all.cb, I start from the model M whose Combinations I want to identify. I
take M , choose one r.xor instance in it, say a, and choose one of the Alternatives in it,
say ri . I delete all other relation instances in a, to convey the idea that the resulting
G(a(ri)) is the model I get, when I have made a decision about which Alternative
to adopt among the Alternatives according to a. Because I add M(a(ri) to Q, I will
process it in the same way, until I get a Combination, which is a model without r.xor
instances. The intuitive idea is that I take a model, then generate its sub-models, by
making decisions about each of its r.xor instances, and I produce sub-models in such
a way that no Combination is missed. The example illustrates this.

Example 8.5. Figure 15 shows the result of applying f.find.all.cb to the model in Figure
12. In Figure 15, the rectangles labeled Q are models in the set Q, and those labeled
O are in the set of Combinations. In each model in the Figure, all bold and black
relation instances are not (are excluded from) that model (it is as if we marked the
relation instances which we removed from the model).

The figure shows that I start by adding that model to the set Q, and then choose
one of the r.xor instances.

In the Figure, I assume that the instance I chose is the one over
(AutoAmbList, IdAmb) and (ManTrckAmb, IdAmb). Since that r.xor instance is
over two Alternatives, I have two new models to add to Q. In one,
shown in the second row of the first column in Figure 15, I removed
(ManTrckAmb, IdAmb). Since (ManTrckAmb, IdAmb) is an Alternative also in another
r.xor instance, over (ManTrckAmb, IdAmb) and (UpdAutoAmbList, IdAmb), removing
(ManTrckAmb, IdAmb) leads me to remove that second r.xor instance as well.

The first row and second column in the Figure shows the case where I re-
moved (AutoAmbList, IdAmb) from the r.xor instance over (AutoAmbList, IdAmb)
and (ManTrckAmb, IdAmb). There, by leaving (ManTrckAmb, IdAmb), I also made
the decision to remove (UpdAutoAmbList, IdAmb), because the r.xor instance over
(ManTrckAmb, IdAmb) and (UpdAutoAmbList, IdAmb), has only these two Alterna-

tives.
This same approach applies in the other cases shown in the Figure, until I find a

Combination, and put it in the set O.
Be careful to note that the starting model, from Figure 12 has r.xor instances each

time over only two Alternatives, and since some Alternatives participate in more
than one r.xor, I quickly find the Combinations, that is, via few members of Q.

The two cases marked “Error” are there to show what would have happened, if
f.find.all.cb did not remove r.xor instances, in cases when choosing one Alternative in
some r.xor r1 has the consequence that there is only one Alternative left in another
r.xor instance r2. That is, these are errors which I would have, if f.find.all.cb did not
have the line 2 in its use rules. •

8.4 Summary on Alternatives

A language that aims to support design may need to represent alternative design op-
tions in models, via Alternatives, Choices, and Combinations. This section illustrated
that discovery and indecision in problem-solving make this a relevant capability for
a language.

Enabling a language to represent Alternatives raises many challenges, and this
section focused on the basic ones. Namely, how to represent simple Alternatives,
each being a single smallest part of a model, and how to represent complicated
Alternatives, which are over composites, each made out of potentially many smallest
parts of a model. Other topics which I did not discuss include:

• How is the presence of r.xor in a language related to the assignment of satis-
faction, or other kinds of values to model parts? I discussed Alternatives and
Combinations by talking about satisfaction, and it made sense to say, for exam-
ple, that Alternatives are mutually exclusive because they cannot be satisfied
together. But what happens if there are other values to assign? Do r.xor instances
somehow influence the assignment of values to model parts? Does it matter
that two model parts are mutually exclusive when assigning values to them? I
discuss these questions in Section 9.

• How to compare Alternatives and Combinations, in order to choose “the best
one”? I come back to this in Section 11.

63

Figure 15: Application of f.find.all.cb to a model from Figure 12.

64

9 Valuation

Overview and Motivation

Valuation consists of associating variables to model parts, and functions to relations
over the model parts. The aim is to have models, where values of some variables
depend on values of others. Given the values of some, you can then compute those
of others.

Value Type is a central notion in valuation. A Value Type is simply a set of values.
I will write below that a variable x has Value Type T, if and only if any value of that
variable must be a member of T. That is, when a value is assigned to x, that value is
one of those in T.

The section looks at different Value Types and their combined use in a language.
This is done by discussing the following questions.

1. How to define a language with a single binary Value Type, that is, where model
parts take either of two values, and why this may be interesting? (Section 9.1),

2. How to, and why define a language which has more than one binary Value Type,
so that any model part is assigned a tuple of values, instead of a single value?
(Section 9.2),

3. How to, and why define a language with an unordered set of values as its only
Value Type? (Section 9.3),

4. What if the value type for the language is an ordered set? (Section 9.4),

5. Why and how to have in a language, a Value Type defined over real numbers?
(Section 9.5).

These discussions will also illustrate how to use Value Types in new guidelines for a
language.

Valuation can enable various interesting Language Services. It is also related
to Language Services discussed earlier. For example, valuation in a language can
say that each Fragments is associated with its own variable for satisfaction. The
variable might be allowed to take either 1, read “satisfied”, or 0 for “not satisfied”. A

function may then be associated to every positive and negative influence relation, to
compute how the value of the influenced Fragment depends on those of Fragments
influencing it. This section will give many examples unrelated to satisfaction, but
satisfaction remains an important motive to think about valuation in a language.

In this tutorial, a language has rules for valuation if, in its models, variables can
be associated to model parts, functions to relation instances, and if that language
answers the following questions:

1. Which values can be assigned to which variables?

2. Which functions relate the values of the variables?

3. How to compute the values of the variables?

This section will illustrate how to answer the questions above for various Value Types.

9.1 How to Propagate Binary Satisfaction Values in a Model?

This section discusses and combines three topics:

• How to have a language in which any Fragment and relation instance can be
assigned one of two satisfaction values, namely satisfied or not satisfied? That
is, how to define a language which has only one binary Value Type? (Section
9.1.1)

• Given a model in that language, and knowing the satisfaction value of some
Fragments and, or relation instances, how to compute the values of others? In
other words, how to define functions in a language, which return the satisfaction
value of a Fragment or relation instance, and take into account already known
satisfaction values of other Fragments and relation instances? (Section 9.1.2)

• How does the presence of Alternatives and Combinations in a model (and so,
of r.xor in a language) influence the computation of satisfaction values in a
language? (Sections 9.1.3 and 9.1.4)

I use satisfaction values because I discussed satisfaction already in relation to
influence relations. However, the discussion in this section remains relevant for any
binary Value Type. As for how to compute values, I use a simple approach often
informally referred to as “value propagation”, where a relation instance from y to x is
seen, roughly speaking, as a pipe that conducts a value from y to x, whereby the value
to conduct depends on the value of y and on the specifics of the relation. Values thus
get pushed through potentially many such pipes to a Fragment, and there is then
a rule which aggregates them, and outputs a single value for that Fragment. There
are other ways to compute values on model parts. I will mention some of them, and
leave others outside the scope of this tutorial.

65

9.1.1 Binary Value Type

To motivate the use of binary Value Types, recall the first condition in the DRP.
It says that there has to be a proof of requirements from domain knowledge and
specifications. The more general idea is this: It should be shown that if conditions
that domain knowledge and specifications describe are satisfied, then the conditions
described with requirements are satisfied as well. This gives the following Language
Service.

Language Service

SatReq: Are all requirements satisfied in the model M?

To deliver s.SatReq, it is necessary to have a Value Type for satisfaction. Given
how s.SatReq is phrased, it looks enough to have two values, for satisfied and not
satisfied. If s.SatReq asked, instead, for how well requirements were satisfied, then a
binary Value Type would not work.

To deliver, then, s.SatReq, I will use v.Satisfaction, a binary Value Type such that

v.Satisfaction= {1,0}

where 1 reads “satisfied” and 0 reads “not satisfied”.
s.SatReq mentions requirements, so that the language has to distinguish require-

ments Fragments from others. I will keep using the three categories defined earlier,
namely c.r, c.k, and c.s.

What, in a model, gets a value of v.Satisfaction? A variable, which is associated
to every Fragment and every relation instance. The language thus also needs a set
of variables. There will be as many variables as there are Fragments and relation
instances. As I am working with a single Value Type here, all variables will take values
from v.Satisfaction.

9.1.2 Value Propagation

The language needs to represent that the satisfaction value a Fragment depends
on the satisfaction values on one or more other Fragments, and if it does, then
how exactly. This is done by having a function which is sensitive to the relations
between Fragments. Given the motivation discussed earlier for influence relations,
the language will include r.inf.pos and r.inf.neg. It will also need another function,
which is presented in Sections 9.1.3 and 9.1.4.

Exercise 20: Define functions that assign satisfaction values across positive and
negative influence relations

Suppose that there is a positive influence relation instance (y, x) ∈
r.inf.pos. Define a function which returns the satisfaction value of x,
when the satisfaction value of y is known. Do the same for (y, x) ∈
r.inf.neg.

Recall that influence relations were not defined specifically with v.Satisfaction in
mind, but simply to represent, when it exists, the information that satisfaction of a
Fragment depends on that of another. The next language design decision to make,
then, is to define how exactly the satisfaction value of a Fragment influences that
of another, when there is an influence relation between them. The following rules
come to mind, for (y, x) ∈ r.inf.pos in a model M :

• if y gets the value 1 from v.Satisfaction, x should get 1 as well, if one ignores all
(if any) other influence relation that may be targeting x in M ,

• if y gets 0, then x gets 0, too, if one ignores all (if any) other influence relation
that may be targeting x in M .

I emphasised in both rules above that they are local: they say which value to
assign to x only by considering the value that y has, and that the relation instance
is a positive influence (rather than a negative influence). The rules ignore all other
positive or negative influences to x, from Fragments other than y .

To have these rules in a language, I add a new function, f.sat.inf.pos, which relies
on f.sat to return the satisfaction value of a Fragment. f.sat remains undefined
for the moment. When I define it later (one in Section 9.1.3, another in Section
9.1.4), it will say what the satisfaction value of a Fragment is, given potentially many
positive and negative influence relation instances to that Fragment. This is different
than f.sat.inf.pos, which concentrates on the satisfaction value of a single positive
influence relation instance.

I will write 〈x, t , v〉 for a variable of v.t which is associated to the Fragment or
relation instance x, and whose value is v . This is called a “value assignment”.

Function

Positive influence satisfaction
(f.sat.inf.pos)

66

Input

(y, x) ∈ r.inf.pos and model M .

Do

v = 1 if y is satisfied in M , and v = 0 otherwise.

Output

〈(y, x),v.Satisfaction, v〉.

Language Services

• s.WhPosInfSat: What is the v.Satisfaction value of (y, x) ∈ r.inf.pos? : It is
the value assignment 〈(y, x),v.Satisfaction, v〉.

The function f.sat.inf.pos is based on the idea of “propagating” values. To see what
this amounts to, suppose that there are Fragments y and x in a model M , and there
is positive influence from y to x. So if y is satisfied, then this positively influences the
satisfaction of x. But you cannot simply conclude that x is in fact satisfied, because
there may be other influences, positive or negative, which target x, from Fragments
other than y .

Propagation consists of seeing relation instances as a kind of pipes, each of which
propagates a value to its target. There may be many relation instances which propa-
gate different values to the same target, and therefore, it is necessary (as I will discuss
in Sections 9.1.3 and 9.1.4) to have rules which aggregate all these values that a
Fragment receives, and concludes one satisfaction value for that Fragment.

When valuation involves value propagation, the values on relation instances may
be somewhat confusing, as in the function below. It propagates satisfaction values of
negative influence.

Function

Negative influence satisfaction
(f.sat.inf.neg)

Input

(y, x) ∈ r.inf.neg and model M .

Do

If y is not satisfied in M , then x should be, and v = 1. If y is satisfied in M ,
then x should not, and so v = 0.

Output

〈(y, x),v.Satisfaction, v〉.

Language Services

• s.WhNegInfSat: What is the v.Satisfaction value of (y, x) ∈ r.inf.neg? : It is
the value assignment 〈(y, x),v.Satisfaction, v〉.

A satisfied negative influence is thus not an influence which successfully negatively
affects its target, but one which fails to do so, and therefore propagates 1 to x in
f.inf.neg.

The next step is to define f.sat which computes the satisfaction value of a Fragment,
based on all positive and negative influences to that Fragment.

For some Fragments, the satisfaction value will be computed, for others manually
assigned. So I need rules for how to compute values, as I otherwise cannot answer
such questions as “What should be the v.Satisfaction value of a Fragment x, when x is
the target of two or more positive and/or negative influence relations?” For example,
what is the satisfaction value of x, if f.sat.inf.pos(y, x) = 1, f.sat.inf.pos(z, x) = 0, and
f.sat.inf.neg](w, x) = 0?

I distinguish two cases below, when the language cannot represent Alternatives in
Section 9.1.3, and when it can in Section 9.1.4. This allows me to illustrate the differ-
ence that the representation of Alternatives makes on valuation with v.Satisfaction.

9.1.3 Without Alternatives

Suppose that the language cannot represent Alternatives and Combinations. It
has no r.xor. Let (p1, x), . . . , (pn , x) be instances of r.inf.pos and (q1, x), . . . , (qm , x) be
instances of r.inf.neg, all targeting the Fragment x. Consider the following rules:

1. if for all i = 1, . . . ,n, it is the case that f.sat.inf.pos((pi , x)) = 1, and for all j =
1, . . . ,m, f.sat.inf.neg((q j , x)) = 1, then the satisfaction value of x is 1,

67

2. in all other cases, the satisfaction value of x is 0.

I can add these rules to a language via the function f.sat.

Function

Satisfaction
(f.sat)

Input

Fragment x and model M .

Do

Let {(p1, x), . . . , (pn , x)} ⊆ r.inf.pos be the set of all positive influence relation in-
stances to x in M , and {(q1, x), . . . , (qm , x)} ⊆ r.inf.neg be the set of all negative
influence relation instances to x in M . Then,

v =
n∏

i=1
f.sat.inf.pos((pi , x), M) ·

m∏
j=1

f.sat.inf.neg((q j , x), M)

Above, f.sat.inf.pos((pi , x), M) returns the satisfaction value of (or propagated
by) (pi , x) ∈ r.inf.pos in M , and f.sat.inf.neg((q j , x), M) returns the satisfaction
value of (q j , x) ∈ r.inf.neg in M .

Output

〈x,v.Satisfaction, v〉

Language Services

• s.WhSat: What is the satisfaction value of x in M? : It is
〈x,v.Satisfaction, v〉.

Which rules are relevant for f.sat depends on what exactly these rules should do
for you. Above, the rules reflect the idea that x will be satisfied only if everything
influencing it positively is satisfied as well, and everything influencing it negatively

is not satisfied. In some sense, it reflects a demanding and defensive attitude about
when Fragments are satisfied. If any one of these two conditions fails, for example, a
Fragment is satisfied, and negatively influences x, it will not matter that there may
be other Fragments which are satisfied and positively influence x. The conclusion
will be that x is not satisfied.

Exercise 21: Define a function which assigns a satisfaction value to all Fragments
which are not influenced

Take a language which has Fragments and positive and negative influ-
ence relations, and can assign v.Satisfaction values. Define a function
which assigns a satisfaction value to every Fragment which is not influ-
enced in a model of that language, that is, every Fragment which is not
a target of a positive or negative influence relation.

To give a satisfaction value of some x, f.sat needs all influence relations to x. But
what if there are none? f.sat cannot assign a satisfaction value to x, and neither
can f.sat.inf.pos and f.sat.inf.neg. You need to choose in another way the values of
Fragments, whose values cannot be computed with these three functions.

In addition to the three functions, another function is needed to assign satisfac-
tion values for every Fragment which is target of no influence relation. These are
Fragments from which you start propagating satisfaction values. If you think in terms
of graphs over influence relations, then this amounts to assigning a satisfaction value
to every leaf node only, and then using the three functions mentioned above, to
compute the satisfaction values of other Fragments. This leads to f.sat.leaf below,
which takes a Fragment with no influence relations and assigns a satisfaction value
to it.

Function

Assume a satisfaction value for a non-influenced Fragment
(f.sat.leaf)

Input

Fragment x and model M , such that there is no (y, x) ∈ r.inf, (y, x) ∈ r.inf.pos,
and (y, x) ∈ r.inf.neg in M with y also in M .

68

Do

If you assume that x is satisfied, then v = 1, else if you assume that x is not
satisfied, then v = 0, else leave v without value.

Output

〈x,v.Satisfaction, v〉

Language Services

• s.WhAsmSatLf: Which, if any, is the assumed v.Satisfaction value of x in
M? : 〈x,v.Satisfaction, v〉 if v ∈ {0,1}, otherwise no v.Satisfaction value is
assumed for x.

The four functions, f.sat.inf.pos, f.sat.inf.neg, f.sat, and f.sat.leaf are enough to as-
sume and compute satisfaction values on models that relate Fragments with positive
and negative influence relations. The following language puts these notions together.

Language

Rigel

Language Modules

F, T, V, r.inf.pos, r.inf.neg, f.brel2g, f.cat.ksr, f.sat.inf.pos, f.sat.inf.neg, f.sat,
f.sat.leaf

Domain

Fragments have three partitions, namely requirements, domain knowledge,
and specification Fragments, F= c.r∪c.k∪c.s and c.r∩c.k∩c.s=;. Influences
are over Fragments, r.inf.pos⊆ F×F, r.inf.neg⊆ F×F. Value assignments are
over Fragments or relation instances, involve a Value Type, and a value, so
that

V⊆ (F∪ r.inf.pos∪ r.inf.neg)×T×v.Satisfaction.

The language has one binary Value Type, T = {v.Satisfaction}, and

v.Satisfaction= {1,0}.

Syntax

A model M in the language is a set of symbols M = {φ1, . . . ,φn }, where every
φ is generated according to the following BNF rules:

α ::= x | y | z | . . .

β ::= r | k | s

γ ::= β(α)

δ ::= (γ,γ)

ε ::= 〈α,ζ,η〉
φ ::= γ | δ | ε

Mapping

α symbols denote Fragments, D(α) ∈ F. β symbols are used to distinguish
requirements, domain knowledge, and specification Fragments, and are used
in γ symbols, so that D(r (α)) ∈ c.r, D(k(α)) ∈ c.k, D(s(α)) ∈ c.s. δ symbols
denote positive and negative influence relations. ζ symbols denote Value
Types, D(ζ) ∈ T. η denotes a value of a Value Type, and as there is one Value
Type, then D(η) ∈ v.Satisfaction. ε symbols denote value assignments, D(ε) ∈
V.

Language Services

Those of relations and functions in the language, and s.SatReq.

While L.Rigel does not have r.xor, and therefore no Alternatives and Combinations,
its models can represent mutually exclusive value assignments on same Fragments
and relation instances. This is useful, because, for example, different people may
use f.sat.leaf, and they may have different assumptions about the values of leaf
Fragments. Or the model user wishes to ask what-if kinds of questions, such as
“What if all leaf Fragments get these satisfaction values, as opposed to these other
satisfaction values?” and wishes to compare the Outcomes (more on this in Section
11). This is illustrated in Example 9.1 below.

An Outcome is the assignment of a single value per Value Type, to all Fragments
and relation instances in a model. In Example 9.1, Figures 16(a) and 16(b) do not

69

include Outcomes. Figure 16(c) includes one Outcome, and Figure 16(d) includes
two. An Outcome can be specific to one Value Type, as in Figures 16(c) and 16(d),
where only v.Satisfaction values can be assigned anyway, due to the specifics of the
language used. When I want to say that an Outcome has values of only one, or some
specific set of Value Types, I will write so. For example, Figures 16(c) and 16(d) show
v.Satisfaction Outcomes.

Example 9.1. This example illustrates how L.Rigel computes value assignments in a
model. Figure 16 shows four models in L.Rigel.

The first model in Figure 16(a) shows a model with assignments of satisfaction
values to Fragments with no incoming positive or negative influence relations. This
assignment is a result of applying f.sat.leaf. There can be other assignments, as the
values depend entirely on the model user who is assigning them.

The second model, in Figure 16(b) is the result of applying f.sat.inf.pos
andf.sat.inf.neg on positive and negative influence relation instances which are
directly connected to the leaf Fragments. You can think of this model as showing one
step of propagating the satisfaction values assumed and shown in the first model in
Figure 16(a).

The third model shows the satisfaction values assigned after applying f.sat.inf.pos,
f.sat.inf.neg, and f.sat to all influence relation instances and Fragments in the model.

The model in Figure 16(d) shows two Outcomes, that is, two assignments of
satisfaction values to every Fragment and relation instance. Values for one Outcome
are shown on black squares, and on grey squares for the other. •

L.Rigel delivers s.SatReq in the following way. Given a model, you apply f.sat.leaf
and assign one satisfaction value to every leaf Fragment. You then propagate satis-
faction values using f.sat.inf.pos, f.sat.inf.neg, and f.sat, until you have one Outcome.
If that Outcome assigns the satisfaction value 1 to every requirement in the model,
then the answer to s.SatReq is affirmative, and is “no” otherwise.

9.1.4 With Alternatives

Exercise 22: Define a language which can propagate satisfaction values over
Alternatives and Combinations

How would you define a language which can represent the same as
L.Mirfak, but also lets you have Alternatives and Combinations, and
assign v.Satisfaction values on Fragments and relation instances?

If you add f.sat.inf.pos, f.sat.inf.neg, f.sat, and f.sat.leaf to L.Mirfak, this will not produce
appropriate satisfaction values. This is because f.sat ignores r.xor. For illustration,

consider this question: what is the satisfaction value of x, if there are only two positive
influence relation instances to x, namely, (y, x) ∈ r.inf.pos and (z, x) ∈ r.inf.pos, and if
they are such that

((y, x), (z, x)) ∈ r.xor,

f.sat.inf.pos((y, x), M) = 1,

f.sat.inf.pos((z, x), M) = 0.

Clearly, f.sat will say that 〈x,v.Satisfaction,0〉, but this is not correct. The correct value
assignment is 〈x,v.Satisfaction,1〉, because (y, x) and (z, x) are Combinations.

The language needs a replacement for f.sat, which is sensitive to the presence of
r.xor instances. This replacement is f.sat.x, defined below.

Function

Satisfaction over Alternatives
(f.sat.x)

Input

Fragment x and model M .

Do

1. Find the set {(p1, x), . . . , (pn , x)} ⊆ r.inf.pos of all positive influence rela-
tion instances to x in M .

2. Find the set {(q1, x), . . . , (qm , x)} ⊆ r.inf.neg of all negative influence rela-
tion instances to x in M .

3. Find the set {a1, . . . , ah } ⊆ r.xor of all r.xor instances over the posi-
tive and negative influence relation instances to x in M , that is, over
{(p1, x), . . . , (pn , x)}∪ {(q1, x), . . . , (qm , x)}.

4. Let Mx = (X ,R, A) such that X = {x}, R = {(p1, x), . . . , (pn , x)} ∪
{(q1, x), . . . , (qm , x)}, and A = {a1, . . . , ah }.

5. Find the set O of all Combinations in Mx by applying f.find.all.cb on Mx .
Note that O includes all Combinations of positive and negative influence
relations to x in M .

70

(a) Satisfaction values assigned with f.sat.leaf. (b) Satisfaction values after applying f.sat.inf.pos and f.sat.inf.neg.

(c) Satisfaction values of all Fragments and relation instances in the model. (d) Two sets of assumed satisfaction values and their propagation.

Figure 16: Models and value assignments in L.Rigel.

71

6. Suppose that there are g Combinations in O, so that O = {O1, . . . ,Og }.
Suppose that a generic Combination Ok includes the Choices
{pb , . . . , qc , . . .}. For each Combination Ok , compute

vOk
= ∏

(pi ,x)∈Ok

f.sat.inf.pos((pi , x), M) · ∏
(q j ,x)∈Ok

f.sat.inf.neg((q j , x), M)

7. Let max(vOk
) be the maximal value among all values vO1 , . . . , vOg .

8. Satisfaction value of x in M is given by 〈x,v.Satisfaction,max(vOk
)〉.

Output

〈x,v.Satisfaction,max(vOk
)〉.

Language Services

• s.WhSat: 〈x,v.Satisfaction,max(vOk
)〉.

Instead of taking the product of all satisfaction values, on all edges to x in a model,
as f.sat did, f.sat.x first needs to find all allowed combinations of influences to x,
and then compute the product of satisfaction values for each of these. An allowed
combination of influences includes a subset of all influences to x, whereby that
subset has to include all influences which are not mutually exclusive. To illustrate
how f.sat.x works, I start by defining a language which uses it.

Language

Capella

Language Modules

F, T, V, r.inf.pos, r.inf.neg, r.xor, f.brel2g, f.cat.ksr, f.sat.inf.pos, f.sat.inf.neg,
f.sat.x, f.sat.leaf

Domain

Fragments have three partitions, namely requirements, domain knowledge,
and specification Fragments, F= c.r∪c.k∪c.s and c.r∩c.k∩c.s=;. Influences
are over Fragments, r.inf.pos⊆ F×F, r.inf.neg⊆ F×F. r.xor instances are over
influence relations of the same type,

r.xor⊆ (r.inf.posn)∪ r.inf.negn)

Value assignments are over Fragments or relation instances, involve a Value
Type, and a value, so that

V⊆ (F∪ r.inf.pos∪ r.inf.neg)×T×v.Satisfaction.

The language has one binary Value Type, T = {v.Satisfaction}, and
v.Satisfaction= {1,0}.

Syntax

A model M in the language is a set of symbols M = {φ1, . . . ,φn }, where every
φ is generated according to the following BNF rules:

α ::= x | y | z | . . .

β ::= r | k | s

γ ::= β(α)

δ ::= (γ,γ)

ε ::= (δ,δ, . . .)

θ ::= 〈α,ζ,η〉
φ ::= γ | δ | ε | θ

Mapping

α symbols denote Fragments, D(α) ∈ F. β symbols are used to distinguish
requirements, domain knowledge, and specification Fragments, and are used
in γ symbols, so that D(r (α)) ∈ c.r, D(k(α)) ∈ c.k, D(s(α)) ∈ c.s. δ symbols
denote positive and negative influence relations. ε symbols denote r.xor
instances, D(ε) ∈ r.xor. ζ symbols denote Value Types, D(ζ) ∈ T. η denotes a
value of a Value Type, and as there is one Value Type, then D(η) ∈ v.Satisfaction.
θ symbols denote value assignments, D(θ) ∈V.

72

Language Services

Those of relations and functions in the language, and s.SatReq.

Example 9.2. Figure 17 illustrates L.Capella and the assignment of satisfaction values
when there are r.xor instances in a model.

Figure 17(a) shows a model in L.Capella. The model has no value assignments.
It shows four r.xor instances. The Alternatives shown give two Combinations. One
Combination is shown in Figure 17(b), where the removed Alternatives are in bold.
The other Combination is in Figure 17(d), and again, removed Alternatives are in
bold.

Suppose that you apply f.sat.leaf to the leaf Fragments in the first Combination,
and that you get the values shown in Figure 17(b). If you then propagate these values
to ChoAmb, you get the satisfaction values shown in Figure 17(c). In other words,
if you actually deleted the bold relations in Figure 17(c), the satisfaction value of
ChoAmb would be 1.

Consider now the second Combination. Suppose that you applied f.sat.leaf to the
leaf Fragments in that Combination, and that you got the values shown in Figure
17(d). If you propagate these values, the satisfaction value of ChoAmb is 0.

Let O1 denote the first, and O2 the second Combination. The conclusion from the
above is that vO1 = 1 and vO2 = 0. Following f.sat.x, the result is

〈ChoAmb,v.Satisfaction,1〉.
The result reflects the idea that there are two Combinations for ChoAmb, and that
ChoAmb should be satisfied, if at least one of these Combinations propagates the
satisfaction value 1 to ChoAmb. Because Combinations are mutually exclusive, there
is no need for more than one Combination to propagate the satisfaction value 1 to
ChoAmb.

Figure 17(f) shows another set of leaf value assignments, shown on grey squares,
and the propagation of these values to ChoAmb. The difference is that in that Figure,
grey squares carry value assignments where the first Combination propagates the
satisfaction value 0 to ChoAmb, while the second Combination now propagates the
satisfaction value 1. •

9.2 How to Combine Several Binary Value Types?

This section looks at how to have more than one Value Type in a language. It focuses
on a simple case when there are two binary Value Types. Consider the following
Language Service.

Language Service

AppSat: Which requirements in the model M are both approved by all stake-
holders, and satisfied?

The language needs two Value Types, one for satisfaction and the other for ap-
proval. They will be called v.Satisfaction and v.Approval. If you allow a stakeholder
to either approve or not a requirement, then v.Approval is a binary Value Type. By
analogy to v.Satisfaction, which remains here the same as in Section 9.1, there is
v.Approval= {1,0}, where 1 reads “approved”, and 0 “not approved”.

Then, it is necessary to decide how the approval of a Fragment depends on the
approval of other Fragments, if in any way. One option is to ask stakeholders to assign
an approval value to each requirement Fragment, and therefore not compute the
approval value of requirements. Another is to allow influence relations (or some other
relations in the language) to be significant for approval, perhaps in the same way that
they were significant for satisfaction in Section 9.1. That is, if there is (y, x) ∈ r.inf.pos,
and it is known that y is approved, than a rule would say how this should be taken
into account to compute the approval value of x.

Section 9.2.1 looks at the case where the approval values are assigned to every
Fragment manually, so that there is no need for rules to compute those values.
Section 9.2.2 focuses on the case where missing approval values can be computed
from those that exist in a model.

9.2.1 When Value Assignments are Independent

Consider the following exercise.

Exercise 23: Define a function that assigns an independent approval value to a
Fragment

Suppose that the approval value of a Fragment or relation instance
is independent from the approval value of another Fragment, or of
a relation instance. Moreover, suppose that the satisfaction values
are independent from approval values, and vice versa. If I approved
Fragment x, then this has nothing to do with whether I will approve
Fragment y , or whether y is satisfied. How would you enable a language
to assign approval values in this way and deliver s.AppSat?

73

(a) A model in L.Capella without value assignments. (b) Initial values on the first Combination. (c) Propagated values on the first Combination.

(d) Initial values on the second Combination. (e) Propagated values on the second Combination. (f) Two v.Satisfaction assignments to a model in L.Capella.

Figure 17: Models and v.Satisfaction value assignments in L.Capella.

74

You can add v.Approval to L.Rigel, and add a function for asserting approval values
which works in the same way as f.sat.leaf. The function is as follows.

Function

Assume independent approval value
(f.app.asg.ind)

Input

Fragment x.

Do

If a stakeholder approves x, then v = 1, else v = 0.

Output

〈x,v.Approval, v〉

Language Services

• s.AsmApp: Is x approved by a stakeholder? : Yes, if 〈x,v.Approval,1〉, no
otherwise.

Assigning approval values in a model M with f.app.asg.ind consists of asking a
stakeholder to approve each Fragment and relation instance.

Two issues arise:

1. There can be many stakeholders, so you should decide if the approval value
reflects the approval of a single stakeholder, of some, or of all. The issue is
whether to allow the assignment of tuples of approval values to model parts,
with one approval value per stakeholder. f.app.asg.ind assigns individual values.

2. How to read and use, if in any way, the combination of a satisfaction and ap-
proval value on a Fragment? For example, is there some new information to
conclude from knowing both that a Fragment is satisfied and that it is not
approved? Satisfaction and approval values still are independent, but the ques-

tion is if you should draw some additional conclusion from knowing both the
satisfaction and approval value of a Fragment or relation instance.

On the first issue, if the models need to show all approval values, from all stake-
holders, then the language should allow every model part to carry as many approval
values as there are stakeholders. The approval value of a model part would be a tuple,
each element being the approval value of one stakeholder.

If it is necessary to decide a single approval value of a model part, when there are
many approval values coming from many stakeholders, then the language needs
to have rules for aggregating approval values. For example, aggregation rules can
be that if all stakeholders approve a model part, then it is approved, or that if the
majority approves a model part, then it is approved, and so on. Research in group
decision making [30] and social choice [26, 4] are one source of such aggregation
rules.

The second issue is if knowing both the satisfaction and approval values together
gives some additional information for problem solving, and which is useful for
deciding what to do next with the model. For example, if a model part is both
satisfied and approved, then it is probably more interesting to look at other model
parts in the next steps of problem-solving. If model parts are seen as representations
of parts of the problem being solved and of its potential solutions, then a satisfied
and approved model part can be considered as a solved problem part.

In this same line of thinking, if a model part is not satisfied, but is approved, then
it will need to be solved, that is, it is necessary to change the model in such a way as
to ensure that, in the changed model, the model part is both satisfied and approved.
There is the case of a satisfied and not approved part, which can become solved by,
for example, negotiating its approval with or among stakeholders, or by removing
from the model those parts which satisfy it, yet are unnecessary for satisfying the
approved model parts. The final case is that of a part which is neither satisfied, nor
approved. It may thereby not even be a part of the problem, even if it is part of the
model. Table 1 summarises these ideas.

Table 1: Combinations of v.Satisfaction and v.Approval values.

Approved Not approved

Satisfied No action needed Negotiate or remove
Not satisfied Find a way to satisfy it Ignore

The more general point for language design is that allowing two or more Value
Types raises the question of how to use the various combinations of these values in
problem solving, if to use them at all.

75

If the value combinations are useful, then this can be captured by a new Value
Type, and functions for assigning and, or computing their values. For illustration,
two new Value Types are defined blow, one from combinations of v.Approval only,
the other from both v.Approval and v.Satisfaction.

Example 9.3. v.MajApp= {1,0} is such that 1 is given to a model part if half or more
of all stakeholders have assigned the v.Approval value 1 to this model part. This gives
the following function. •

Function

Majority approval
(f.app.maj)

Input

Fragment x.

Do

If more than half of all stakeholders approve x, then v = 1, else v = 0.

Output

〈x,v.MajApp, v〉.

Language Services

• s.IsMajApp: Is x approved by the majority of stakeholders? : Yes, if
〈x,v.MajApp,1〉, no otherwise.

Example 9.4. v.SatNext= {1,0} is used to mark model parts which are approved and
not satisfied. As they are approved, there is no need to discuss them further with
stakeholders, but focus on how to change the model to satisfy them. These values
are assigned with the following function. •

Function

Satisfy next
(f.sat.nxt)

Input

Fragment x.

Do

v = 1 if 〈x,v.Satisfaction,0〉 and 〈x,v.Approval,1〉, else v = 0.

Output

〈x,v.SatNext, v〉.

Language Services

• s.DoSatNext: Should problem solving focus next on how to satisfy x? :
Yes, if 〈x,v.SatNext,1〉.

Neither v.MajApp, nor v.SatNext are defined over all four possible combinations of
v.Satisfaction and v.Approval values. This is because a Value Type which is defined
over all four combinations is not binary, but instead an unordered set of four values.
It is discussed in Section 9.3.

9.2.2 When Value Assignments are not Independent

In Section 9.2.1, only f.app.maj computed the approval value of a Fragment from
other approval values on that same Fragment. There were no rules about how, for
example, to compute the approval value of x from those of other Fragments, which x
is somehow related to.

Exercise 24: Define new relations, functions, or otherwise, for propagating ap-
proval values

If you have a language which cannot assign v.Approval values, how

76

would you change that language so that it can assign these values to
Fragments and relation instances, along similar lines as f.sat.inf.pos,
f.sat.inf.neg, f.sa or f.sat.x, and f.sat.leaf did for v.Satisfaction values?
Would you need new relations in that language? Which new functions
would you add, and why?

To compute approval values in models, rather than assign them manually to all
Fragments, you need to make analogous decisions to those made for functions which
computed satisfaction values in Section 9.1. Therefore, if the language does not
represent alternatives, and you want to assign approval values by propagating them,
then you need to make the following decisions:

1. What is the relation r whose instance (y, x) ∈ r should exist, in order for the ap-
proval value of the Fragment x to depend on the approval value of the Fragment
y?

2. If there is a relation instance (y, x) ∈ r , and the approval value of y is 1 (or 0),
what should be the approval value of x?

3. If there are several relation instances (y1, x) ∈ r1, . . . , (yn , x) ∈ rn , and approval
values of y1, . . . , yn are not the same, then what should be the approval value of
x?

4. If there are no r relation instances to x, then what should be the approval value
of x?

If the language can represent alternatives with r.xor, then it is necessary to make sure
the function which computes approval values takes into account the r.xor instances.
This is by analogy to f.sat.x which is sensitive to r.xor, and f.sat which is not.

Recall how the questions above were answered for v.Satisfaction. The presence of
r.inf.pos or r.inf.neg between two Fragments x and y meant that the satisfaction value
of one depended on that of the other. If you think in terms of value propagation,
positive and negative influence relations were used to propagate satisfaction values.
That answers the first question. f.sat.inf.pos and f.sat.inf.neg defined how satisfaction
value of x depends on that of y , in case when there is, respectively, (y, x) ∈ r.inf.pos or
(y, x) ∈ r.inf.neg. For languages which do not represent alternatives, f.sat answers to
the third question above; when there are alternatives in models, f.sats answers the
third question. Finally, f.sat.leaf was the answer to the fourth question.

9.3 What If a Value Type Is a Set of Values?

What if a Value Type is a set of values, and there is no order over them? In Section
9.2, there were four combinations of binary values from two core binary Value Types,

v.Satisfaction and v.Approval. Table 1 gave a reading of these combinations. The four
combinations can be used to define the three values of a new Value Type. This new
Value Type is called v.ToDo. These values are as follows:

• Done, when satisfaction and approval values are both 1,

• Operationalise, when satisfaction is 0 and approval 1,

• Negotiate or remove, when approval is 0, regardless of satisfaction.

Each value suggests what to do next about the Fragment or relation instance it is
assigned to, hence the name of the Value Type. The rules for assigning this Value Type
are straightforward, as its values are fully determined by the satisfaction and approval
values. I leave it to the reader as an exercise to define these rules in a function, and
to add that function to any of the languages defined so far in Section 9.

To illustrate a more complicated Value Type which is also a set of unordered values,
recall that I defined five questions, Who, How, When, Where, and WhoFor and the
corresponding unary relations. Suppose that you want to make a language which
delivers the following Language Service.

Language Service

WhichDetail: Which of the questions among Who, How, When, Where, and
WhoFor were not asked for the Fragment x?

There are different ways to deliver s.WhichDetail, but I will focus on one which
uses a Value Type, whose values are assigned exclusively to Fragments. The assigned
value is such that it tells the modeller exactly those questions which were not asked
for that Fragment. Examples of its values are the set {When,Where,WhoFor} when
these three questions are not answered for a Fragment, or{Who} if only that question
was not answered for the Fragment.

This new Value Type is v.AskNext, and it has 25 possible values. The value to
assign to a Fragment x is computed using simple rules, which look at the presence
or absence of r.q instances that target x, where q is any of the five questions. The
following function defines these rules.

Function

77

What to ask next
(f.ask.next)

Input

Fragment x and model M .

Do

Let V be an empty set. Let Ix = {(p1, x), . . . , (pn , x)} ⊆ r.ifm be the
set of all instances of r.ifm in M which end in x. For each q ∈
{Who,How,When,Where,WhoFor}, if there is (pi , x) ∈ Ix such that (pi , x) ∈ r.q,
then add q to V .

Output

〈x,v.AskNext,V 〉.

Language Services

• s.WhichDetail: Those which are not in V , in 〈x,v.AskNext,V 〉.

An important idea illustrated with all Value Types so far, and in particular with
v.SatNext, v.ToDo, and v.AskNext, is that values on model parts can act as cues for
what to do next with the model, and more generally, what next steps to take in
problem solving.

9.4 What If Some Values Cannot Be Assigned After Others?

What if some sequences of assignments of values to the same Fragment or relation
instance are not allowed? That is, you can assign some value v1 only to those Frag-
ments or relation instances which are already assigned the value v2, and not some
other value. Suppose that the aim is to design a language which delivers the following
Language Service:

Language Service

WorkProgrRep: What is the progress in the implementation of the specifica-
tions in the model M?

This Language Service can be interesting for teams where the model is used
to distinguish specifications which are implemented, from those that remain to
be implemented. If the model includes requirements, domain knowledge, and
specifications, asking about the progress of work may refer to how close the team
is to finding a solution such that the requirements are satisfied. Or if a solution
was found, if, or what parts of it, are implemented, and thereby get an idea about
how much of the system is already in place. These two are two different ways to
understand ”work progress”. I will focus on the second one, because the first was
discussed earlier, with v.SatNext, v.ToDo, and v.AskNext.

Suppose that the team is using the following simple steps for each specification
Fragment x:

1. check if specification x is approved by the system designer, and if yes then

2. check if there is an estimate of time required to implement x, and if yes then

3. check if x is added to product roadmap, and if yes then

4. check if x is ready for testing, and if yes

5. check if x is approved for release, and if yes, then stop.

Exercise 25: Define a Value Type whose values can be assigned in a specific
sequence

Define a new Value Type which has, as its values, the names of steps in
the process outlined above. How do you ensure, in a language which
has that Value Type, that its values are assigned in the appropriate
sequence? For example, the value for the third step in the process
cannot be assigned to the same Fragment if that Fragment carries the
first value.

The process suggests values for a new Value Type. Call it v.ProgrStatus. Let it have
the following values, each corresponding to the respective step above: DesignAp-
proved, EstimateDone, InRoadmap, TestReady, and ApprovedForRelease. Assuming
that these values are manually assigned in a model (rather than computed). Given
the discussions of valuation so far, it should be clear how to add this Value Type to
any of the languages in the preceding sections.

78

What I want to emphasise with this Value Type, is that its values alone do not
convey the idea which is informally clear in s.WorkProgrRep and from the steps
described above, namely, that there is an order, from the approval that x should be
done, or implemented, or otherwise completed, to its completion and release.

The order introduces constraints on when a value can be assigned to x, and
depends on the value which x already has. Suppose that I want to force modellers to
assign the values of v.ProgrStatus according to this order. That is, if some x is assigned
DesignApproved, then it cannot be assigned InRoadmap. The modeller can change
the value on x from DesignApproved to EstimateDone, and only then change the
value to InRoadmap, not go straight from DesignApproved to InRoadmap. This can
be done with a function which checks if the assignment of a value of v.ProgrStatus
satisfies the order over the values. The function is as follows.

Function

Check progress status sequence
(f.chk.progrstatus)

Input

Fragment x and two value assignments 〈x,v.ProgrStatus, vold〉 and
〈x,v.ProgrStatus, vnew〉, where 〈x,v.ProgrStatus, vnew〉 is the new value that a
modeller wishes to add to x, to replace 〈x,v.ProgrStatus, vold〉.

Do

Check if (vold, vnew) is in the following set

{ (none,DesignApproved), (DesignApproved,EstimateDone),

(EstimateDone, InRoadmap), (InRoadmap,TestReady),

(TestReady,ApprovedForRelease)}

If yes, then let v = 1, else v = 0.

Output

v .

Language Services

• s.ProgrStatusOk: Can 〈x,v.ProgrStatus, vnew〉 replace
〈x,v.ProgrStatus, vold〉? : Yes, if v = 1, otherwise no.

The function takes the current (old) assignment of a v.ProgrStatus value, and
checks if the new value assignment, which replaces the old, satisfies the constraints
on the sequence in which the values of this Value Type can be assigned. Returning to
s.WorkProgrRep, notice that it is delivered as soon as it is possible to assign values of
v.ProgrStatus to model parts in a language.

9.5 What If a Value Type Is Over Reals?

The hypothetical work process in Section 9.4 has a step, when one checks if there
exists an estimate of time required to implement what a Fragment describes. If these
estimates need to be recorded in models, then there can be a new Value Type, call it
v.ImplTime, whose allowed values are positive reals, integers most likely.

Depending on the specifics of the language which has this Value Type, the assign-
ment of implementation time values can be entirely manual or partly automated. In
absence of automation, the language would require that an individual, or more of
them, assign a positive integer value to each Fragment.

In the partly automated case, values assigned to some Fragments would be used
to compute values on others. Let the language have positive and negative influence
relations, for example. Suppose that there are only two positive influence relations
(y, x) and (z, x) to a Fragment x. If the assigned implementation time to y is 10
man-hours, and to z is 5 man-hours, the language could include a function which
sums these two, and returns 15 man-hours a the implementation time for x. More
generally, that function would be summing implementation time over all incoming
positive influence relations.

It is up to you to decide if such a function is useful in a language. The point is
simply that you can define new functions for such purposes. They can aggregate
already assigned values into values of a new Value Type. Again, I leave it to the reader
as an exercise, to define a language which uses v.ImplTime.

Return now to v.ProgrStatus, where the step called EstimateDone was completed
for a Fragment x if, in the terminology of this section, there is a value of v.ImplTime
assigned to x.

Now, suppose that the team has the rule that, if a Fragment obtains an v.ImplTime
value equal or greater than 20 man-hours, then it has to be approved again by

79

the system designer. Nothing else should change in their work process. Once x
is approved, it will immediately enter the product roadmap, because it has the
implementation time estimate.

To add this to a language, define a function which is applied for every Fragment
that has a v.ImplTime value of 20 or more, and which simply removes the value of
v.ProgressStatus of that Fragment, thereby requiring again the approval of the system
designer (the language has to have f.chk.progrstatus). The definition of the function
is as follows.

Function

Recheck 20 or more
(f.chk.20more)

Input

Model M .

Do

For every Fragment x in M , if x is such that its v.ImplTime is 20 man-hours
or more, and its v.ProgrStatus is EstimateDone, and since it was added to
the model, it was only once been assigned the value DesignApproved, then
remove the v.ProgrStatus value from x.

Output

A new model M ′, where all Fragments which were assigned v.ImplTime of 20
man-hours or more, and which were not assigned twice the v.ProgrStatus
value DesignApproved, now have no v.ProgrStatus value.

Language Services

• s.WhAppAgain: Which Fragments in a model M , among all those that
have v.ImplTime of 20 man-hours or more, need to be approved again by
the system designer? : All Fragments in M , which in M had, and in M ′
do not have a v.ProgressStatus value.

9.6 Summary on Valuation

Valuation consists of assigning variables to Fragments and relation instances, defin-
ing functions over these variables, and given an assignment of values to some of the
variables, using the functions to compute values of others.

The section on gave various illustrations of Value Types and how to assign values
to parts of models. The key ideas were that to do valuation, it is necessary to choose
one or more Value Types for a language. Value Types can be primitive, when they
are not defined from other Value Types. v.Satisfaction and v.Approval were primary,
for example. There can be derived Value Types, whose values are combinations of
values of other Value Types. One of the examples was v.ToDo.

Variables take values from Value Types, and these variables are associated to
Fragments and relation instances. One compelling reason for allowing relation
instances to be associated with variables, and receive values, is that one can define
rules for computing the value on a Fragment. This was illustrated with f.sat and
f.sat.x.

Many other topics on valuation are important, and I discuss some of them in
subsequent sections, while others remain outside the scope of the tutorial:

• What if random variables need to be assigned to model parts, to say, for example,
that there is a probability for a Fragment to get some value? I discuss this in
Section 10.

• How to say in models that some values are more or equally desirable than others,
on the same Fragment or relation instance, or on other Fragments and relation
instances? This is the topic of Section 11.

• How are Value Types and valuation related to truth values in classical and non-
classical logics? I will revisit this briefly, for classical logic, in Section 12.

80

10 Uncertainty and Probability

Overview and Motivation

What if you need models to say that a value assignment is uncertain, and to quantify
that uncertainty? What if models need to include random variables?

This section focuses on how to represent that value assignments to model parts
are uncertain. This is done by allowing random variables to be associated to model
parts, and defining probability spaces for these random variables, so that you can
give a probability that the random variable takes a specific value, or any value in a
range. The section is organised around the following questions:

• How to represent independent random variables in a model? (Section 10.1),

• What to do when there are dependent random variables in a model? (Section
10.2).

In Section 9.5, the implicit assumption was that there is no uncertainty in value
assignments of v.ImplTime. This may be unrealistic. There can be changes in require-
ments, domain knowledge, and, or specifications, errors in the implementation, or
other issues. Stakeholders may be unsure about their estimates.

It was not possible to represent uncertainty about estimates with languages dis-
cussed so far. That is, all value assignments were certain. To have more realistic
models, a language would need to deliver the following Language Service.

Language Service

UncImplTime: How uncertain is the assignment of the v.ImplTime value to
the Fragment x in M?

If a language can deliver s.UncImplTime, then its models can also answer such
questions as, for example, “How uncertain (or certain) is it that the implementation
time of x will be v?”, where v is the v.ImplTime value assigned to x.

The same assumption was implicit when v.Satisfaction values were assigned. If
a model assigns the satisfaction value 1 to a requirement such as, say, AddRepEm,
then the model says that all emergency calls are responded to. The requirement is
idealistic, as it is inevitable that, among tens of thousands of calls, some will not be
responded to, or not within some prescribed time. But again, there was no way to
take a more realistic position, that there is uncertainty about satisfaction values. To
avoid this assumption, and allow the representation of more realistic requirements,
the language would need to deliver the Language Service below.

Language Service

UncSat: How uncertain is the assignment of the v.Satisfaction value to a
Fragment x in M?

v.Approval value assignments can be uncertain as well. A stakeholder may change
her mind, and change previously assigned approval values. A model may capture
this by describing the uncertainty of an approval value on a Fragment, that is, would
deliver the following Language Service.

Language Service

UncApp: How uncertain is the assignment of the v.Approval value to a Frag-
ment x in M?

If a model can answer the above, then it can also answer questions such as, for
example, “How certain is it that the approval value of x will change?”. This is relevant
if you need to decide whether to ask stakeholders for approving again a model, or if
the already assigned approval values are stable enough to avoid another round of
approval.

To deliver the Language Services above, a language needs to have means for quali-
fying or quantifying uncertainty. Qualifying amounts to having a scale of qualitative
values for describing uncertainty, such as, for example, a scale with only the values
“low”, “medium”, and “high”. Quantifying usually means assigning and calculating
probability values to events. A language can also combine both, by, for example,
having rules that map ranges of probability values to values on a qualitative scale

81

(say, if probability that a stakeholder changes her approval value on x is at most 0.1,
then this corresponds to the value “low” on the qualitative scale), but the challenge
in having both is being clear on what they are used for.

10.1 How to Have Independent Random Variables in Models?

To quantify the uncertainty of value assignments, it is necessary to define the proba-
bility space of a random variable.

Recall that a probability space is a triple (S ,E ,P), where S is the sample space,
which includes all possible outcomes of a phenomenon, E is the set of all events,
where an event can contain zero or more outcomes, and P is a probability measure,
a function which given an event, returns a real value in the range [0,1]. If e ∈ E , then
P (e) is called the probability of e. If, for example, the phenomenon of interest is the
tossing of a perfect coin, then the sample space is S = {H ,T }, with two outcomes,
called H when the “heads” side of the coin is up, and T when the “tails” side is. E

includes all possible combinations of outcomes, that is, it is the power set of S ,
and the probabilities of events are as follows: P (;) = 0, P ({H }) = 0.5, P ({T }) = 0.5,
P ({H ,T }) = 1. The probability space would be different if, for example, I was tossing
a pair of coins.

An important consequence of allowing random variables in models, is that you
have to define a probability space for each variable. And there can be many such
variables. For example, suppose that you have a model in L.Rigel, and that all
assignments of v.Satisfaction values are uncertain. You know from L.Rigel that,
because it has f.sat.inf.pos, f.sat.inf.neg, f.sat, and f.sat.leaf, that you have to assign all
satisfaction values to leaf Fragments, and then propagate these values to influence
relation instances and Fragments. Now, to quantify the uncertainty of all these
value assignments of satisfaction values, observe that you have as many random
variables, as there are assignments of satisfaction values. This is because if x is
a Fragment or relation instance, then there is a random variable x.v.Satisfaction,
and you need a probability space for it. So if 〈x,v.Satisfaction,1〉, or equivalently,
x.v.Satisfaction= 1, then you need a probability space for x.v.Satisfaction in order to
compute the probability of it getting a specific satisfaction value. If that value is 1,
you need its probability space if you want a value for P (x.v.Satisfaction= 1), which is,
given my notational conventions in this tutorial, the same as wanting the value of
P (〈x,v.Satisfaction,1〉).

Exercise 26: Define a function which returns the probability of a value assignment

Take any language defined so far, and which can represent the as-
signment of a v.Satisfaction value to Fragments and relation instances.
How would you enable that language to represent the probability of a
v.Satisfaction value assignment?

To deliver s.UncImplTime, a language needs to associate a random variable
x.v.ImplTime to every Fragment x. In addition, each random variable will come with
its own probability space, which includes the function that returns the probability of
a specific value of x.v.ImplTime.

Recall that v.ImplTime is a positive real. For any Fragment x, then, and in the
terminology of probability spaces, x.v.ImplTime takes a value from the sample space
[0,∞), and any such value is an outcome. Any event of interest is any one of these
outcomes. Furthermore, as it takes a real value, x.v.ImplTime has a continuous
probability distribution, and has to have a probability density function, which is
denoted pdf(x.v.ImplTime) below.

For example, perhaps vx follows a normal (Gaussian) distribution with a mean
of 10 man-hours, and a standard deviation of 2 man-hours, so that pdf(vx) =
(1/2

p
2π)e−(vx−10)2/8. But, there can be another Fragment y , which has vy as its ran-

dom variable, and vy may have a completely different probability density function
(not the one for normal distribution).

Regardless of the specifics of the probability density function, the uncertainty of a
value assigned to x.v.ImplTime is quantified with a probability measure, whereby the
probability that implementation time x.v.ImplTime is in the interval [a,b] is given by

P [a ≤ vx ≤ b] =
∫ b

a
pdf(vx)d v.

Similar stories can be told for v.Satisfaction and v.Approval. If you want to indicate
in a model that you are unsure about the satisfaction or approval value on a Fragment
or relation instance x, then associate the random variable to x, and define the
probability space for it.

How does the discussion influence the Language Modules that you define in a
language. It is important to see that there are two ways to use random variables.

1. Probability measurement consists of doing the following. Start by assign-
ing values to Fragments, and then calculate the probability of these values.
For example, if the estimate of implementation time for a Fragment x is 13
man-hours, then calculate the probability P [x.v.ImplTime ≤ 13]. The proba-
bility value thus quantifies the uncertainty of this estimate, with the slight
adjustment that it gives the probability that implementation time for x will
be at most 13 man-hours, and not exactly 13 man-hours. The adjustment
is due to pdf(x.v.ImplTime) being a continuous function over reals, so that
P [x.v.ImplTime = c] = 0, for any constant c. If x.v.ImplTime is discrete, and
has a probability mass function instead of pdf(x.v.ImplTime), then it makes
sense to compute P (x.v.ImplTime= 13).

82

2. Simulation: Do not assert the value of a random variable x.v.ImplTime, but
generate a value for it by simulation. So instead of assigning yourself, or asking
someone for a value of implementation time, obtain that value through simula-
tion which generates random values that satisfy the specifics of the probability
density function, or probability mass function of the random variable.

Both approaches add new functions and Value Types to a language. The measure-
ment approach adds functions which return probability values, while the simulation
approach adds functions which return a value of a random variable, produced by
simulation. If a model has n random variables, then there have to be n probability
spaces, one per random variable. I introduce the convention that each probability
space defines a new Value Type, which is named as follows: if x.v.ImplTime is the
random variable, then there has to be the Value Type v.prob(x.v.ImplTime) defined by
the probability space for x.v.ImplTime. Illustrations are below.

For the measurement approach, a language can have a generic function which
takes a probability space and returns a probability value, and is defined as follows.

Function

Assign probability value
(f.prob.asg)

Input

• Assignment either of a single value 〈x,v.T, w〉 or of a range 〈x,v.T, w1 ≤
v ≤ w2〉 to random variable of Value Type T on Fragment x, and

• Value Type v.prob(x.v.T), defined by the probability space (S ,E ,P) for
the random variable x.v.T.

Do

If the input is 〈x,v.T, w〉, then p = P (x.v.T = w). If input is 〈x,v.T, w1 ≤ v ≤
w2〉, then p = P [w1 ≤ vx ≤ w2].

Output

〈x,v.prob(x.v.T), p〉, that is, the assignment of a probability value, which is the
probability that 〈x,v.T, w〉 or 〈x,v.T, w1 ≤ v ≤ w2〉, depending on the input to

f.prob.asg.

Language Services

• s.WhProbability: If the probability space for the random variable x.v.T
is (S ,E ,P), then what is the probability that x.v.T = w if w is given,
or that x.v.T ∈ [w1, w2], if [w1, w2] is given? The value assignment
〈x,v.prob(x.v.T), p〉 returned by f.prob.asg.

As it is defined above, f.prob.asg is not specific to particular Value Types, or to
discrete or continuous random variables. The function assumes that a probability
space is already defined for a random variable x.v.T, and f.prob.asg returns, using
the probability function defined for that space, the probability value. f.prob.asg is
defined rather loosely, since it says nothing about, for example, how it is ensured that
the input value or range for x.v.T matches the properties of the probability space,
that is, makes sense for the given probability space (for example, if a single value is
input to f.prob.asg, then f.prob.asg will return a zero value if the random variable is
not discrete).

If the language does allow the definition of random variables, a major difficulty is
to design relevant probability spaces, be it because of biases [127], or because the
required data is hard to find. For instance, it may not be clear at all where to look
for useful data, in order to define the probability space for implementation time of
some Fragment x.

The simulation approach also involves adding one or more functions to a lan-
guage. For example, let the aim be to generate values for random variables that
follow the normal distribution. A function is needed, which takes the mean and
standard deviation parameters of the normal distribution that the variable follows.
The function may apply, for example, the Box-Muller method [19] to generate and
output a value for the random variable.

A model can include random variables, such as some x.v.Tq, whose probability is
determined by a joint probability distribution of two or more other random variables,
say x1.v.T1, . . . , xn .v.Tm in the same model.

For illustration, suppose that the probability space v.prob(x.v.Satisfaction) is such
that the probability of x.v.Satisfaction is given by the joint probability distribution of
the variables

x1.v.Satisfaction, . . . , xn .v.Satisfaction.

If they are all independent variables, then

P (x.v.Satisfaction= b) = P (x1.v.Satisfaction= a1) · . . . ·P (xn .v.Satisfaction= an).

83

If the model says that every Fragment x1, . . . xn has to be satisfied, in order for x to
be satisfied, then

P (x.v.Satisfaction= 1) = P (x1.v.Satisfaction= 1) · . . . ·P (xn .v.Satisfaction= 1).

The above can be shown as a graph, by having an edge from each of the random
variables xi .v.Satisfaction to x.v.Satisfaction. Another approach is to reuse instances
of another relation, some r.K, which already generates a graph. This consists of
assuming that each r.K instance also indicates that the probability of some value
assignment to a Fragment is the product of the probabilities of specific value assign-
ments on other Fragments. The following example illustrates this.

Example 10.1. Recall that a language can have influence relations to show how
a satisfaction value of a Fragment or relation instance influences that of another.
These relations can be used to define the joint probability distribution, to use to
compute the probability of satisfying a Fragment. Namely, a language can have
a rule which says that, if to satisfy x, it is necessary to satisfy all Fragments, say
x1, . . . , xn connected via r.inf.pos to x, then the probability of satisfying x is given by
the joint probability distribution of the random variables of v.Satisfaction, assigned
to x1, . . . , xn . The rule can be added to a language with f.prob.prod below.

Function

Compute probability that a Fragment is satisfied using probabilities that
Fragments which influence it positively are
(f.prob.sat.ind)

Input

Fragment x and model M .

Do

1. Let {y1, . . . , yn } ⊆ r.inf.pos be all r.inf.pos to x in M .

2. Let

〈y1,v.prob(y1.v.Satisfaction),P (y1.v.Satisfaction= 1)〉,
. . . ,

〈yn ,v.prob(yn .v.Satisfaction),P (yn .v.Satisfaction= 1)〉

be probability values that each y1 will take the v.Satisfaction value 1.

3. If y1.v.Satisfaction, . . . , yn .v.Satisfaction are independent random vari-
ables, and the probability of x.v.Satisfaction is given by the joint proba-
bility distribution of y1.v.Satisfaction, . . . , yn .v.Satisfaction, then

P (x.v.Satisfaction= 1) =
n∏

i=1
P (yi .v.Satisfaction= 1).

Output

〈x,v.prob(x.v.Satisfaction),P (x.v.Satisfaction= 1)〉.

Language Services

• s.WhProbSatInd: What is the probability of satisfying x, if y1, . . . , yn
all positively influence x in M , the probability of satisfying each of y1
is independent from the probability of satisfying any other y j , and
the probability of satisfying x is given by the joint probability dis-
tribution function of satisfying all Fragments which influence x? :
〈x,v.prob(x.v.Satisfaction),P (x.v.Satisfaction= 1)〉.

The language below allows random variables in models, and has f.prob.asg and
f.prob.sat.ind.

Language

Adhara

Language Modules

F, T, V, r.inf.pos, r.inf.neg, f.brel2g, f.cat.ksr, f.sat.inf.pos, f.sat.inf.neg, f.sat,
f.sat.leaf, f.prob.asg, f.prob.sat.ind

Domain

84

Fragments have three partitions, namely requirements, domain knowledge,
and specification Fragments, F= c.r∪c.k∪c.s and c.r∩c.k∩c.s=;. Influences
are over Fragments, r.inf.pos⊆ F×F, r.inf.neg⊆ F×F. Value assignments are
over Fragments or relation instances, involve a Value Type, and a value, so
that

V ⊆ W × {v.Satisfaction}×v.Satisfaction

∪ W × {v.prob(x.v.Satisfaction) | xW }× [0,1],

where W = F∪ r.inf.pos∪ r.inf.neg.

The above says that any value assignment is the assignment of a v.Satisfaction
to a Fragment or influence relation instance, or the assignment of a value from
a range [0,1] of reals, to x.v.prob(x.v.Satisfaction), where, again, x is a Frag-
ment or an influence relation instance. So the first part of V are assignments
of satisfaction values, and the second part are assignments of the probability
of satisfaction value assignments.

The language has many Value Types,

T = {v.Satisfaction}∪ {v.prob(x.v.Satisfaction) | x ∈W },

where W = F∪ r.inf.pos∪ r.inf.neg.

with v.Satisfaction = {1,0} and v.prob(w.v.Satisfaction) = [0,1], for every w ∈
W .

Syntax

A model M in the language is a set of symbols M = {φ1, . . . ,φn }, where every
φ is generated according to the following BNF rules:

α ::= x | y | z | . . .

β ::= r | k | s

γ ::= β(α)

δ ::= (γ,γ)

ε ::= 〈α,ζ,η〉
φ ::= γ | δ | ε

Mapping

α symbols denote Fragments, D(α) ∈ F. β symbols are used to distinguish
requirements, domain knowledge, and specification Fragments, and are used
in γ symbols, so that D(r (α)) ∈ c.r, D(k(α)) ∈ c.k, D(s(α)) ∈ c.s. δ symbols
denote positive and negative influence relations. ζ symbols denote Value
Types, D(ζ) ∈ T. η denotes a value of a Value Type, and as there is one Value
Type, then D(η) ∈ v.Satisfaction. ε symbols denote value assignments, D(ε) ∈
V.

Language Services

Those of relations and functions in the language, and s.SatReq.

Figure 18 shows a model in L.Adhara, when all the random variables of type
v.Satisfaction are independent. Each of these variable is denoted v[m], where m is
the Fragment identifier. Each random variable is of type v.Satisfaction. There is the
assignment of a probability value to each Fragment. Each indicates the probability
that the Fragment is satisfied, that the value of the variable is 1. The probability
that AmbArrIncLoc is satisfied is equal to the joint probability of satisfying all other
Fragments shown in the Figure. •

10.2 What If Random Variables Are Dependent?

This section drops two assumptions that were made in Section 10.1: (i) that events
are independent, so that the occurrence of one does not influence the probability
of another to occur, and (ii) that random variables are independent, or in other
words, that the occurrence of events of one of the variables does not influence the
probability of the events of the other random variable.

Exercise 27: Define a language which can represent dependent random variables

How would you change L.Adhara if its models need to represent depen-
dent random variables? How would you compute the probability of an
event in a model of that new language, if that probability depends on
the occurrence of other events that can be represented in the model?

A language can use Bayesian networks [101, 22] to represent dependency between

85

Figure 18: A model in L.Adhara with assignments of probability values.

random variables, and to compute probabilities of their events.

A Bayesian network is a directed acyclic graph (V ,E), where V is a set of random
variables and E of edges. There is an edge from v1 ∈V to v2 ∈V , iff P (v1) 6= P (v1 | v2),
that is, the probability of an event of v1 is different from the probability of the
event, given the occurrence of an event of v2. If there are two edges to v1, for
example (v3, v1) and (v2, v1), then this says that P (v1) 6= P (v1 | v2, v3) and that
P (v1 | v2) 6= P (v1 | v2, v3). More generally, in a Bayesian network, every random
variable is dependent only on its direct parent variables. In an edge (v2, v1), v2 is a
direct parent of v1, while if there another edge (v3, v2), then v3 is an indirect parent
of v1, and so, P (v1 | v2) = P (v1 | v2, v3).

An important property of Bayesian networks is that, to give the joint probability
distribution for all random variables in the network (that is, to have the probability
value for all events, of all random variables in the network), it is enough to specify
only the probability values for all events of all root random variables (those with no
parents), and the conditional probability values for all events of all non-root random
variables, for all possible combinations of events of their direct parents. While this
can require considerable work as well, it is less than the 2|V |−1 probability values,
which would otherwise need to be defined.

There are at least two approaches to enabling a language to represent Bayesian
networks in its models, provided that this language does allow associating random
variables to Fragments. The approach in Section 10.2.1 ignores relations which may
exist in the language. So there is no mapping between a Bayesian network and some
graph that a relation gives. This also means that there are no existing graphs in a
model in that language, which can be used to produce the corresponding Bayesian
network automatically. The approach in Section 10.2.2 automatically generates a
Bayesian network, based on a graph in a model of the language. I will consider both

options below.

10.2.1 If Bayesian Networks Ignore Existing Relations in a Language

The first approach consists of adding a function which takes all random variables
assigned to Fragments in a model, and produces a Bayesian network over these
variables (note that the network does not need to be a connected graph). The
function is defined as follows.

Function

Make a Bayesian Network
(f.make.baynet)

Input

Set X of Fragments.

Do

Let:

• VX be the set of all random variables, at most one per Fragment in X ,

• (VX ,E) be a Bayesian network with no edges,

86

Then:

1. for every pair x, y in VX , if P (x) 6= P (x | y), then add an edge to E , directed
from y to x,

2. for every random variable which is a root node in (VX ,E), define proba-
bility values for all its possible events,

3. for every random variable which is not a root node in (VX ,E), define con-
ditional probability values for all events of all non-root random variables,
for all possible combinations of events of their direct parents.

Output

Bayesian network (VX ,E).

Language Services

• s.WhProbBN: What is the probability of an event e of variable vx to
occur, according to the Bayesian network (VX ,E)? : P (vx = e) obtained
by evaluating the Bayesian network (VX ,E).

10.2.2 If Bayesian Networks are Derived from Existing Relations in a Language

Given a model in a language, f.make.baynet only uses the random variables assigned
to Fragments in that model. It ignores all else that may be said in the model, such as
the relations that the Fragments are in.

When the aim is to reuse more of the information in a model, then it may be
relevant to derive (part of) a Bayesian network from some relation in a language.

For illustration, recall that influence relations exist when the satisfaction value
of a Fragment depends on satisfaction values of others. If I decide that positive
influence relations should be interpreted as giving probability dependence between
random variables assigned to Fragments in these relations, then I can map a graph
over influence relation instances to a Bayesian network. The idea is that if there is
a positive influence from Fragment y to x, and vy and vx are the random variables
associated to, respectively y and x, then there is an edge in the Bayesian network
where vx and vy are nodes. The following function does this.

Function

Make a Bayesian Network from r.inf.pos instances
(f.map.inf.pos.baynet)

Input

G(X, r.inf.pos), where X is a set of Fragments.

Do

Let:

• VX be the set of all random variables, at most one per Fragment in X ,

• (VX ,E) be a Bayesian network with no edges.

Then:

1. for every edge (y, x) in GI+, add an edge (vy , vx) to E , where vx and vy
are random variables assigned to, respectively, x and y ,

2. for every random variable which is a root node in (VX ,E), define proba-
bility values for all its possible events,

3. for every random variable which is not a root node in (VX ,E), define con-
ditional probability values for all events of all non-root random variables,
for all possible combinations of events of their direct parents.

Output

Bayesian network (VX ,E).

Language Services

s.WhProbBN.

Example 10.2. Figure 19 gives a simple and hypothetical example of applying
f.map.inf.pos.baynet to a graph G(X, r.inf.pos).

87

Every Fragment in the graph G(X, r.inf.pos) on the left-hand side of the Figure
has an associated random variable of the format v[. . .]. This is shown with dashed
lines. The right-hand side of the Figure shows a Bayesian network, where edges are
marked “B”, made by applying f.map.inf.pos.baynet to the graph G(X, r.inf.pos) on the
left-hand side of the figure. Hypothetical probability values to root nodes, and the
conditional probability values to the one non-root node were assigned manually. •

88

Figure 19: Bayesian network from positive influence relation instances.

89

11 Preferences

Overview and Motivation

Given a set of Outcomes, how do you find the “best” one? What tells you, in a model,
if an Outcome is “better” than another?

It may be more desirable to stakeholders that incident reports are managed via
the dispatching software, than having it done via other software. Each of these, in
turn, may be more desirable than to fill out and keep paper incident reports. Some
Outcomes will assign v.Satisfaction value 1 to using dispatching software to manage
incident reports, and will, with regards to how incident reports are managed, be
more desirable to other Outcomes in which assign 0 to this Fragment.

Choosing the “best” Outcome can be done by indicating the relative desirability
of value assignments, that is, preferences. Preferences can be associated to different
criteria, such as cost, time to implement, ease of use, and so on. Given preferences
and the criteria in a model, the aim is to somehow use them to order Outcomes. This
involves various activities, such as eliciting preferences, finding criteria, inferring
missing preferences and orders over Outcomes.

This section focuses on how to enable languages to represent preferences and
criteria, and then identify the best Outcome. I discuss the following questions.

1. What are preferences and criteria? (Section 11.1),

2. Why and how to use preferences over values of a single Value Type, on a single
Fragment or relation instance? (Section 11.2),

3. Why and how to use preferences over values of a single Value Type, on various
Fragments or relation instances? (Section 11.3),

4. Why and how to use preferences over values of a different Value Types, on a
single Fragment or relation instance? (Section 11.4),

5. Why and how to use preferences over values of a different Value Types, on
various Fragments or relation instances? (Section 11.5),

6. Where to find Criteria in requirements? (Section 11.6),

7. How to use preferences to find best Outcomes in models? (Section 11.7).

You rarely have a total order over Outcomes. There may be so many value as-
signments, so it is not feasible to elicit all the comparisons needed to define the
total order. It can also happen that you have no one to elicit them from. Or you
may, but perhaps you do not trust that these comparisons will remain unchanged.
Stakeholders need not know the values or Outcome to prefer, especially if it is unclear
how these values and Outcomes translate to their specific context.

To define the total order, you can elicit pairwise comparisons of some value as-
signments, and, or Outcomes, and somehow deduce the remaining comparisons
that you need to define the total order. In the worst case, you would need to elicit
all possible comparisons among pairs of value assignments. Such comparisons are
called preferences, each saying that some value assignment v1 is more desirable than
some other v2.

Preferences are associated to Criteria, such as “low cost”, “short implementation
time”, “positive effect on the scalability of the system”, and so on. For example, it may
be more desirable that the average time to respond to incidents is 12 minutes than 16
minutes, and the criterion in this case may be called “lower average time to respond
to an incident”. However, it may be that achieving an average of 12 minutes is more
costly (requires more ambulances, more personnel, and so on) than achieving an
average of 16 minutes. The two value assignments are thus compared over two
criteria, one being the average time to respond to an incident, the other the cost of
the future system.

In short, the idea is that you would discover and elicit preferences incrementally
and often partially. You may decide to stop, when you have enough of them to
approximate the total order over Outcomes, and thereby highlight the best one.

This absence of information about preferences, and its incremental discovery and
elicitation, is also a major reason to make languages which can represent preferences.
As you elicit new preferences, you add them to a model, and you can analyse how
they relate to already existing preferences, over the same criteria, or if you need to add
new criteria as well. You can evaluate if a given model includes enough information
on preferences and criteria, to produce a partial or total order, over many criteria,
over the Outcomes.

11.1 What Are Preferences and Criteria?

There is considerable research on preferences in philosophy [108, 61], economics
[80, 126, 128, 135, 20, 122, 97, 92], operations research [47, 55, 45], and artificial
intelligence [5, 41, 39]. In Section 11.1.1, I recall common ideas about two core
preference relations, called strict preference and indifference. In Sections 11.1.2–
11.1.5, I introduce the preference-related terminology specific to this tutorial, and
relate it to the core preference relations.

90

11.1.1 Core Preference Relations

If you ask which of A and B is more desirable, you can expect any one of three
answers. A, for example, may be more desirable than B , that is, better than B , or
vice versa. In that case, there is the so-called strict preference for one over the other.
Another answer is that A and B are equally desirable, neither is better than the other.
This is a case of being indifferent to A and B . Finally, A and B can be incomparable
in terms of desirability, in which case there is no preference between them.

Strict preference and indifference are two core preference relations [62], and any
other is a derived preference relation. When I write "core preference relations", I am
referring to strict preference and indifference relations. When I want to be specific, I
will write "strict preference" or "indifference".

Strict preference is usually an irreflexive, antisymmetric, and transitive binary
relation. Indifference is reflexive, symmetric, and transitive.

Core preference relations can, but need not be complete over a domain. A strict
preference relation is complete for its domain iff there is an instance thereof between
every pair of elements in that domain. This is different than the usual approach,
in that a preference relation can be complete if there is either strict preference or
indifference between any pair of elements in the domain. I do this in order to simplify
the discussion in this tutorial.

Completeness is a desirable property when you want to establish a total order
over Alternatives or Combinations. But as I said earlier, it can be difficult to find
enough information to achieve it. There is considerable work on the elicitation of
preferences [23], which I leave to you to explore.

All things in the domain of a preference relation are assumed to be comparable.
This means that there are strict preference, or indifference, or both relation instances
between any two pairs of things in the domain.

In addition to the above, it is also usually assumed that all things in the domain
of a preference relation are mutually exclusive. That is, none is part of another, and
none is compatible with another.

11.1.2 Domains of Preference Relations

In this tutorial, preference relations are over value assignments. The domain of a
preference relation includes only value assignments.

Fragments (and the same applies to relation instances), when taken indepen-
dently of values, are not members of domains of preference relations. If I write that
"Fragment x is strictly preferred to a Fragment y" then it is not clear if I am trying
to say that "satisfying Fragment x is strictly preferred to a satisfying Fragment y",
or that "including in the model the Fragment x is strictly preferred to a including in
the model the Fragment y", or both, or none of these, but something else. Having
only value assignments in preference domains allows me to be more precise, without

losing the ability to say either of these. The statement "satisfying Fragment x is
strictly preferred to a satisfying Fragment y" is a preference over satisfaction values,
while "including in the model the Fragment x is strictly preferred to a including in
the model the Fragment y" can be a preference over acceptability value assignments.

11.1.3 Preference Relation Instances and Domains

An instance of some preference relation (core or not), called Pref, for example, is
written

(〈xi , t j , vk 〉,〈xl , tp , vq 〉) ∈ r.Pref

to say that the value assignment 〈xi , t j , vk 〉 is strictly preferred to 〈xl , tp , vq 〉 accord-
ing to the preference relation r.Pref.

xi can, but need not be equal to xl , and the same goes for t j and tp . That is, there
can be preference relations which are not over values of the same Value Type, or
over values assigned to the same Fragment or relation instance. In order to write
about domains which include value assignments with different Value Types, and
over different Fragments and relation instances, I will use the following notational
conventions.

• x(n) denotes the set {x1, . . . , xn }.

• 〈x(n), t j , vk 〉 denotes a set of n assignments of the same value vk , of Value Type

t j , to every member of x(n). So if I write 〈x(n),v.ImplTime,5man-days〉, then I
am saying that each of x1, . . . , xn takes 5 man-days to implement.

• 〈x(n), t j , v (m)〉 is a set of value assignments, where each member of x(n) gets

one or more values from v (m), whereby all values in v (m) are of the same Value
Type t j .

• 〈x(n), t (u), v (m)〉 is the set of value assignments, where each member of x(n) gets
one or more values from v (m), and each of these values is of one of the Value
Types in t (u).

I use the above in Section 11.1.4 to define different types of preference relations.
For example, there will be one preference relation type, whose domain is the set
〈x(n), t j , vk 〉, and there will be another type, whose domain is 〈x(n), t (u), v (m)〉.

11.1.4 Some Interesting Preference Relations

Imposing different constraints on the content of the domain of preference relations
gives different categories of such relations. Each category gives different answers to
the following questions.

91

• Is the Fragment or relation instance the same in all value assignments in the
domain?

• Is the Value Type the same in all value assignments in the domain?

• Can the domain include value assignments to both Fragments and relation
instances?

Table 2 shows some possible combinations of answers to these questions. In the
Table, x is a Fragment, and r a relation instance. Each row is a single combination of
answers, each column one preference relation category. The symbol “•” indicates all
answer combinations that a preference relation allows. Note that some preference
relations in that Table allow several combinations of answers.

For example, the domain of the preference relation P A includes assignments of
different values, of the same Value Type, to the same Fragment. In contrast, the
domain of P J includes assignments of different values, of the same Value Type, to
different Fragments and/or relation instances (and the domain can include both
Fragments and relation instances).

In Table 2, the domains of some preference relations are subdomains of others.
For example, all preference relation instances that can be written with P A or PC can
also be written with PG . Also, note the domains of PL and PM are equivalent, so PM
can be removed from the Table.

In the rest of this section, I concentrate only on the preference relation categories
PI , P J , PK , and PL . I use the following names for them. PI relations are called Local
Preferences (Section 11.2), P J are Bridge Preferences (Section 11.4), PK are Mixed
Local Preferences (Section 11.3), and PL are Mixed Bridge Preferences (Section 11.5).

11.1.5 Criteria

A preference relation is, in this tutorial, always associated to a Criterion. A Criterion
C is a function over value assignments, such that if there is a preference relation
instance (〈xi , t j , vk 〉,〈xl , tp , vq 〉), and it is associated to the Criterion C , then

C (〈xi , t j , vk 〉) >C (〈xl , tp , vq 〉)

that is, the value of C (〈xi , t j , vk 〉) is greater than that of C (〈xl , tp , vq 〉). A Criterion is,
then, a function which returns a greater value for more desirable Alternatives.

Every Criterion can have its own Value Type, which may, but need not be
related in some way to the Value Types. Above, suppose that 〈xi , t j , vk 〉 is a
cost value, and 〈xl , tp , vq 〉 an estimate of implementation time. The preference
(〈xi , t j , vk 〉,〈xl , tp , vq 〉) thus says that observing a specific cost is strictly more pre-
ferred than to observe a specific implementation time.

Criteria specialise preference relations, in that there can be a preference relation
specific to cost, another one specific to implementation time, and so on. I will write

(〈xi , t j , vk 〉,〈xl , tp , vq 〉) ∈ r.Pref.C

if (〈xi , t j , vk 〉,〈xl , tp , vq 〉) is an instance of some preference relation called Pref, asso-
ciated to the Criterion C .

11.2 Why Local Preferences?

A Local Preference instance is a strict preference over values of a single Value Type,
assigned to a single Fragment, or a single relation instance. That is, every Local
Preference instance is a pair (〈x, t , vi 〉,〈x, t , v j 〉), where x is a Fragment or a relation
instance, and v1 and v2 are values of the same Value Type t . The following relation
can be used to enable a language to represent Local Preferences.

Relation

Local Preference (r.pref.loc.c)

Domain & Dimension

r.pref.loc.c⊆ 〈x, t , v (n)〉, where c is a Criterion, and 〈x, t , v (n)〉 is a set of n value
assignments 〈x, t , vi 〉 on the same Fragment or relation instance x, of values
of the same Value Type t .

Properties

(〈x, t , vi 〉,〈x, t , v j 〉 ∈ r.pref.loc.c if 〈x, t , vi 〉 is strictly more desirable to 〈x, t , v j 〉
on the Criterion c.

Reading

(〈x, t , vi 〉,〈x, t , v j 〉 ∈ r.pref.loc.c reads “〈x, t , vi 〉 is strictly preferred to 〈x, t , v j 〉
on the Criterion c”.

Language Services

• s.IsLocPref: Is 〈x, t , vi 〉 is strictly preferred to 〈x, t , v j 〉 on the Criterion

92

Table 2: Some categories of preference relations.

Preference relations categories
Domain P A PB PC PD PE PF PG PH PI P J PK PL PM

〈x, t , v (m)〉 • - - - - - - - • - - - •
〈r, t , v (m)〉 - • - - - - - - • - - - •
〈x(n), t , v (m)〉 - - • - - - - - - • - - •
〈r (n), t , v (m)〉 - - - • - - - - - • - - •
〈x, t (u), v (m)〉 - - - - • - - - - - • - •
〈r, t (u), v (m)〉 - - - - - • - - - - • - •
〈x(n), t (u), v (m)〉 - - - - - - • - - - - • •
〈r (n), t (u), v (m)〉 - - - - - - - • - - - • •

c? : Yes, if (〈x, t , vi 〉,〈x, t , v j 〉 ∈ r.pref.loc.c.

Local Preferences are the simplest kind of preference relations discussed in this
tutorial. Being local to a Fragment or relation instance, and over values of a single
Value Type, they do not pose problems of interpretation that, for example, Bridge
Preferences will in Section 11.4.

Exercise 28: Define a language which can represent Local Preferences in its
models

Define a language which can show assignments of v.Satisfaction values
to Fragments and relation instances, and can represent Local Prefer-
ences over these value assignments.

The following example illustrates how to enable a language which resembles
L.Ankaa to represent Local Preferences.

Example 11.1. Suppose that you want to represent r.pref.loc instances over value
assignments in L.Ankaa models, in which all Fragments are categorised as either
requirement, domain knowledge, or specification. The following language does this.

Language

Bellatrix

Language Modules

F, T, V, C, r.inf.pos, r.inf.neg, f.map.abrel.g, f.cat.ksr, f.sat.inf.pos, f.sat.inf.neg,
f.sat, f.sat.leaf, r.pref.loc.c

Domain

Fragments have three partitions, namely requirements, domain knowledge,
and specification Fragments, F= c.r∪c.k∪c.s and c.r∩c.k∩c.s=;. Influences
are over Fragments, r.inf.pos⊆ F×F, r.inf.neg⊆ F×F. Value assignments are
over Fragments or relation instances, involve a Value Type, and a value, so
that

V⊆ (F∪ r.inf.pos∪ r.inf.neg)×T×v.Satisfaction

where T = {v.Satisfaction. For every Criterion, preferences are over value
assignments, r.pref.loc.c⊆V×V, for every c ∈C.

Syntax

A model M in the language is a set of symbols M = {φ1, . . . ,φn }, where every

93

φ is generated according to the following BNF rules:

α ::= x | y | z | . . .

β ::= r | k | s

γ ::= β(α)

δ ::= (γ,γ)

ε ::= 〈α,ζ,η〉
θ ::= (ε,ε)

φ ::= γ | δ | ε | θ

Mapping

α symbols denote Fragments, D(α) ∈ F. β symbols are used to distinguish
requirements, domain knowledge, and specification Fragments, and are used
in γ symbols, so that D(r (α)) ∈ c.r, D(k(α)) ∈ c.k, D(s(α)) ∈ c.s. δ symbols
denote positive and negative influence relations. ζ symbols denote Value
Types, D(ζ) ∈ T. η denotes a value of a Value Type, and as there is one Value
Type, then D(η) ∈ v.Satisfaction. ε symbols denote value assignments, D(ε) ∈
V. θ symbols denote preference relations

D(θ) ∈ ⋃
c∈C

r.pref.loc.c.

Language Services

Those of relations and functions in the language.

Figure 20 is a visualisation of a model in L.Bellatrix. Instances of r.pref.loc are
shown as edges labelled “LP”. The model includes the following Local Preferences.

• v.IncRepErr is the percentage of incident reports which include errors. Observ-
ing 1% of erroneous incident reports is strictly preferred to 5%, and that 5% is
strictly preferred to 7%:

(〈FillIncRep,v.IncRepErr,1%〉,〈FillIncRep,v.IncRepErr,5%〉) ∈ r.pref.loc.IncRepErr

(〈FillIncRep,v.IncRepErr,5%〉,〈FillIncRep,v.IncRepErr,7%〉) ∈ r.pref.loc.IncRepErr

• v.AddIncTm is the average time to address a reported incident. It is preferred to

address a reported incident on average in 12min than in 16min:

(〈AddRepEm,v.AddIncTm,12min〉,
〈AddRepEm,v.AddIncTm,16min〉) ∈ r.pref.loc.AddIncTm

• v.Satisfaction is a binary Value Type, indicating if a Fragment or relation instance
is satisfied (value 1) or not. It is strictly preferred that callers do not report
incorrect incident locations, as not satisfying IncCalRep is strictly preferred to
satisfying it:

(〈IncCalRep,v.Satisfaction,0〉,〈IncCalRep,v.Satisfaction,1〉) ∈ r.pref.loc.Satisfaction

• v.CalRepErr is the percentage of calls, in which callers reported incorrect inci-
dent location. It is strictly preferred to observe 15% than 21% of such calls:

(〈IncCalRep,v.CallRepEr,15%〉,〈IncCalRep,v.CallRepEr,21%〉) ∈ r.pref.loc.CallRepEr

• v.Acceptability is a binary Value Type, with 1 if a relation instance is acceptable,
0 if not. It is preferred that IncCalRep is not acceptable:

(〈(IncCalRep, IdIncLoc),v.Acceptability,0〉,
〈(IncCalRep, IdIncLoc),v.Acceptability,1〉) ∈ r.pref.loc.Acceptability

To clarify terminology, note that there are six instances of r.pref.loc and five Criteria
above. This example focuses on Local Preferences, so it is not important which other
preference relations are shown in Figure 20. •

11.3 Why Mixed Local Preferences?

Mixed Local Preferences are preferences which can be over values of different Value
Types, on the same Fragment or relation instance. Every instance of Mixed Local
Preference is a pair (〈x, th , vi 〉,〈x, tk , v j 〉), where x is a Fragment or relation instance,
vi is a value of Value Type th , and v j is a value of Value Type tk .

Relation

Mixed Local Preference (r.pref.mloc.c)

Domain & Dimension

r.pref.mloc.c⊆ 〈x, t (m), v (n)〉, where c is a Criterion, and 〈x, t (m), v (n)〉 is a set
of n value assignments on the same Fragment or relation instance x, of values

94

Figure 20: Local Preferences in a model in L.Bellatrix.

95

from v (n), each of which is one of one of the Value Types in t (m).

Properties

(〈x, th , vi 〉,〈x, tk , v j 〉 ∈ r.pref.mloc.c if 〈x, th , vi 〉 is strictly more desirable to
〈x, tk , v j 〉 on the Criterion c.

Reading

(〈x, th , vi 〉,〈x, tk , v j 〉 ∈ r.pref.mloc.c reads “〈x, th , vi 〉 is strictly preferred to
〈x, tk , v j 〉 on the Criterion c”.

Language Services

• s.IsMixLocPref: Is 〈x, th , vi 〉 is strictly preferred to 〈x, tk , v j 〉 on the Cri-
terion c? : Yes, if (〈x, th , vi 〉,〈x, tk , v j 〉 ∈ r.pref.mloc.c.

In the example below, I replace Local Preferences with Mixed Local Preferences
in L.Bellatrix. This gives the new language L.Elnath, which can still represent all that
L.Bellatrix can.

Exercise 29: Relationship between Local Preferences and Mixed Local Prefer-
ences

Can a language that represents Mixed Local Preferences also represent
Local Preferences?

Example 11.2. The only difference between L.Elnath below and L.Bellatrix, is that
the latter cannot represent preference relation instances over value assignments in
which the values are of different Value Types.

Language

Elnath

Language Modules

F, T, V, C, r.inf.pos, r.inf.neg, f.map.abrel.g, f.cat.ksr, f.sat.inf.pos, f.sat.inf.neg,
f.sat, f.sat.leaf, r.pref.mloc.c

Domain

Same as L.Bellatrix, except that

r.pref.mloc.c⊆V×V.

Syntax

Same as L.Bellatrix.

Mapping

Same as L.Bellatrix, except that

D(θ) ∈ ⋃
c∈C

r.pref.mloc.c.

Language Services

Those of relations and functions in the language.

Figure 21 shows two instances of r.pref.mloc:

(〈IncCalRep,v.Satisfaction,0〉,
〈IncCalRep,v.CallRepEr,15%〉) ∈ r.pref.mloc.CalRepPrecLoc

(〈IncCalRep,v.Satisfaction,0〉,
〈IncCalRep,v.CallRepEr,21%〉) ∈ r.pref.mloc.CalRepPrecLoc

The preferences say that it is strictly preferred to observe that IncCalRep is not
satisfied, than to observe 15% or 21% of calls in which callers report incorrect incident
locations. The Criterion is crit.CalRepPrecLoc, which is that it is better to observe
that callers do not report incident locations incorrectly, rather than observe that
there are errors in callers’ reports of incident locations. •

96

Figure 21: Local Preferences and Mixed Local Preferences in a model in L.Elnath.

The issue with Mixed Local Preferences is that they are over different Value Types.
The same applies to Mixed Bridge Preferences discussed in Section 11.5. r.pref.mloc
has no constraints which would exclude the comparison over some specific pairs of
Value Types. This can cause confusion.

For illustration, consider the first Mixed Local Preference in the example above,
where the Alternative

〈IncCalRep,v.Satisfaction,0〉
is strictly preferred to the Alternative

〈IncCalRep,v.CallRepEr,15%〉.
That is, it is strictly preferred that IncCalRep is not satisfied, to observing 15% of
calls to report incorrect incident locations. When IncCalRep is not satisfied, does
this also means that there are no incorrect incident calls reported at all? Or, does it
mean that there is some percentage, but below a tolerable threshold, such as, say
5%? The model does not include information which answers these questions. There
is crit.CalRepPrecLoc, but it is also silent on this. There could be a function, which
would make the satisfaction of IncCalRep depend on the percentage of incorrect
locations reported, or the other way around.

Even if the Criteria are independent, it is still not clear in the model if they are
independent. It is up to the modeller to avoid such issues, unless the language

comes with a predefined set of Value Types and functions which relate the values
over different Value Types. I will return to this later, in Section 11.6 on Criteria.

11.4 Why Bridge Preferences?

Bridge Preferences are preferences over values of the same Value Type, assigned to
different Fragments or relation instances. Every instance of Bridge Preference is a pair
(〈x, t , v1〉,〈y, t , v2〉), where x and y are two different Fragments or relation instances,
and v1 and v2 are of the same Value Type t .

Relation

Bridge Preference (r.pref.br.c)

Domain & Dimension

r.pref.br.c⊆ 〈x(m), t , v (n)〉, where c is a Criterion, and 〈x(m), t , v (n)〉 is a set of
value assignments on different Fragments and, or relation instances from

97

x(m), and on each one or more assignments of a value from v (n), all of the
same Value Type t .

Properties

(〈xh , t , vi 〉,〈xk , t , v j 〉 ∈ r.pref.br.c if 〈xh , t , vi 〉 is strictly more desirable to
〈xk , t , v j 〉 on the Criterion c.

Reading

(〈xh , t , vi 〉,〈xk , t , v j 〉 ∈ r.pref.br.c reads “〈xh , t , vi 〉 is strictly preferred to
〈xk , t , v j 〉 on the Criterion c”.

Language Services

• s.IsBrPref: Is 〈xh , t , vi 〉 is strictly preferred to 〈xk , t , v j 〉 on the Criterion
c? : Yes, if (〈xh , t , vi 〉,〈xk , t , v j 〉 ∈ r.pref.br.c.

Example 11.3. Figure 22 is a visualisation of a model in L.Alnilam, a language made
by allowing Bridge Preferences and r.xor instances in models of L.Bellatrix. I define
the language as follows.

Language

Alnilam

Language Modules

F, T, V, C, r.inf.pos, r.inf.neg, r.xor, f.map.abrel.g, f.cat.ksr, f.sat.inf.pos,
f.sat.inf.neg, f.sat.x, f.sat.leaf, r.pref.br.c

Domain

Fragments have three partitions, namely requirements, domain knowledge,
and specification Fragments, F= c.r∪c.k∪c.s and c.r∩c.k∩c.s=;. Influences
are over Fragments, r.inf.pos⊆ F×F, r.inf.neg⊆ F×F. r.xor instances are over

positive and influence relations of the same type

r.xor ∈ (r.inf.posn)× (r.inf.negn).

Value assignments are over Fragments or relation instances, involve a Value
Type, and a value, so that

V⊆ (F∪ r.inf.pos∪ r.inf.neg)×T×v.Satisfaction

where T = {v.Satisfaction. For every Criterion, preferences are over value
assignments, r.pref.br.c⊆V×V, for every c ∈C.

Syntax

A model M in the language is a set of symbols M = {φ1, . . . ,φn }, where every
φ is generated according to the following BNF rules:

α ::= x | y | z | . . .

β ::= r | k | s

γ ::= β(α)

δ ::= (γ,γ)

ι ::= (δ,δ, . . .)

ε ::= 〈α,ζ,η〉
θ ::= (ε,ε)

φ ::= γ | δ | ε | θ

Mapping

α symbols denote Fragments, D(α) ∈ F. β symbols are used to distinguish
requirements, domain knowledge, and specification Fragments, and are used
in γ symbols, so that D(r (α)) ∈ c.r, D(k(α)) ∈ c.k, D(s(α)) ∈ c.s. δ symbols
denote positive and negative influence relations. ι symbols denote r.xor in-
stances, D(ι) ∈ r.xor. ζ symbols denote Value Types, D(ζ) ∈ T. η denotes a value
of a Value Type, and as there is one Value Type, then D(η) ∈ v.Satisfaction. ε
symbols denote value assignments, D(ε) ∈ V. θ symbols denote preference
relations

D(θ) ∈ ⋃
c∈C

r.pref.br.c.

98

Language Services

Those of relations and functions in the language.

Figure 22 shows one Local Preference and four Bridge Preferences (marked “BP”).
The preferences are over assignments of v.Satisfaction values to Fragments and
relation instances. The model in the Figure shows two assignments of v.Satisfaction
values to Fragments and relation instances. Let 〈X ∪E ,v.Satisfaction,W1〉 denote one
such assignment, where X is the set of all Fragments, and E the set of all influence
relation instances. Let 〈X ∪E ,v.Satisfaction,W2〉 denote the other assignment. Values
assigned according to 〈X ∪E ,v.Satisfaction,W1〉 are shown on black rectangles and
squares. Those of 〈X ∪E ,v.Satisfaction,W2〉 are on grey rectangles and squares.

There is one Local Preference in the Figure, which in L.Alnilam amounts to a Bridge
Preference which is over values of the same variable (that is, over value assignments
to the same Fragment, of values of the same Value Type):

(〈AmbArrIncLoc,v.Satisfaction,1〉,〈AmbArrIncLoc,v.Satisfaction,0〉)
∈ r.pref.br.SatImpReq

It says that it is strictly preferred to satisfy AmbArrIncLoc, than to fail to satisfy it.
crit.SatImpReq abbreviates that important requirements should be satisfied, so the
Local Preference says that AmbArrIncLoc is an important requirement.

As there are r.xor instances in the model in the Figure, the Local Preference above
is not enough to help me choose among the Preference Alternatives shown. The
four Bridge Preferences compare Preference Alternatives are as follows. The first
two are over Fragments, the last two over instances of r.inf.pos. All are associated to
crit.MoreDecSup, which is that there should be more technology in the system to
support decision-making.

{(〈AutAmbList,v.Satisfaction,1〉,〈ManTrckAmb,v.Satisfaction,1〉),

(〈UpdAutoAmbList,v.Satisfaction,1〉,〈ManTrckAmb,v.Satisfaction,1〉),

(〈(DispSoftwRnkAmb,ChoAmb),v.Satisfaction,1〉,
〈(NoAmbRecomm,ChoAmb),v.Satisfaction,1〉),

(〈(DispAmbRnk,ChoAmb),v.Satisfaction,1〉,
〈(NoAutAmbRnk,ChoAmb),v.Satisfaction,1〉)

} ⊆ r.pref.br.MoreDecSup

According to these Bridge Preferences, 〈X ∪E ,v.Satisfaction,W1〉 is better than 〈X ∪

E ,v.Satisfaction,W2〉. This is because all the strictly preferred value assignments are
in 〈X ∪E ,v.Satisfaction,W1〉.

The conclusion would not have been as clear, if at least one of the Bridge Prefer-
ences above was reversed. For example, if

(〈(DispSoftwRnkAmb,ChoAmb),v.Satisfaction,1〉,
〈(NoAmbRecomm,ChoAmb),v.Satisfaction,1〉) ∈ r.pref.br.MoreDecSup

is replaced by

(〈(NoAmbRecomm,ChoAmb),v.Satisfaction,1〉,
〈(DispSoftwRnkAmb,ChoAmb),v.Satisfaction,1〉) ∈ r.pref.br.MoreDecSup

Also, the Bridge Preferences in Figure 22 suggest that Combination with AutoAm-
bList, UpdAutoAmbList, DispSoftwRnkAmb, and DispAmbRnk are better than other
Combinations. Recall from Figure 14 that there are four Combinations according
to the r.xor instances in the model. The first Combination, shown in Figure 14(a) is
the only one of the four, which includes all Fragments which appear in the Bridge
Preferences. •

11.5 Why and How to Use Mixed Bridge Preferences?

Mixed Bridge Preferences are preferences over values of different Value Types, as-
signed to different Fragments or relation instances. Every instance of Mixed Bridge
Preference is a pair (〈x, t1, v1〉,〈y, t2, v2〉), where x and y are two different Fragments
or relation instances, t1 and t2 two different Value Types, and v1 and v2 are, respec-
tively, values of t1 and of t2.

Relation

Mixed Bridge Preference (r.pref.mbr.c)

Domain & Dimension

r.pref.mbr.c ⊆ 〈x(m), t (u), v (n)〉, where c is a Criterion, and 〈x(m), t (u), v (n)〉 is
a set of n value assignments 〈x, t , vi 〉 on different Fragments and, or relation
instances from x(m), and on each one or more assignments of a value from
v (n), each of a Value Type from t (u).

Properties

99

Figure 22: Local Preferences and Bridge Preferences.

100

(〈xh , tg , vi 〉,〈xk , tl , v j 〉 ∈ r.pref.mbr.c if 〈xh , tg , vi 〉 is strictly more desirable to
〈xk , tl , v j 〉 on the Criterion c.

Reading

(〈xh , tg , vi 〉,〈xk , tl , v j 〉 ∈ r.pref.mbr.c reads “〈xh , tg , vi 〉 is strictly preferred to
〈xk , tl , v j 〉 on the Criterion c”.

Language Services

• s.IsMBrPref: Is 〈xh , tg , vi 〉 is strictly preferred to 〈xk , tl , v j 〉 on the Crite-
rion c? : Yes, if (〈xh , tg , vi 〉,〈xk , tl , v j 〉 ∈ r.pref.mbr.c.

Example 11.4. Figure 23 is a visualisation of a model in L.Canopus, which is made
by allowing Mixed Bridge Preferences in the models of L.Elnath.

Language

Canopus

Language Modules

F, T, V, C, r.inf.pos, r.inf.neg, f.map.abrel.g, f.cat.ksr, f.sat.inf.pos, f.sat.inf.neg,
f.sat, f.sat.leaf, r.pref.mbr.c

Domain

Same as L.Elnath, except that

r.pref.mbr.c⊆V×V.

Syntax

Same as L.Elnath.

Mapping

Same as L.Elnath, except that

D(θ) ∈ ⋃
c∈C

r.pref.mbr.c.

Language Services

Those of relations and functions in the language.

The figure includes the following three r.pref.mbr instances:

(〈AddRepEm,v.AddIncTm,12min〉,
〈FillIncRep,v.IncRepErr,1%〉) ∈ r.pref.mbr

(〈(IncCalRep, IdIncLoc),v.Acceptability,0〉,
〈IncCalRep,v.Satisfaction,0〉) ∈ r.pref.mbr

(〈IncCalRep,v.Satisfaction,0〉,
〈(IncCalRep, IdIncLoc),v.Acceptability,0〉) ∈ r.pref.mbr

The first is the strict preference of observing 12 minutes as the average time
to respond to incident, to the 1% error rate in incident reports. It is due to
crit.QuickResponseOverRepErr, which is that it is better to lower average time to
address an incident, than to lower the error rate in incident reports.

The second is a strict preference of not accepting that IncCalRep negatively influ-
ences IdIncLoc, to having that IncCalRep is not satisfied. In other words, it is strictly
preferred not to even consider if IncCalRep is satisfied, to having it fail.

The third, and final Mixed Bridge Preference is that it is strictly preferred to have
IncCalRep not satisfied, than to accept that IncCalRep negatively influences IdIncLoc.

The second and third are due to crit.CalRepPrecLoc, which is that it is better to
observe that callers do not report incident locations incorrectly, rather than observe
that there are errors in callers’ reports of incident locations. •

11.6 Where to Find Criteria in Requirements?

There are not enough preference relation instances in Figure 20 to create a total order,
even over a single Criterion. For example, I know from the model that the 12min
average time to respond to incidents is strictly preferred to 16min, but is 15min also

101

Figure 23: Local Preferences, Mixed Local Preferences, and Mixed Bridge Preferences.

102

preferred to 16min, and is it less desirable than 12min? It may seem obvious that I
should prefer lower average time, but do stakeholders who matter? In any case, the
model shows few preferences.

If you want to elicit if 12min incident response time is more preferred than 13min,
14min, or 15min, or all of them, you could give many such pairs, and ask stakeholders
for their opinion. A quicker approach may be to look, in Fragments, for simpler
statements which suggest many preference instances. For example, suppose that
stakeholders agree that they prefer lower to higher incident response times, and that
there is no lower limit to how short the average time can be. Perhaps a stakeholder
said that she wants low incident response times, and the others agreed.

In RE, statements such as “low incident response times”, “less maintenance”, “low
cost” are not uncommon, and are usually called nonfunctional requirements [14], or
softgoals [98].

One way to use these statements is to view them as revealing Criteria. For example,
“quickly respond to emergency calls” suggests a Criterion. Denote it crit.AddIncTm.
You might then decide to measure the speed to respond to emergency calls by the
average time to respond to incidents, that is v.AddIncTm. And consequently, when
given two value assignments of v.AddIncTm, that Criterion returns a higher value
for assignment with the lower average time to respond to emergency calls. In other
words, the Criterion returns a preference over the two value assignments.

Below, I define crit.LowAddIncTm in such a way as to generate preference relation
instances over value assignments, when it is given a pair of v.AddIncTm value assign-
ments. The Language Module template for Criteria is the same as for functions. The
Criterion takes a pair of value assignments, and returns the preference relation over
them, and in this sense amounts to a function. Nevertheless, I want to distinguish
Criteria from other kinds of functions, hence the dedicated template.

Criterion

Prefer low time to address incidents (crit.low.AddIncTm)

Input

A pair of value assignments 〈x1,v.AddIncTm, v1〉 and 〈x2,v.AddIncTm, v2〉.

Do

Let vi be the minimum and v j the maximum in {v1, v2}, and

w = (〈xi ,v.AddIncTm, vi 〉,〈x j ,v.AddIncTm, v j 〉) ∈ r.pref.mloc.low.AddIncTm.

Output

w .

Language Services

• s.WhLowAddIncTm: According to crit.LowAddIncTm, which of the value
assignments 〈x1,v.AddIncTm, v1〉 and 〈x2,v.AddIncTm, v2〉 is strictly pre-
ferred to the other? : The one strictly preferred according to w which
this module outputs.

You can define a more general Criterion, which can work with values assignments
where Value Types are real numbers, and lowest or highest values are the most
desirable. Below is such a module.

Criterion

Prefer higher (or lower) v.t values (crit.d.t)

Input

• A Value Type t ,

• a parameter d , which is either d = low or d = high, and

• a pair of value assignments 〈x1,v.t, v1〉 and 〈x2,v.t, v2〉, such that v.t takes
real values.

Do

Let vi be the minimum and v j the maximum in {v1, v2}, and

• if d = Low, then w = (〈xi ,v.t, vi 〉,〈x j ,v.t, v j 〉) ∈ r.pref.mloc.d.t, else

103

• if d = High, then w = (〈x j ,v.t, v j 〉,〈xi ,v.t, vi 〉) ∈ r.pref.mloc.d.t.

Output

w .

Language Services

• s.WhPref.t: According to crit.d.t, which of the value assignments
〈x1, t , v1〉 and 〈x2, t , v2〉 is strictly preferred to the other? : The one strictly
preferred according to w which this module outputs.

If a model has no Criteria which generate preference relations, then all individual
preferences in the model need to come from some other approach to preference
elicitation. Otherwise, if you have Criteria which do generate preference relation in-
stances, and there are value assignments which these Criteria apply to, then you can
automatically add preference relation instances. The following example illustrates
this.

Example 11.5. Figure 24 shows a model in L.Bellatrix, before and after adding two
Criteria to it. In Figure 24(a), only value assignments are shown, and no preferences.

Figure 24(b) shows the result of adding crit.low.IncRepEr and crit.low.AddIncTm to
the model in Figure 24(a). Doing so adds preference relations over value assignments.

Adding crit.low.IncRepEr resulted in adding two Local Preferences, to say, respec-
tively, that 1% error rate in incident reports is strictly preferred to a 5%, and that 5%
is strictly preferred to 7%.

Adding crit.low.AddIncTm results in the strict preference for 12min average time to
address an incident, to 16min average time to address an incident. •

Criteria can reflect more complicated preferences than crit.d.t. The following
example is an illustration. It defines a Criterion, which is remotely related to a
classical proposal in the field of multiple-criteria decision analysis.

Example 11.6. Suppose that there is a Value Type v.ImplCost, and that you assign
its values to Fragments, to indicate an estimate of the cost to implement what the
Fragment describes.

Moreover, suppose that you have elicited the following statement, or concluded
this from having elicited some other information from stakeholders: “The lowest
implementation cost Alternative is best, unless it is not less than 20% cheaper than
the next lowest cost Alternative, in which case the latter is better than the former”.

This is inspired by the so-called Type V criterion in the PROMETHEE approach

to multiple-criteria decision analysis [17], where the individual is assumed to be
indifferent to value assignments, until the difference between them reaches a certain
value. Here, I adapt this idea to there being no indifference relation, and consider
that there is a strict preference, until the difference between the two assigned values
goes above a threshold, which is some given percentage of the higher value. If the
value goes above the threshold, then the strict preference reverses. The following
Criterion captures these ideas.

Criterion

Prefer lower of two v.t values, until their difference is more than h% of
the higher (crit.low.rev.h)

Input

• v.t, which must be a subset of real numbers,

• a percentage value h%, and

• a pair of value assignments 〈x1,v.t, v1〉 and 〈x2,v.t, v2〉.

Do

Let vi be the minimum and v j the maximum in {v1, v2}, and if |vi − v j |/v j >
h/100, then

w = (〈xi ,v.t, vi 〉,〈x j ,v.t, v j 〉) ∈ r.pref.mloc.rev.d.t, else

w = (〈x j ,v.t, v j 〉,〈xi ,v.t, vi 〉) ∈ r.pref.mloc.rev.d.t.

Output

w .

104

(a) Before new Criteria. (b) After new Criteria.

Figure 24: A model before and after adding two Criteria.

105

Language Services

• s.WhPref.low.rev.h: According to crit.low.rev.h, which of the value as-
signments 〈x1,v.t, v1〉 and 〈x2,v.t, v2〉 is strictly preferred to the other? :
The one strictly preferred according to w which this module outputs.

•

The more general point is that preference relation instances can be automatically
added to a model, in case you have defined a Criterion which suggests such pref-
erences. There are many proposals for generic Criteria which can be used in this
way, especially in the field of multiple-criteria decision analysis [141, 94, 45]. The
issue which remains unsolved is how to make sure that the Criteria do correspond
to stakeholders’ preferences, an issue to be solved via elicitation, validation, and
negotiation, rather than, unfortunately, Language Modules.

11.7 How to Find a Better and the Best Outcome?

How would you deliver the following Language Services?

• s.BestOutcome: Which is the best Outcome in model M?

• s.BetterOutcome: Which of the two Outcomes oi and o j is better in model M?

Both are problems of preference aggregation. There are various proposals for how
to do preference aggregation [16, 103, 45].

Given a model M with value assignments, preference relations, and Criteria, I
want to deliver s.BestOutcome and s.BetterOutcome by mapping the variables and
preferences to a Conditional Preference Network (CP-Net) [16]. There are known
algorithms for CP-Nets, which can be used to deliver both s.BestOutcome and
s.BetterOutcome.

To reduce the number of preference relation instances that need to be elicited, CP-
Nets use conditional preference relations. A conditional preference is a pair (a, p),
where p is a preference relation instance and a = 〈x,v.t, v〉 is a value assignment.
The idea is that if the Outcome includes a, then the preference p should be taken
into account when computing answers to s.BestOutcome and s.BetterOutcome. In
order to map models to CP-Nets, it should be possible to represent conditions of
preferences in models. This is done with the relation r.pref.cond below.

Relation

Conditional preference (r.pref.cond)

Domain & Dimension

r.pref.cond ⊆ V ×R, where V is a set of value assignments, and R is a set of
Mixed Bridge Preference relation instances.

Properties

If the preference p ∈ P should be taken into account when comparing all
Outcomes which include 〈x,v.t, v〉, then let

(〈x,v.t, v〉, p) ∈ r.pref.cond

Reading

(〈x, t , v〉, p) ∈ r.pref.cond reads “use the preference relation p when comparing
Outcomes, only if at least one of the Outcomes s includes 〈x, t , v〉”.

Language Services

• s.IsCondPref: Should the preference p be used to compare Outcomes
in the set O? : Yes, if there is (〈x,v.t, v〉, p) ∈ r.pref.cond and all Outcomes
in O include 〈x, t , v〉.

The following language allows the representation of r.pref.cond instances,
r.pref.mbr.c instances, over satisfaction and approval values, in models with pos-
itive and negative influence relations over Fragments.

Language

Procyon

106

Language Modules

F, T, V, C, r.inf.pos, r.inf.neg, f.map.abrel.g, f.cat.ksr, f.sat.inf.pos, f.sat.inf.neg,
f.sat, f.sat.leaf, r.pref.mbr.c, r.pref.cond

Domain

Fragments have three partitions, namely requirements, domain knowledge,
and specification Fragments, F= c.r∪c.k∪c.s and c.r∩c.k∩c.s=;. Influences
are over Fragments, r.inf.pos⊆ F×F, r.inf.neg⊆ F×F. Value assignments are
over Fragments or relation instances, involve a Value Type, and a value, so
that

V⊆ (F∪ r.inf.pos∪ r.inf.neg)×T× (v.Satisfaction∪v.Approval)

where T = {v.Satisfaction,v.Approval}, with v.Satisfaction = {0,1} and
v.Approval = {0,1}. For every Criterion, preferences are over value assign-
ments, r.pref.mbr.c⊆V×V, for every c ∈C. Conditional preferences are over
value assignments and non-conditional preference relation instances,

r.pref.cond⊆V× ⋃
c∈C

r.pref.mbr.c.

Syntax

A model M in the language is a set of symbols M = {φ1, . . . ,φn }, where every
φ is generated according to the following BNF rules:

α ::= x | y | z | . . .

β ::= r | k | s

γ ::= β(α)

δ ::= (γ,γ)

ε ::= 〈α,ζ,η〉
θ ::= (ε,ε)

ι ::= (ε,θ)

φ ::= γ | δ | ε | θ

Mapping

α symbols denote Fragments, D(α) ∈ F. β symbols are used to distinguish
requirements, domain knowledge, and specification Fragments, and are used
in γ symbols, so that D(r (α)) ∈ c.r, D(k(α)) ∈ c.k, D(s(α)) ∈ c.s. δ symbols
denote positive and negative influence relations. ζ symbols denote Value
Types, D(ζ) ∈ T. η denotes a value of a Value Type. ε symbols denote value as-
signments, D(ε) ∈V. θ symbols denote non-conditional preference relations

D(θ) ∈ ⋃
c∈C

r.pref.loc.c,

and ι symbols denote conditional preference relations, D(ι) ∈ r.pref.cond.

Language Services

Those of relations and functions in the language.

Given a model M in L.Procyon, I need the following tuple from it:

(V(M),〈x(m), t (u), v (n)〉, r.pref.mbr, r.pref.cond)

where 〈x(m), t (u), v (n)〉 is a set of value assignments, as explained in Section 11.5, and

r.pref.mbr.c ⊆ 〈x(m), t (u), v (n)〉×〈x(m), t (u), v (n)〉,
r.pref.cond ⊆ 〈x(m), t (u), v (n)〉× r.pref.mbr.c, for every c ∈C .

The following function takes the tuple above, and makes a CP-Net from it.

Function

Make a CPNet
(f.make.CPNet)

Input

(V(M),〈x(m), t (u), v (n)〉, r.pref.mbr, r.pref.cond).

Do

107

1. Let G(M) be a graph, in which V(M) is the set of nodes, and every node
x.t ∈ V(M) is annotated with a so-called Conditional Preference Table
(CPT), denoted CPT(x.v.t).

2. For every variable x.v.t ∈ V(M), find all Local Preference instances over
that variable, let that set be P (x.v.t) and find all conditional preferences
to members of P (x.v.t), and let that set be CP (x.v.t).

3. For every variable x.v.t ∈ V(M), define its CPT(x.v.t) by adding every
Mixed Bridge Preference (〈x,v.t, vi 〉,〈x,v.t, v j 〉) ∈ P (x.t) and member of
CP (x.v.t) to the relevant CPT(x.v.t).

4. For each variable x.v.t ∈ V(M), if its CPT(x.v.t) is not complete, then elicit
or otherwise find the missing Mixed Bridge Preferences and r.pref.cond
instances, and add them to CPT(x.v.t).

Output

The CP-Net G(M).

Language Services

• s.BestOutcome: The best Outcome is the Outcome returned by an out-
come optimisation query [16] on the CP-Net G(M).

• s.BetterOutcome: The better Outcome is the one returned by a domi-
nance query [16] on the CP-Net G(M).

Figure 25 shows a model in L.Procyon. There are no value assignments in the
Figure. Each Fragment in the Figure is annotated with two Local Preference instances.
One gives the preference over satisfaction values, and the other over approval values
for that Fragment.

There are four conditional preference relations in the Figure. Two indicate that
preference over satisfaction values of ChkDblLoc depends on the satisfaction value
of IncCalRep. The other two say that preference over satisfaction values of DispSoft-
wChkDbl depends on the satisfaction value of ChkDblLoc.

Given these conditional preferences, and all other Local Preferences in the Figure,
what is the best Outcome? That is, what are the best assignments of values to all
Fragments and relation instances in that model?

To answer this, the first step is to make a CP-Net, so as to find the best value assign-
ment to the Fragments whose satisfaction values involve conditional preferences.
The resulting CP-Net is shown in Figure 25(b). Next, running an outcome optimisa-
tion query on the CP-Net in Figure 25(b) will result in the graph in Figure 26, where
each edge runs from a better to a worse combination of value assignments. That
graph shows that the best combination assigns the satisfaction value 0 to IncCalRep,
ChkDblLoc, and DispSoftwChkDbl.

While Figure 26 does show the best combination of satisfaction values over three
Fragments, the best Outcome will not necessarily include that best combination.
The reason is that you still need to assign satisfaction and approval values to all other
Fragments and relation instances in the model, and in doing that, you need to take
care about how satisfaction values propagate via f.sat.inf.pos, f.sat.inf.neg, f.sat, and
f.sat.leaf.

The best approval Outcome is easy to find. As the approval value of a Fragment,
or relation instance, is independent of other assignments of approval values in the
model, you can assign the preferred approval value to every Fragment and relation
instance. To keep the figures simple, I assume that the preferred approval value for
every influence relation is 1. The best approval Outcome is shown in Figure 27.

Figure 28 shows an Outcome which includes the best combination of satisfaction
values of IncCalRep, ChkDblLoc, and DispSoftwChkDbl, and the best assignment
of satisfaction values to other Fragments, which still satisfies propagation rules in
f.sat.inf.pos, f.sat.inf.neg, f.sat, and f.sat.leaf. The obvious problem with that Outcome
is that AddRepEm is not satisfied.

You can repair AddRepEm by choosing an Outcome which ignores the conditional
relations. This Outcome is shown in Figure 29. Another approach is to change the
conditional preferences on DispSoftwChkDbl, so that they are conditional on the
satisfaction value of AddRepEm, rather than ChkDblLoc. Also, you could change the
influence relations, by removing the one from ChkDblLoc to AddRepEm.

11.8 Summary on Preferences

I introduced simple preference relations, illustrated how to add them to languages
and represent them in models, and finally, how to map models to CP-Nets, in order
to use conditional preferences to find best Outcomes. Many open questions remain
outside the scope of this tutorial:

• How to have conditional preferences which are not over Local Preferences, but
over Mixed Bridge Preferences?

• How to represent that preferences are conflicting, which is that improvement
over one leads to a decrease over another?

108

(a) Model in L.Procyon, with no value assignments.

(b) CP-Net made from conditional preferences in Figure 25(a).

Figure 25: Conditional preferences and the corresponding CP-Net.

109

Figure 26: Preference graph induced from the CP-Net in Figure 25(b).

110

Figure 27: Best approval Outcome, assuming 1 is the preferred approval value on all relation instances.

111

Figure 28: Best Outcome which includes the best combination of satisfaction values according to conditional preferences.

112

Figure 29: Best Outcome which ignores conditional preferences.

113

• How to represent acceptable tradeoffs between preferences, which are the
allowed improvements on one preference, and the acceptable decreases over
others, which are in conflict with the first?

• How to use tradeoffs when searching for the best Outcome?

114

12 Formal Theories

Overview and Motivation

This section is on how to relate languages in this tutorial to formal logics. The
convention below is that a formal theory, or simply theory, is a name for a set of
formulas with no free variables, in some formal logic. So how can you map (parts of)
models to theories, and why do so?

Relationships between RMLs and formal logics are a recurrent topic in RE. In
KAOS, theories in linear temporal first-order logic are themselves parts of models.
Same in Tropos. The motivation is that you can take a model in an RML, map (parts
of) it to a theory in some formal logic, in order to answer questions which your RML
could not.

I will look at two among many topics on the relationships between RMLs and for-
mal logics. I restrict the discussion to one formal logic, namely classical propositional
logic (CPL) and discuss the following questions.

1. How to map a model to a CPL theory, if every Fragment equates to an atomic
proposition? (Section 12.1),

2. How to map a model to CPL theory, if every Fragment maps to a conjunction of
formulas of classical propositional logic? (Section 12.2),

3. What can be the risks of mapping models to theories? (Section 12.3).

The overall aim of mapping models to theories is to deliver Language Services
which the RML could not deliver by itself. For example, I had no notion of consistency
or inconsistency in languages which I introduced so far. To check if a model (part)
is consistent, I need to have a notion of consistency in the language, that is, define
the conditions that a model has to satisfy, in order to be consistent. I can do this
independently of any existing notion of consistency in another language, or a formal
logic. Or, I can map my models to theories of a formal logic, and consider my models
as consistent in my language, if the corresponding theories are consistent in the
formal logic. That is, I borrow a notion of consistency from an existing language or
logic.

To be more concrete, recall that many languages defined so far can distinguish
between Fragments that are requirements, domain knowledge, or specifications.
To represent instances of the DRP, a language also needs to be able to check if
requirements, domain knowledge, and the specification are consistent, and there is
a proof of all requirements from the domain knowledge and the specification. This is
summarised in the following Language Service.

Language Service

DRPSol: Given a model M which includes an instance P of DRP, is the part S
of that model a solution to the problem instance?

s.DRPSol requires two capabilities, one related to proving requirements from do-
main knowledge and specifications, the other proving the absence of inconsistency.
To avoid confusion about these, Provability Condition abbreviates hereafter the first
condition in the DRP, and Consistency Condition the second condition.

To enable a language to deliver s.DRPSol, you need to define rules for constructing
proofs, and in relation to these rules, defining when inconsistency is the result of a
proof.

A cautious approach to delivering s.DRPSol is to map the content of a Require-
ments Model to formulae in a formal logic, where the notions of proof and incon-
sistency already are well-defined. The clear benefit is that you are freed from the
burden of inventing a new set of proof rules and justifying them. The risk is that you
may be adopting the conventions of the formal logic, and they may be clashing with
the conventions in the language you use. I return to this issue in Section 12.2.

The cautious approach has the effect that you do not need to add new relations to
models. In other words, you will still be saying the same with your models, and you
will use logic only to deliver s.DRPSol. The other way could have involved adding
new relations to the language because of the ability of the formal logic to state such
relations. In brief, I focus on mapping models to formulae of logic, not the other way
round. For the sake of simplicity, I will be mapping models to CPL theories [112].9

9Since I want to have a language that represents instances of the DRP, and not some other class of RPs, a
disclaimer is in order: The syntactic consequence relation in classical propositional logic is usually denoted
`, and this at least visually resembles the relation in DRP. I do not know exactly which logic the DRP takes
that relation from, as the accompanying paper [140] does not say. I take classical propositional logic to be a
conservative choice.

115

12.1 How to Map Models to Theories When Fragments Map to Atomic
Propositions?

Suppose that I have a model in a language which can represent Fragments and
positive and negative influence relations over Fragments. Since I am interested in the
DRP, the language should also categorise all Fragments into requirements, domain
knowledge, and specifications. A simple language which has this is L.Rigel. Recall
that L.Rigel also has v.Satisfaction and functions which propagate these values over
relation instances and Fragments.

Exercise 30: Map L.Rigel models to propositional logic theories

What do you need to add to L.Rigel in order to map its models to propo-
sitional logic theories? Can the same model be mapped to different
theories? If yes, then why would you map it to one of these theories
and not another?

I start with the convention that the formal theory should have exactly one atomic
proposition per Fragment in a model. So a Fragment is not rewritten into a sentence
of CPL, but maps to an atomic proposition of CPL.

I will map positive influences to an implication from a conjunction, and negative
influences to implication to inconsistency. This is inspired by Techne. The following
function does it.

Function

Map positive influences to implications, negative influences to inconsis-
tency
(f.map.infl.impl)

Input

Model M .

Do

1. Let ∆ be an empty set.

2. For every Fragment x in M :

(a) Let {(p1, x), . . . , (pn , x)} be the set of all positive influences to x in
M .

(b) Let {(q1, x), . . . , (qm , x)} be the set of all negative influences to x in
M .

(c) Add the following sentences to ∆:

p1 ∧ . . .∧pn → x,

q1 ∧ . . .∧qm ∧x → ⊥.

Output

Set ∆ of propositional logic sentences.

Language Services

• s.WhCPLTh: What CPL theory corresponds to positive and negative
influences over Fragments in M? : ∆.

f.map.infl.impl sees positive influences as implications, because that roughly corre-
sponds to the idea that if p1, . . . , pn are satisfied, then so should x. In contrast, it sees
negative influences as logical inconsistencies, so that if q1, . . . , qm negatively influ-
ence x, then there can be no consistent model which includes all of them. Negative
influences, in this approach, should not be tolerated in solutions.

If you add f.map.impl.infl to L.Rigel, you have a language which can deliver
s.DRPSol. It is called L.Sirius and defined below. Delivering it involves finding
in a model an instance of the Default RP, and then being able to check if a sub
model is a solution, that is, satisfies the Provability Condition and the Consistency
Condition.

The convention is that a model M ′ in some language is a submodel of a model M
in the same, or another language, if M ′ can be obtained by only removing Fragments
and, or relation instances from M .

Language

116

Sirius

Language Modules

F, T, V, r.inf.pos, r.inf.neg, f.map.abrel.g, f.cat.ksr, f.inf.sat.pos, f.inf.sat.neg,
f.sat, f.sat.leaf, f.map.infl.impl

Domain

Fragments have three partitions, namely requirements, domain knowledge,
and specification Fragments, F= c.r∪c.k∪c.s and c.r∩c.k∩c.s=;. Influences
are over Fragments, r.inf.pos⊆ F×F, r.inf.neg⊆ F×F. Value assignments are
over Fragments or relation instances, involve a Value Type, and a value, so
that

V⊆ (F∪ r.inf.pos∪ r.inf.neg)×T×v.Satisfaction.

The language has one binary Value Type, T = {v.Satisfaction}, and
v.Satisfaction= {1,0}.

Syntax

A model M in the language is a set of symbols M = {φ1, . . . ,φn }, where every
φ is generated according to the following BNF rules:

α ::= x | y | z | . . .

β ::= r | k | s

γ ::= β(α)

δ ::= (γ,γ)

ε ::= 〈α,ζ,η〉
φ ::= γ | δ | ε

Mapping

α symbols denote Fragments, D(α) ∈ F. β symbols are used to distinguish
requirements, domain knowledge, and specification Fragments, and are used
in γ symbols, so that D(r (α)) ∈ c.r, D(k(α)) ∈ c.k, D(s(α)) ∈ c.s. δ symbols
denote positive and negative influence relations. ζ symbols denote Value
Types, D(ζ) ∈ T. η denotes a value of a Value Type, and as there is one Value
Type, then D(η) ∈ v.Satisfaction. ε symbols denote value assignments, D(ε) ∈
V.

Language Services

Those of relations and functions in the language, and

• s.DRPSol: Yes, S is the solution to the Default RP instance defined by the
sub model P , if the following conditions are satisfied:

1. P and S are submodels of M ,

2. If Fc.k is the set of atomic CPL propositons, one per domain knowl-
edge Fragment in M , Fc.s the set of atomic CPL propositons, one
per specification Fragment in M , Fc.r the set of atomic CPL proposi-
tons, one per requirement Fragment in M , and ∆ the set of CPL
sentences produced by applying f.map.imfl.impl to M , then

(a) Fc.k,Fc.s,∆` Fc.r, that is, the Provability Condition is satisfied,

(b) Fc.k,Fc.s,∆ 6` ⊥, that is, the Consistency Condition is satisfied,

3. S includes all Fragments denoted by the atomic propositions in
Fc.s, and

4. P includes all Fragments denoted by the atomic propositions in
Fc.k ∪Fc.r.

Finding an Default RP instance in a model in L.Rigel is simple. If the model has a
set of requirements Fragments and domain knowledge Fragments, then it includes a
Default RP instance. There was no need for f.map.impl.infl to do this.

Recall that the Provability Condition consists of showing that K ,S ` R. Let K be
the set of all domain knowledge Fragments in M , S of specification Fragments, and R
of requirements. You then need to have an atomic proposition for each Fragment, so
let Fc.k be the set of atomic CPL propositons, one per domain knowledge Fragment
in M , Fc.s the set of atomic CPL propositons, one per specification Fragment in M ,
Fc.r the set of atomic CPL propositons, one per requirement Fragment in M .

None of these sets includes influence relations, and it follows, cannot include ∆,
the implications which correspond to the positive and negative influences in M . The
revised Provability Condition is then to show that

Fc.k,Fc.s,∆` Fc.r.

The Consistency Condition becomes

Fc.k,Fc.s,∆ 6` ⊥.

117

In a summary, if M gives the sets R, K , and S of propositions, and via f.map.infl.impl
the set of implications ∆, and if it can be shown that the above two conditions are
satisfied, then S is the solution to the Default RP in M .

Note that M may include other Fragments and relations, but if only f.map.infl.impl
is used, then M will be logically inconsistent if F,∆`⊥, where F are all the Fragments
in M . It follows that M may be inconsistent, all the while K ,S,∆` R and K ,S,∆ 6` ⊥.

Exercise 31: Given formulas, find the corresponding L.Sirius model

Suppose that you are given the following CPL formulas:

Fc.k = { SwtchCal,NoDropCal }

Fc.s = { SrcMap, IncLocVisSw,UpdOpIncLoc,FilSwIncRep }

Fc.r = { AddRepEm }

∆ = { FilIncRep∧ChkDblLoc∧ IdIncLoc∧RecEmCal∧NoDropCal∧SwtchCal

→AddRepEm,

SwtchCal∧NoDropCal→RecEmCal,

SrcMap→ IdIncLoc,

UpdOpIncLoc∧ IncLocVisSw→SwIdDuplCal,

SwIdDuplCal→ChkDblLoc,

FillSwIncRep→ FillIncRep }.

What Fragments and relations are in a model M , if it is a model in
L.Sirius, and which includes only the Fragments that correspond to
atomic propositions in Fc.k, Fc.s, and Fc.r above, and has influences
which mapped to those in ∆ above, via f.map.inf.impl? Is there a Default
RP problem instance in M? Is S given above a solution to that Default
RP instance in M?

12.2 What If Fragments Map to Sentences?

Instead of mapping each Fragment an atomic proposition, what would happen if
you mapped a Fragment to a CPL sentence?

Suppose, then, that there is a function which takes a Fragment and returns a
sentence. Call it f.map.f.sntc. I have no suggestions on how to define this function,
other than that the modeller takes a Fragment and writes a CPL sentence which best
corresponds to the information in the Fragment.

The effect of having f.map.f.sntc is that R, K , and S are now sets of sentences. You
still need to map relations to sentences, and f.map.inf.impl can still be used, with the
change that implications are now not necessarily only over atomic propositions, but
over atomic propositions and, or sentences.

Changes to the problem are the same as in Section 12.1. Provability Condition is
K ,S,∆` R and the Consistency Condition is K ,S,∆ 6` ⊥.

This has an effect on the complexity of checking the two conditions. The check
could be done in linear time when the output are atomic propositions and impli-
cations in Section 12.1, since that output amounts to a set of propositional Horn
clauses [40].

12.3 Are There Risks of Mapping Models to Theories?

Suppose that you have L.Rigel and f.map.inf.impl, and that you map Fragments to
atomic propositions of CPL, as in Section 12.1.

Let x be a Fragment, and an atomic proposition which is a requirement in a model
M . You might want to check if

K ,∆` x,

and if yes, conclude that the requirement x is satisfied by the domain knowledge.
More generally, you may want to check if M ′ ` x, where M ′ is the mapping of the
model M to atomic propositions and implications.

There is nothing problematic with wanting to do this, but it can be misleading.
The syntactic consequence relation ` in CPL is reflexive, meaning that if x ∈ M ′,
then also M ′ ` x. So even if there are no implications from domain knowledge and
specifications to x, and thus, no clear idea how to satisfy the requirement x with M ,
it is the case that M ′ ` x. The danger is to conclude that x is a satisfied requirement
according to M ′ and therefore, that M says how to satisfy x. This is incorrect.

A similarly misleading case is if M ′ `⊥. When M ′ is inconsistent, then any atomic
proposition and sentence is its conclusion in CPL. So any y , be it in M or not, is
such that M ′ ` y . If you were reading M ′ ` x as indicating that M says how to satisfy
the requirement x, then you would conclude anytime you have an inconsistent
M ′, regardless of there being x in it, or not, or there being domain knowledge and
specifications in M which say how to satisfy x.

The odd cases above happen not because there is a problem with the formal logic,
or with the RML, but with the rules about how the two are related. For example, if M ′
can be inconsistent, then it might be interesting to use a paraconsistent logic rather
than CPL, to check if there is proof of x from M ′. In short, the choice of a formal
logic to map models to, depends on exactly what you want to use this logic for, which
consequently helps choose that formal logic.

118

12.4 Summary on Formal Theories

This section briefly mentioned several topics on how models in RMLs relate to
theories in formal logics. The central idea and motivation is that (parts of) models
can be mapped to theories of formal logic. It should then be possible to check
properties of these theories, such as consistency, to draw conclusions which help
change the original models. I leave many other questions outside the scope of this
tutorial:

• How does valuation in a language influence the choice of a formal logic to map
its models to?

• Which properties of a language influence one’s decision on what to map Frag-
ments and relations to, in a formal logic?

• When models can map to inconsistent theories, then which paraconsistent logic
to map the models to, in order to do reasoning without repairing consistency
first?

119

13 Problem Classes

Overview and Motivation

This section presents various RP classes, some similar, others different from the
Default RP. The aim is to illustrate that the design of problem classes and the design
of languages is not independent from each other. Languages can be designed to solve
specific problem classes. Problem classes can also be defined after a language is, to
fit and showcase the capabilities of that language. This can happen, for example, if
you designed the language without a specific problem class in mind, but perhaps
a set of Language Services which you are interested in. These Language Services
may not, by themselves, define a problem class. This is exactly how I designed all
languages in this tutorial, except for those made specifically to solve the Default RP,
in Section 12. To clarify these ideas, I discuss the following specific questions.

1. What is a RP class, and why and how to define one? (Section 13.1),

2. How languages and problem classes match? (Section 13.2),

3. How to match problem classes and solution procedures? (Section ??),

4. What and how can problem classes inherit from each other? (Section 13.3).

In all languages so far in this tutorial, Language Services were only indirectly
related to the specific RPs that I may wanto to solve. For example, I motivated the use
of categories by requiring a language to distinguish requirements, domain knowledge,
and specifications, because it cannot otherwise be used to solve Default RP instances.
But the ability to distinguish categories is only a small part of what a language should
be capable of, in order to identify and solve Default RP instances in models. For
example, it has to be able to identify classically inconsistent sets of formulas, which
has nothing to do with the ability to categorise Fragments (as I illustrated in Section
12). So the Language Services which ensured that these categories are distinguished
in models are only indirectly helping, that is, are only part of what is needed to solve
Default RP instances.

Take another example. If I have the Language Service that consists of finding all
acceptable Fragments in a model, then it alone tells me nothing about whether an

acceptable Fragment should be in a solution to the problem, what that problem may
be in the model I have, and what the solution may be. If a language delivers the
Language Service which gives all acceptable Fragments in a model, then this alone is
not enough to know what the problem and the solution are. Is the problem to find
all acceptable Fragments in a model? Is it to find all acceptable Fragments which are
categorised as requirements? Or is it to check if the set of all acceptable Fragments
includes all those in some special relation to all requirements Fragments in a model?

It is important to know if a model represents an instance of a problem class,
and if the model includes the solution to that problem instance. If you know the
problem class that the language can represent and solve, then you may want to
elicit the Fragments, and establish relations, which together represent a problem
instance. Once you have a problem instance, you may want to elicit or otherwise
find information about potential solutions, that is, the alternative specifications that
the model may include. The solution will be the one specification you choose to
commit to.

If the language has Language Services, then knowing the problem helps decide
which Language Services to mobilise when, in order to represent the problem in-
stance and search for its solution. For example, if the problem is to make sure that
all requirements Fragments in a model obtain the value “satisfied”, then you would
need first to find and categorise as requirements some of the Fragments in the model.
Then, at various times during problem solving, you would need to check which of
the requirements Fragments obtain the desired value. If some do not, then you have
not found the solution yet, and you need to focus next problem solving steps on
changing the model, so that it satisfies more of the requirements Fragments. It is
also useful to know the problem class before you define the Language Services. If
the problem class is Default RP, then finding Problems requires mobilising Language
Services which categorise Fragments into requirements, domain knowledge, and
specifications, Language Services which check if a set of formulas is consistent, and
so on. Knowing the problem class helps focus the search for relevant Language
Services that a language should deliver.

In a summary, it is relevant when designing a language to indicate which one or
more problem classes it can deal with. This helps make sense of the various Language
Services that the language may deliver, in that they all, or most need to be useful
towards identifying the problem in a model, and finding its solutions.

13.1 How to Define Requirements Problem Classes?

The definition of an RP class has two parts:

1. a set of conditions which a model needs to satisfy, in order to represent an
instance of a problem of that problem class, and

120

2. a set of conditions which a model needs to satisfy, in order to include the
solution to the problem instance of that problem class.

In the rest of this tutorial, the term Problem will denote an instance of a problem,
of some problem class, and Solution will denote an instance of the solution to the
problem of a problem class. So given some model M in some language, a Problem is
some part of M which satisfies the conditions of being a problem instance, of some
problem class, and Solution is some part of M which satisfies the conditions of being
an instance of the solution, of a problem class.

There are two obvious and alternative ways to say that a language can represent
Problems and Solutions of a problem class. One is to add two functions. You give
each a submodel. One checks if a submodel is a Problem. The other checks if it is a
Solution.

I prefer another way, which is to have special Language Modules for problem
classes, rather than reuse those for functions. The aim is simply to emphasise
problem classes by not calling them functions. So if you have a problem class C, then
its module needs to deliver the following Language Services:

• s.IsProblem: Does the model M include the Problem P of the problem class C?

• s.IsSolution: If the model M includes the Problem P of problem class C, does
M also include the Solution S to this Problem?

Take Default RP as an example. A model includes a Default RP Problem if it
includes requirements and domain knowledge Fragments. The model also includes
a Default RP Solution to that problem, if it includes specification Fragments, and if it
can be shown with that language that the Provability Condition and the Consistency
Condition are satisfied.

Suppose now that you have L.Rigel, where there is no syntactic consequence
relation and no rules to map its models to a formal theory (in contrast to Section
12). The Provability Condition and the Consistency Condition cannot be verified
for L.Rigel models and the language cannot represent Default RP Problems and
Solutions. But I can define a problem class which is inspired by the consistency
and satisfaction conditions, and can be represented withL.Rigel. The language
distinguishes requirements, domain knowledge, and specifications, so I can define
the Problem for the problem class just as in Default RP.

In that language, the Problem is such a part of a model, which includes all re-
quirements and domain knowledge, and all relations that only those Fragments are
in.

The Solution should satisfy two conditions inspired by the Default RP. Call them
“light satisfaction” and “light consistency”.

Light satisfaction is satisfied if there is a value assignment to leaf Fragments
which propagate the v.Satisfaction 1 to all requirements Fragments, and these leaf
Fragments are specifications and, or domain knowledge.

Light consistency is satisfied if there are no negative influences between spec-
ifications, requirements, and domain knowledge. This also means that, if there
are negative influences in the Problem, the problem has to be revised as well, and
you cannot find the solution simply by adding specifications and positive influence
relations. The following Language Module synthesises this.

Problem Class

DRPLight (pcl.DRPLight)

Input

Three models M , P , and S.

Problem

Model M defines the Problem P of class pcl.DRPlight if the following condi-
tions are satisfied.

1. P is a submodel of M .

2. All c.r and c.k Fragments in M are also in P .

3. All relation instances over c.r and c.k Fragments only (and not over other
categories of Fragments) in M are also in P .

If P satisfies the conditions above, then v = 1, else v = 0.

Solution

Model M defines the Solution S to the Problem P of pcl.DRPlight if the fol-
lowing conditions are satisfied.

1. S is a submodel of M .

2. Of all Fragments in M , S includes only c.s Fragments.

3. Of all relation instances in M , S includes only those over only c.s Frag-
ments.

4. Light satisfaction: There is a value assignment to leaf Fragments in S
which propagate the v.Satisfaction 1 to all requirements Fragments in P ,

121

and these leaf Fragments in S are specifications and, or domain knowl-
edge.

5. Light consistency: There are no negative influences between specifica-
tions, requirements, and domain knowledge in the sub model of M ,
which includes only the Fragments in S and P and all relations over
these Fragments.

If S satisfies the conditions above, then w = 1, else w = 0.

Language Services

• s.IsProblem.DRPlight: Does the model M include the Problem P of
pcl.DRPlight? Yes, if v = 1, no otherwise.

• s.IsSolution.DRPlight: Does the model M include the Solution S of the
Problem P of pcl.DRPlight? Yes, if v = 1 and w = 1, no otherwise.

If the language was L.Sirius, and the Fragments mapped to atomic propositions,
then you could define the Default RP as follows.

Problem Class

DRP (pcl.DRP)

Input

Three models, M , P , and S.

Problem

Model M defines the Problem P of class pcl.DRP if P only all requirements
and domain knowledge Fragments of M . That is, P = R∪K , where K is the set
of all domain knowledge Fragments in M , and R the set of all requirements
Fragments in M .

If P satisfies the condition above, then v = 1, else v = 0.

Solution

Model M defines the Solution S of class pcl.DRP, if S satisfies the following
conditions:

1. S is a sub model of M .

2. S includes only specification Fragments and no relation instances.

3. The Provability Condition is satisfied, that is, K ,S,∆` R, where M maps
to the set ∆ of CPL sentences via f.map.inf.impl.

4. The Consistency Condition is satisfied, that is, K ,S,∆ 6` ⊥.

If S satisfies the conditions above, then w = 1, else w = 0.

Language Services

• s.IsProblem.DRP: Does the model M include the Problem P of pcl.DRP?
Yes, if v = 1, no otherwise.

• s.IsSolution.DRP: Does the model M include the Solution S of the Prob-
lem P of pcl.DRP? Yes, if v = 1 and w = 1, no otherwise.

13.2 Why Match Problem Classes and Languages?

A problem class is not necessarily specific to one language. Models of a language
may include Problems of different problem classes. It can also happen that models
include Problems of a problem class, yet the language is unable to represent Solutions
of that problem class. I will illustrate these ideas below. The aim is to show that
it is important to take care when deciding how generic (language-independent) a
problem class is, and how versatile a language can be claimed to be, that is, which
problem classes it can be used to solve.

As a first example, observe that any language, which can represent requirements
and domain knowledge Fragments, can also represent Problems of the pcl.DRPlight
problem class. This means, for instance, that a language which categorises Fragments
into requirements, domain knowledge, and specifications, and only allows positive
and negative r.arg relations over Fragments, can represent pcl.DRPlight Problems.
But it cannot represent Solutions, because it has no relations which can indicate that
satisfying specifications satisfies requirements and, or domain knowledge, and no
functions to propagate satisfaction values.

Any language that can represent requirements and domain knowledge Fragments
can also represent Default RP Problems. But if the language has a syntactic conse-

122

quence relation which is different from that of classical logic (say, it has an irreflexive
consequence relation, or a paraconsistent one), then it can also have a different
notion of consistency, which makes it impossible to check if a submodel includes a
Default RP Solution.

Suppose, for example, that `A is a consequence relation in one of Hunter’s ar-
gumentative logics [70], and ` is the consequence relation of CPL (as in Section
12). If you require a Solution to satisfy K ,S `A R, then, clearly, you are asking it to
satisfy a different condition than K ,S ` R, because the rules that K, S, and R have to
satisfy in the former case are different than those that they have to satisfy in the latter
case. Simply put, the two syntactic consequence relations are different, and so, the
properties of Solutions are different, and finally, you have different problem classes.

As a second example, note that pcl.DRPlight requires that all requirements and all
domain knowledge Fragments are in every Solution. So you cannot choose a subset
thereof, and therefore, you prefer equally all requirements and domain knowledge.

pcl.DRPlight is not specific to L.Rigel, yet it puts in the Problem any relations over
requirements and domain knowledge. This is fine when there are only influence
relations in a language. But what if there were also r.xor instances? If there were,
then there could be alternative subsets of requirements and domain knowledge, and
each one is a different Problem. This is simply because there is no need, or it is
impossible for a Solution to satisfy all alternative requirements. The language might
also have acceptability relations and a function to compute the acceptability value.
Perhaps it makes sense that the Problem includes only the acceptable requirements
and domain knowledge. Secondly, light consistency is not light at all. It requires
that there be no negative influences over requirements, domain knowledge, and
specifications. This may be too much to ask, and if so, a different Solution concept is
needed. The module for pcl.DRPlight has no rules for how to deal with cases, where
some negative influences are allowed in a Solution.

It can also happen that a model can represent several mutually exclusive Solutions
to the same Problem. For example, a model in L.Capella can represent Alternatives
and Combinations, and propagate satisfaction values over them. More importantly,
its models can represent Problems of pcl.DRPlight, since they can show requirements
Fragments. There may be such value assignments, which guarantee that different
Combinations will, each, satisfy all the requirements, and so, each Combination may
itself include a Solution to that pcl.DRPlight Problem. The definition of pcl.DRPlight
does not say which of these Solutions is the Solution. That is, any of them is. If the
model includes preferences, then some of these Solutions, that is, Outcomes, may
be preferred to others. However, pcl.DRPlight ignores preferences, and therefore, a
different problem class may be more appropriate.

The general point above is that problem classes should ideally use the features of
the language, so that the intention to use the language to solve problems of a given
class, is a motive for having these features in the first place. Below is the problem

class pcl.DRPbest, which adapts pcl.DRPlight so that it uses preferences, that is, the
solution has also to give the most preferred Outcome.

Problem Class

DRPbest (pcl.DRPbest)

Input

Three models, M , P , and S.

Problem

Model M defines the Problem P of class pcl.DRPbest if M defines the problem
P of pcl.DRPlight.

If P satisfies the condition above, then v = 1, else v = 0.

Solution

Model M defines the Solution O(M ,S) of class pcl.DRP, if the following two
conditions are satisfied.

1. S is a Solution to P according to pcl.DRPlight.

2. Let O(M ,S) and O(M ,S′) be two satisfaction Outcomes on M . That is,
each includes a single satisfaction value assignment to every Fragment
and relation instance in M . Let S and S′ be sub models of M , such that
each is a Solution to P according to pcl.DRPlight. So if you were looking
for a pcl.DRPlight Solution to P , you could take either S or S′. There is
at no preference relation in M such that O(M ,S′) is strictly preferred to
O(M ,S).

If O(M ,S) satisfies the conditions above, then w = 1, else w = 0.

Language Services

• s.IsProblem.DRPbest: Does the model M include the Problem P of
pcl.DRP? Yes, if v = 1, no otherwise.

123

• s.IsSolution.DRPbest: Does the model M include the Solution O(M ,S)
of the Problem P of pcl.DRP? Yes, if v = 1 and w = 1, no otherwise.

13.3 What and How Can Problem Classes Inherit from Each Other?

Work in progress. Will be added soon.

124

14 Discussion

Work in progress. Will be added soon.

125

A Language Modules and Languages in the Tutorial

Tables 3 and 4 show all languages and Language Modules defined in this tutorial.

126

Table 3: All Language Modules and languages in this tutorial.

Language

Language Module Section L.
A

lp
he

ra
tz

L.
A

nk
aa

L.
S

ch
ed

ar

L.
D

ip
hd

a

L.
A

ch
er

na
r

L.
H

am
al

L.
A

ca
m

ar

L.
M

en
ka

r

L.
M

irf
ak

L.
A

ld
eb

ar
an

L.
R

ig
el

L.
C

ap
el

la

L.
A

dh
ar

a

L.
B

el
la

tr
ix

L.
E

ln
at

h

L.
A

ln
ila

m

L.
C

an
op

us

L.
P

ro
cy

on

L.
S

iri
us

Relations 5
r.ifm 5.1 • • • •
f.map.abrel.g 5.2 • • • • • • • • • • • • • • •
r.inf 5.3.1
r.inf.pos 5.3.2 • • • • • • • • • • • • • • • •
r.inf.neg 5.3.2 • • • • • • • • • • • • • • • •
r.str.inf 5.3.3 • •
r.sup 5.4.1 •
r.def 5.4.1 •
f.acc 5.4.2

Guidelines 6
f.add.ifm 6.1 • •
r.q 6.1 •
f.opr.all 6.2 •

Categories 7
c.r 7.1 • • • • • • • • • • • •
c.k 7.1 • • • • • • • • • • • •
c.s 7.1 • • • • • • • • • • • •
f.cat.ksr 7.1 • • • • • • • • • • • •
c.r.f 7.2
c.r.nf 7.2
r.rls 7.4
c.r.clsh 7.4
c.r.irrl 7.4
f.chk.rop 7.5

Alternatives 8
r.xor 8.1 • • •
r.po 8.2 •
c.cp 8.2 •
c.cb 8.3 • •

127

Table 4: All Language Modules and languages in this tutorial (continued).

Language

Language Module Section L.
A

lp
he

ra
tz

L.
A

nk
aa

L.
S

ch
ed

ar

L.
D

ip
hd

a

L.
A

ch
er

na
r

L.
H

am
al

L.
A

ca
m

ar

L.
M

en
ka

r

L.
M

irf
ak

L.
A

ld
eb

ar
an

L.
R

ig
el

L.
C

ap
el

la

L.
A

dh
ar

a

L.
B

el
la

tr
ix

L.
E

ln
at

h

L.
A

ln
ila

m

L.
C

an
op

us

L.
P

ro
cy

on

L.
S

iri
us

Valuation 9
f.inf.sat.pos 9.1.2 • • • • • • • • •
f.inf.sat.neg 9.1.2 • • • • • • • • •
f.sat 9.1.3 • • • • • • • •
f.sat.leaf 9.1.3 • • • • • • • •
f.sat.x 9.1.4 • •
f.app.asg.ind 9.2.1
f.app.maj 9.2.1
f.sat.nxt 9.2.1
f.ask.next 9.3
f.chk.progrstatus 9.4
f.chk.20more 9.5

Uncertainty 10
f.prob.asg 10.1 •
f.prob.sat.ind 10.1 •
f.make.baynet 10.2.1
f.map.inf.pos.baynet 10.2.2

Preferences 11
r.pref.loc.c 11.2 • • • • •
r.pref.mloc.c 11.3 • • • •
r.pref.br.c 11.4 • • •
r.pref.mbr.c 11.5 • •
crit.low.AddIncTm 11.6
crit.d.t 11.6
crit.low.rev.h 11.6
r.pref.cond 11.7 •
f.makr.CPNet 11.7

Formal Theories 12
f.map.infl.impl 12.1 •

Problem Classes 13
pcl.DRPlight 13.1
pcl.DRP 13.1
pcl.DRPbest 13.2

128

References

[1] Alfred V. Aho, Michael R Garey, and Jeffrey D. Ullman. The transitive reduction of a directed graph.
SIAM Journal on Computing, 1(2):131–137, 1972.

[2] Anonymous. Report of the Inquiry Into The London Ambulance Service. Technical report, The
Communications Directorate, South West Thames Regional Authority, 1993.

[3] Chimay Anumba, John M Kamara, and Anne-Francoise Cutting-Decelle. Concurrent engineering in
construction projects. Routledge, 2006.

[4] Kenneth J Arrow, Amartya Sen, and Kotaro Suzumura. Handbook of Social Choice & Welfare, volume 2.
Elsevier, 2010.

[5] Fahiem Bacchus and Adam Grove. Graphical models for preference and utility. In Proceedings of the
Eleventh conference on Uncertainty in artificial intelligence, pages 3–10. Morgan Kaufmann Publishers
Inc., 1995.

[6] Jorgen Bang-Jensen and Gregory Gutin. Digraphs: Theory, Algorithms and Applications. Springer,
2002.

[7] Trevor JM Bench-Capon and Paul E Dunne. Argumentation in artificial intelligence. Artificial intelli-
gence, 171(10):619–641, 2007.

[8] William L Benoit and Dale Hample. Readings in argumentation, volume 11. Walter de Gruyter, 1992.

[9] Patrik Berander and Anneliese Andrews. Requirements prioritization. In Engineering and managing
software requirements, pages 69–94. Springer, 2005.

[10] Paul Beynon-Davies. Human error and information systems failure: the case of the london ambulance
service computer-aided despatch system project. Interacting with Computers, 11(6):699–720, 1999.

[11] Barry Boehm, Prasanta Bose, Ellis Horowitz, and Ming June Lee. Software requirements negotiation
and renegotiation aids: A theory-w based spiral approach. In Software Engineering, 1995. ICSE 1995.
17th International Conference on, pages 243–243. IEEE, 1995.

[12] Barry W Boehm. Software engineering economics. Software Engineering, IEEE Transactions on,
(1):4–21, 1984.

[13] Barry W. Boehm. A spiral model of software development and enhancement. Computer, 21(5):61–72,
1988.

[14] Barry W Boehm, John R Brown, and Myron Lipow. Quantitative evaluation of software quality. In Pro-
ceedings of the 2nd international conference on Software engineering, pages 592–605. IEEE Computer
Society Press, 1976.

[15] Barry W Boehm, Ray Madachy, Bert Steece, et al. Software Cost Estimation with Cocomo II. Prentice
Hall PTR, 2000.

[16] Craig Boutilier, Ronen I Brafman, Carmel Domshlak, Holger H Hoos, and David Poole. Cp-nets: A tool
for representing and reasoning with conditional ceteris paribus preference statements. J. Artif. Intell.
Res.(JAIR), 21:135–191, 2004.

[17] Jean-Pierre Brans and Ph Vincke. Note: A preference ranking organisation method: (the promethee
method for multiple criteria decision-making). Management science, 31(6):647–656, 1985.

[18] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger Kienle, Marin Litoiu,
Hausi Müller, Mauro Pezzè, and Mary Shaw. Engineering self-adaptive systems through feedback
loops. In Software Engineering for Self-Adaptive Systems, pages 48–70. Springer, 2009.

[19] Russel E Caflisch. Monte carlo and quasi-monte carlo methods. Acta numerica, 7:1–49, 1998.

[20] Colin Camerer and Martin Weber. Recent developments in modeling preferences: Uncertainty and
ambiguity. Journal of risk and uncertainty, 5(4):325–370, 1992.

[21] Jaelson Castro, Manuel Kolp, and John Mylopoulos. Towards requirements-driven information systems
engineering: the tropos project. Information systems, 27(6):365–389, 2002.

[22] Eugene Charniak. Bayesian networks without tears. AI magazine, 12(4):50, 1991.

[23] Li Chen and Pearl Pu. Survey of preference elicitation methods. In Ecole Politechnique Federale de
Lausanne (EPFL), IC/2004/67, 2004.

[24] Betty HC Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jesper Andersson, Basil
Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, et al. Software engineering for self-adaptive systems:
A research roadmap. Springer, 2009.

[25] Carlos Iván Chesñevar, Ana Gabriela Maguitman, and Ronald Prescott Loui. Logical models of
argument. ACM Computing Surveys (CSUR), 32(4):337–383, 2000.

[26] Yann Chevaleyre, Ulle Endriss, Jérôme Lang, and Nicolas Maudet. A short introduction to computa-
tional social choice. In Proceedings of the 33rd conference on Current Trends in Theory and Practice of
Computer Science, pages 51–69. Springer-Verlag, 2007.

[27] Edmund M Clarke and Jeannette M Wing. Formal methods: State of the art and future directions. ACM
Computing Surveys (CSUR), 28(4):626–643, 1996.

[28] Jane Cleland-Huang, Raffaella Settimi, Chuan Duan, and Xuchang Zou. Utilizing supporting evidence
to improve dynamic requirements traceability. In Requirements Engineering, 2005. Proceedings. 13th
IEEE International Conference on, pages 135–144. IEEE, 2005.

[29] Jeff Conklin and Michael L Begeman. gibis: A hypertext tool for exploratory policy discussion. ACM
Transactions on Information Systems (TOIS), 6(4):303–331, 1988.

[30] Larissa Conradt and Christian List. Group decisions in humans and animals: a survey. Philosophical
Transactions of the Royal Society B: Biological Sciences, 364(1518):719–742, 2009.

[31] Richard Cox. Representation construction, externalised cognition and individual differences. Learning
and instruction, 9(4):343–363, 1999.

[32] Oliver Creighton, Martin Ott, and Bernd Bruegge. Software cinema-video-based requirements en-
gineering. In Requirements Engineering, 14th IEEE International Conference, pages 109–118. IEEE,
2006.

[33] Anne Dardenne, Axel Van Lamsweerde, and Stephen Fickas. Goal-directed requirements acquisition.
Science of computer programming, 20(1):3–50, 1993.

[34] Robert Darimont and Axel Van Lamsweerde. Formal refinement patterns for goal-driven requirements
elaboration. ACM SIGSOFT Software Engineering Notes, 21(6):179–190, 1996.

[35] Alan Davis, Oscar Dieste, Ann Hickey, Natalia Juristo, and Ana María Moreno. Effectiveness of require-
ments elicitation techniques: Empirical results derived from a systematic review. In Requirements
Engineering, 14th IEEE International Conference, pages 179–188. IEEE, 2006.

[36] Victorio A de Carvalho, João Paulo A Almeida, and Giancarlo Guizzardi. Using reference domain
ontologies to define the real-world semantics of domain-specific languages. In Advanced Information
Systems Engineering, pages 488–502. Springer, 2014.

[37] Willem-Paul de Roever, Kai Engelhardt, and Karl-Heinz Buth. Data refinement: model-oriented proof
methods and their comparison. Number 47. Cambridge University Press, 1998.

[38] Edsger W Dijkstra. Chapter i: Notes on structured programming. In Structured programming, pages
1–82. Academic Press Ltd., 1972.

[39] Carmel Domshlak, Eyke Hüllermeier, Souhila Kaci, and Henri Prade. Preferences in ai: An overview.
Artificial Intelligence, 175(7):1037–1052, 2011.

[40] William F Dowling and Jean H Gallier. Linear-time algorithms for testing the satisfiability of proposi-
tional horn formulae. The Journal of Logic Programming, 1(3):267–284, 1984.

[41] Didier Dubois and Henri Prade. Possibility theory as a basis for qualitative decision theory. In IJCAI,
volume 95, pages 1924–1930, 1995.

[42] Eric Dubois, Jacques Hagelstein, Eugene Lahou, Frank Ponsaert, and Andre Rifaut. A knowledge
representation language for requirements engineering. Proceedings of the IEEE, 74(10):1431–1444,
1986.

129

[43] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and< i> n</i>-person games. Artificial intelligence, 77(2):321–357, 1995.

[44] Neil A Ernst, Alexander Borgida, Ivan J Jureta, and John Mylopoulos. Agile requirements engineering
via paraconsistent reasoning. Information Systems, 2013.

[45] José Figueira, Salvatore Greco, and Matthias Ehrgott. Multiple criteria decision analysis: state of the art
surveys, volume 78. Springer, 2005.

[46] Anthony CW Finkelstein, Dov Gabbay, Anthony Hunter, Jeff Kramer, and Bashar Nuseibeh. Incon-
sistency handling in multiperspective specifications. Software Engineering, IEEE Transactions on,
20(8):569–578, 1994.

[47] Janos C Fodor and MR Roubens. Fuzzy preference modelling and multicriteria decision support,
volume 14. Springer, 1994.

[48] Ariel Fuxman, Lin Liu, John Mylopoulos, Marco Pistore, Marco Roveri, and Paolo Traverso. Specifying
and analyzing early requirements in tropos. Requirements Engineering, 9(2):132–150, 2004.

[49] Dedre Gentner and Susan Goldin-Meadow. Language in mind: Advances in the study of language and
thought. MIT Press, 2003.

[50] Jonathan Ginzburg. Interrogatives: Questions, facts and dialogue. The handbook of contemporary
semantic theory. Blackwell, Oxford, 1996.

[51] Paolo Giorgini, John Mylopoulos, Eleonora Nicchiarelli, and Roberto Sebastiani. Reasoning with goal
models. In Conceptual ModelingâĂŤER 2002, pages 167–181. Springer, 2003.

[52] Lila Gleitman and Anna Papafragou. Language and thought. Cambridge handbook of thinking and
reasoning, pages 633–661, 2005.

[53] Joseph A Goguen and Charlotte Linde. Techniques for requirements elicitation. In Requirements
Engineering, 1993., Proceedings of IEEE International Symposium on, pages 152–164. IEEE, 1993.

[54] Orlena CZ Gotel and CW Finkelstein. An analysis of the requirements traceability problem. In
Requirements Engineering, 1994., Proceedings of the First International Conference on, pages 94–101.
IEEE, 1994.

[55] Salvatore Greco, Benedetto Matarazzo, and Roman Slowinski. Rough sets theory for multicriteria
decision analysis. European journal of operational research, 129(1):1–47, 2001.

[56] Sol Greenspan, John Mylopoulos, and Alex Borgida. On formal requirements modeling languages: Rml
revisited. In Proceedings of the 16th international conference on Software engineering, pages 135–147.
IEEE Computer Society Press, 1994.

[57] Sol J Greenspan, John Mylopoulos, and Alex Borgida. Capturing more world knowledge in the require-
ments specification. In Proceedings of the 6th international conference on Software engineering, pages
225–234. IEEE Computer Society Press, 1982.

[58] Nicola Guarino. Formal ontology, conceptual analysis and knowledge representation. International
journal of human-computer studies, 43(5):625–640, 1995.

[59] John J Gumperz and Stephen C Levinson. Rethinking linguistic relativity. Cambridge University Press,
1996.

[60] Carl A Gunter, Elsa L Gunter, Michael Jackson, and Pamela Zave. A reference model for requirements
and specifications. In Requirements engineering, 2000. Proceedings. 4th International Conference on,
page 189. IEEE, 2000.

[61] Sven Ove Hansson. Preference logic. In Handbook of philosophical logic, pages 319–393. Springer,
2002.

[62] Sven Ove Hansson and Till Grüne-Yanoff. Preferences. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Winter 2012 edition, 2012.

[63] David Harel and Bernhard Rumpe. Meaningful modeling: what’s the semantics of" semantics"?
Computer, 37(10):64–72, 2004.

[64] Constance L Heitmeyer, Ralph D Jeffords, and Bruce G Labaw. Automated consistency checking of
requirements specifications. ACM Transactions on Software Engineering and Methodology (TOSEM),
5(3):231–261, 1996.

[65] Andrea Herrmann and Maya Daneva. Requirements prioritization based on benefit and cost predic-
tion: An agenda for future research. In International Requirements Engineering, 2008. RE’08. 16th IEEE,
pages 125–134. IEEE, 2008.

[66] Ann M Hickey and Alan M Davis. A unified model of requirements elicitation. Journal of Management
Information Systems, 20(4):65–84, 2004.

[67] David Hitchcock. Informal logic and the concept of argument. Philosophy of logic, 5:101–129, 2006.

[68] C Hoare. Proof of correctness of data representations. Language Hierarchies and Interfaces, pages
183–193, 1976.

[69] John E Hopcroft and Robert E Tarjan. Efficient algorithms for graph manipulation. 1971.

[70] Anthony Hunter. Paraconsistent logics. In Reasoning with Actual and Potential Contradictions, pages
11–36. Springer, 1998.

[71] Anthony Hunter and Bashar Nuseibeh. Managing inconsistent specifications: reasoning, analysis, and
action. ACM Transactions on Software Engineering and Methodology (TOSEM), 7(4):335–367, 1998.

[72] United Kingdom Hydrograph, United Kingdom Hydrographic Office, and U S Naval Observatory. 2010
Nautical Almanac: Commercial Edition. Paradise Cay Publications, 2009.

[73] Kenneth E Iverson. Notation as a tool of thought. ACM SIGAPL APL Quote Quad, 35(1-2):2–31, 2007.

[74] David Jonassen. Using cognitive tools to represent problems. Journal of research on Technology in
Education, 35(3):362–381, 2003.

[75] Ivan Jureta, John Mylopoulos, and Stéphane Faulkner. Analysis of multi-party agreement in require-
ments validation. In Requirements Engineering Conference, 2009. RE’09. 17th IEEE International, pages
57–66. IEEE, 2009.

[76] Ivan J Jureta, Alexander Borgida, Neil A Ernst, and John Mylopoulos. Techne: Towards a new gener-
ation of requirements modeling languages with goals, preferences, and inconsistency handling. In
Requirements Engineering Conference (RE), 2010 18th IEEE International, pages 115–124. IEEE, 2010.

[77] Ivan J Jureta and Stéphane Faulkner. Clarifying goal models. In Tutorials, posters, panels and industrial
contributions at the 26th international conference on Conceptual modeling-Volume 83, pages 139–144.
Australian Computer Society, Inc., 2007.

[78] Ivan J Jureta, Stéphane Faulkner, and Pierre-Yves Schobbens. Clear justification of modeling decisions
for goal-oriented requirements engineering. Requirements Engineering, 13(2):87–115, 2008.

[79] Ivan J Jureta, John Mylopoulos, and Stephane Faulkner. Revisiting the core ontology and problem in
requirements engineering. In International Requirements Engineering, 2008. RE’08. 16th IEEE, pages
71–80. IEEE, 2008.

[80] Daniel Kahneman and Amos Tversky. Prospect theory: An analysis of decision under risk. Economet-
rica: Journal of the Econometric Society, pages 263–291, 1979.

[81] Nikos Karacapilidis and Dimitris Papadias. Computer supported argumentation and collaborative
decision making: the hermes system. Information systems, 26(4):259–277, 2001.

[82] Joachim Karlsson, Claes Wohlin, and Björn Regnell. An evaluation of methods for prioritizing software
requirements. Information and Software Technology, 39(14):939–947, 1998.

[83] Paul Kay and Willett Kempton. What is the Sapir-Whorf hypothesis? American Anthropologist,
86(1):65–79, 1984.

[84] John Krogstie, Odd Ivar Lindland, and Guttorm Sindre. Towards a deeper understanding of quality in
requirements engineering. In Advanced Information Systems Engineering, pages 82–95. Springer, 1995.

[85] Werner Kunz and Horst WJ Rittel. Issues as elements of information systems, volume 131. Institute of
Urban and Regional Development, University of California Berkeley, California, 1970.

130

[86] Bryan Lawson. How designers think: the design process demystified. Routledge, 2006.

[87] Jintae Lee. Extending the potts and bruns model for recording design rationale. In Software Engineer-
ing, 1991. Proceedings., 13th International Conference on, pages 114–125. IEEE, 1991.

[88] Jintae Lee and Kum-Yew Lai. What’s in design rationale? Human–Computer Interaction, 6(3-4):251–280,
1991.

[89] Julio Cesar Sampaio do Prado Leite and Peter A Freeman. Requirements validation through viewpoint
resolution. Software Engineering, IEEE Transactions on, 17(12):1253–1269, 1991.

[90] Emmanuel Letier and Axel Van Lamsweerde. Reasoning about partial goal satisfaction for requirements
and design engineering. In ACM SIGSOFT Software Engineering Notes, volume 29, pages 53–62. ACM,
2004.

[91] Sotirios Liaskos, Sheila A McIlraith, Shirin Sohrabi, and John Mylopoulos. Integrating preferences into
goal models for requirements engineering. In Requirements Engineering Conference (RE), 2010 18th
IEEE International, pages 135–144. IEEE, 2010.

[92] Sarah Lichtenstein and Paul Slovic. The construction of preference. Cambridge University Press, 2006.

[93] Panagiotis Louridas and Pericles Loucopoulos. A generic model for reflective design. ACM Transactions
on Software Engineering and Methodology (TOSEM), 9(2):199–237, 2000.

[94] R Timothy Marler and Jasbir S Arora. Survey of multi-objective optimization methods for engineering.
Structural and multidisciplinary optimization, 26(6):369–395, 2004.

[95] Matthew McGrath. Propositions. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy.
Spring 2014 edition, 2014.

[96] Sanjay Modgil and Martin Caminada. Proof theories and algorithms for abstract argumentation
frameworks. In Argumentation in artificial intelligence, pages 105–129. Springer, 2009.

[97] Dennis C Mueller. Public choice: an introduction. Springer, 2004.

[98] John Mylopoulos, Lawrence Chung, and Brian Nixon. Representing and using nonfunctional require-
ments: A process-oriented approach. Software Engineering, IEEE Transactions on, 18(6):483–497,
1992.

[99] John Neter, William Wasserman, and Michael H Kutner. Applied linear regression models. 1989.

[100] Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein. A framework for expressing the relationships
between multiple views in requirements specification. Software Engineering, IEEE Transactions on,
20(10):760–773, 1994.

[101] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan
Kaufmann, 1988.

[102] Eric Pederson, Eve Danziger, David Wilkins, Stephen Levinson, Sotaro Kita, and Gunter Senft. Semantic
typology and spatial conceptualization. Language, pages 557–589, 1998.

[103] Maria Silvia Pini, Francesca Rossi, Kristen Brent Venable, and Toby Walsh. Aggregating partially
ordered preferences. Journal of Logic and Computation, 19(3):475–502, 2009.

[104] John L Pollock. Defeasible reasoning. Cognitive science, 11(4):481–518, 1987.

[105] Henry Prakken and Gerard Vreeswijk. Logics for defeasible argumentation. In Handbook of philosoph-
ical logic, pages 219–318. Springer, 2002.

[106] Balasubramaniam Ramesh and Vasant Dhar. Supporting systems development by capturing delibera-
tions during requirements engineering. Software Engineering, IEEE Transactions on, 18(6):498–510,
1992.

[107] Balasubramaniam Ramesh and Matthias Jarke. Toward reference models for requirements traceability.
Software Engineering, IEEE Transactions on, 27(1):58–93, 2001.

[108] Nicholas Rescher. The logic of preference. In Topics in Philosophical Logic, pages 287–320. Springer,
1968.

[109] Filippo Ricca, Giuseppe Scanniello, Marco Torchiano, Gianna Reggio, and Egidio Astesiano. On the
effectiveness of screen mockups in requirements engineering: results from an internal replication. In
Proceedings of the 2010 ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement, page 17. ACM, 2010.

[110] Horst WJ Rittel and Melvin M Webber. Dilemmas in a general theory of planning. Policy sciences,
4(2):155–169, 1973.

[111] William N Robinson, Suzanne D Pawlowski, and Vecheslav Volkov. Requirements interaction manage-
ment. ACM Computing Surveys (CSUR), 35(2):132–190, 2003.

[112] Stewart Shapiro. Classical logic. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy.
Winter 2013 edition, 2013.

[113] Mary Shaw and David Garlan. Software architecture: perspectives on an emerging discipline, volume 1.
Prentice Hall Englewood Cliffs, 1996.

[114] S Buckingham Shum. Design argumentation as design rationale. The encyclopedia of computer science
and technology, 35(20):95–128, 1996.

[115] Simon Buckingham Shum and Nick Hammond. Argumentation-based design rationale: what use at
what cost? International Journal of Human-Computer Studies, 40(4):603–652, 1994.

[116] Guillermo Simari and Iyad Rahwan. Argumentation in artificial intelligence. 2009.

[117] Guillermo R Simari and Ronald P Loui. A mathematical treatment of defeasible reasoning and its
implementation. Artificial intelligence, 53(2):125–157, 1992.

[118] Guttorm Sindre and Andreas L Opdahl. Eliciting security requirements with misuse cases. Require-
ments Engineering, 10(1):34–44, 2005.

[119] Barry Smith and Christopher Welty. Ontology: Towards a new synthesis. In Formal Ontology in
Information Systems, pages 3–9. ACM Press, USA, pp. iii-x, 2001.

[120] Steffen Staab and Rudi Studer. Handbook on ontologies. Springer, 2010.

[121] Mark Staples. Critical rationalism and engineering: ontology. Synthese, pages 1–25, 2014.

[122] Chris Starmer. Developments in non-expected utility theory: The hunt for a descriptive theory of
choice under risk. Journal of economic literature, pages 332–382, 2000.

[123] Masaki Suwa, John Gero, and Terry Purcell. Unexpected discoveries and s-invention of design require-
ments: important vehicles for a design process. Design Studies, 21(6):539–567, 2000.

[124] Barbara G Tabachnick, Linda S Fidell, et al. Using multivariate statistics. 2001.

[125] Alfred Tarski. The semantic conception of truth: and the foundations of semantics. Philosophy and
phenomenological research, 4(3):341–376, 1944.

[126] Richard Thaler. Toward a positive theory of consumer choice. Journal of Economic Behavior &
Organization, 1(1):39–60, 1980.

[127] Amos Tversky and Daniel Kahneman. Judgment under uncertainty: Heuristics and biases. science,
185(4157):1124–1131, 1974.

[128] Amos Tversky, Paul Slovic, and Daniel Kahneman. The causes of preference reversal. The American
Economic Review, pages 204–217, 1990.

[129] JFAK van Benthem and Alice Ter Meulen. Handbook of logic and language. Elsevier, 1996.

[130] Axel Van Lamsweerde. Goal-oriented requirements engineering: A guided tour. In Requirements
Engineering, 2001. Proceedings. Fifth IEEE International Symposium on, pages 249–262. IEEE, 2001.

[131] Axel Van Lamsweerde, Robert Darimont, and Emmanuel Letier. Managing conflicts in goal-driven
requirements engineering. Software Engineering, IEEE Transactions on, 24(11):908–926, 1998.

[132] Axel van Lamsweerde and Emmanuel Letier. Handling obstacles in goal-oriented requirements
engineering. Software Engineering, IEEE Transactions on, 26(10):978–1005, 2000.

131

[133] Achille Varzi. Mereology. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Spring
2014 edition, 2014.

[134] Douglas N Walton. Informal logic: A handbook for critical argumentation. Cambridge University Press,
1989.

[135] Philippe Weil. Nonexpected utility in macroeconomics. The Quarterly Journal of Economics, pages
29–42, 1990.

[136] Jon Whittle, Peter Sawyer, Nelly Bencomo, Betty HC Cheng, and J-M Bruel. Relax: Incorporating
uncertainty into the specification of self-adaptive systems. In Requirements Engineering Conference,
2009. RE’09. 17th IEEE International, pages 79–88. IEEE, 2009.

[137] Niklaus Wirth. Program development by stepwise refinement. Communications of the ACM, 14(4):221–
227, 1971.

[138] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. Formal methods: Practice
and experience. ACM Computing Surveys (CSUR), 41(4):19, 2009.

[139] Eric SK Yu. Towards modelling and reasoning support for early-phase requirements engineering. In
Requirements Engineering, 1997., Proceedings of the Third IEEE International Symposium on, pages
226–235. IEEE, 1997.

[140] Pamela Zave and Michael Jackson. Four dark corners of requirements engineering. ACM Transactions
on Software Engineering and Methodology (TOSEM), 6(1):1–30, 1997.

[141] Milan Zeleny and James L Cochrane. Multiple criteria decision making, volume 25. McGraw-Hill New
York, 1982.

[142] Jiajie Zhang. The nature of external representations in problem solving. Cognitive science, 21(2):179–
217, 1997.

132

	Introduction
	Purpose
	Objectives
	Outline

	General Background
	Requirements Engineering
	Requirements Problems
	Requirements Models and Requirements Modelling Languages
	Specifications as Solutions
	Why Make (New) Requirements Modelling Languages?

	Example
	Preliminaries
	Language Services
	Naming Conventions

	Relations
	How to Define a Language with One Category and One Relation?
	How to Define Languages with Modules?
	How to Define Different Kinds of Influence Relations?
	How to Show the Rationale for Model Content?
	How to Combine Relations?
	Summary on Relations

	Guidelines
	How to Find Guidelines in Recurring Arguments?
	How to Make Composite Guidelines?
	How to Strengthen or Weaken Guidelines?
	Summary on Guidelines

	Categories
	How to Have Independent Categories?
	How to Define Taxonomies of Categories?
	What Are Categories and Relations in Meta-Models and Ontologies?
	When Are Categories and Relations Derived?
	How to Enforce Intended Use of Categories?
	Summary on Categories

	Alternatives and Combinations
	How to Represent and Use Simple Alternatives?
	How to Have Alternative Composites?
	What Are and How to Find Combinations?
	Summary on Alternatives

	Valuation
	How to Propagate Binary Satisfaction Values in a Model?
	How to Combine Several Binary Value Types?
	What If a Value Type Is a Set of Values?
	What If Some Values Cannot Be Assigned After Others?
	What If a Value Type Is Over Reals?
	Summary on Valuation

	Uncertainty and Probability
	How to Have Independent Random Variables in Models?
	What If Random Variables Are Dependent?

	Preferences
	What Are Preferences and Criteria?
	Why Local Preferences?
	Why Mixed Local Preferences?
	Why Bridge Preferences?
	Why and How to Use Mixed Bridge Preferences?
	Where to Find Criteria in Requirements?
	How to Find a Better and the Best Outcome?
	Summary on Preferences

	Formal Theories
	How to Map Models to Theories When Fragments Map to Atomic Propositions?
	What If Fragments Map to Sentences?
	Are There Risks of Mapping Models to Theories?
	Summary on Formal Theories

	Problem Classes
	How to Define Requirements Problem Classes?
	Why Match Problem Classes and Languages?
	What and How Can Problem Classes Inherit from Each Other?

	Discussion
	Language Modules and Languages in the Tutorial

