
REQUIREMENTS MODELLING

LANGUAGE DESIGN

—
How to Make Formalisms for Problem
Solving in Requirements Engineering

—

Ivan J. Jureta
Fonds de la Recherche Scientifique – FNRS

&
Department of Business Administration

University of Namur
Belgium

ivan.jureta@unamur.be

February 23, 2015

Outline

You have a Requirements Engineering Problem to solve, if (i) you have
unclear, abstract, incomplete, potentially conflicting information
about expectations of various stakeholders, and about the environ-
ment in which these expectations should be met, (ii) you know that
there is presently no solution which meets these expectations, and
(iii) you need to define and document a set of clear, concrete, suffi-
ciently complete, coherent statements, often called requirements, so
that a system which is made and operated to satisfy these statements
will in fact meet stakeholders’ expectations.

Requirements Engineering Problems are ill-structured problems.
Solving them is hard. You typically have to do many complex and
interdependent tasks, such as elicitation, categorisation, evaluation,
prioritisation, negotiation, prediction, and so on.

Solving a Problem mobilises intuition and creativity, but also ex-
periential knowledge that comes from your own and others’ problem
solving experience. This book shows how to make Artificial Intelli-
gence (AI) from experiential problem solving knowledge. You can
see such AI as an assistant, to which you can delegate some problem
solving tasks, while you focus on others.

AI are combinations of formal languages, used to represent (make
models of) problem solving information, and algorithms used to
do transformations of, and computations on those representations.
Languages and algorithms preserve and automate the application
of the experiential problem solving knowledge which you chose to
build into them.

ACM Classification keywords: Requirements analysis, Formal lan-
guage definitions, Context specific languages, Formalisms.

i

About the Author

Ivan Jureta is Chercheur qualifié (tenured researcher) with Fonds de
la Recherche Scientifique – FNRS in Brussels, and Associate Profes-
sor with the Department of Business Administration, University of
Namur.

Ivan’s research focuses on how to identify and elicit knowledge
which human experts apply to solve ill-structured problems, how
to engineer ontologies and processes which capture and preserve
that knowledge, and how to engineer artificial intelligence which
automatically applies that knowledge at a larger scale. This interest
falls within the various research fields concerned with the transfer,
preservation and automation of knowledge.

Ivan is the author of “Analysis and Design of Advice” (Springer,
2011), and has published over 60 research papers on these topics,
many of which focus on knowledge applied when engineering new
software. He has published in the fields of requirements engineer-
ing, business analysis, and conceptual modelling of information
systems, and serves on scientific committees of the International
Conference on Advanced Information Systems Engineering (CAiSE),
the International Conference on Conceptual Modelling (ER), and the
International Requirements Engineering Conference (RE). He is the
recipient of the 2008 IEEE RE conference best paper award, and the
2014 CAiSE conference distinguished paper award. He has organised
and chaired the series of International Workshops on Modelling and
Reasoning for Business Intelligence (MORE-BI), held in Brussels in
2011 and Florence in 2012.

In parallel, Ivan is involved with several startups at CxO level and
have held lead roles in product design for web and digital services
that today serve more than 500.000 people every day.

ii

Acknowledgements

This book was influenced by research which I did with John Mylopou-
los and Alexander Borgida. I co-authored papers on Requirements
Modelling Languages with them, as well as with Neil Ernst, Stéphane
Faulkner, Anna Perini, Pierre-Yves Schobbens, Alberto Siena, Angelo
Susi, and many others. They have all shaped the content of this book
in various ways. This does not mean that we agree on the ideas which
I present here.

iii

Copyright

All rights held by the author. Free for educational use.

iv

Contents

Outline i

About the Author ii

Acknowledgements iii

Copyright iv

1 Requirements Problem Solving 1
1.1 Motivation . 2
1.2 Problem Situations . 3
1.3 Problem Solving Tasks 5
1.4 Solution Situations . 8
1.5 Requirements Problem Solving 9

2 Problem Solving Automation 11
2.1 Automation . 12
2.2 Ill-Structured Problems 13
2.3 Well-Structured Problems 18
2.4 Well-Structured Sub-Problems 20
2.5 Case-Specific and Recurrent Tasks 22
2.6 Languages and Algorithms 23
2.7 Artificial Intelligence . 24

3 Problem and Solution Concepts 26
3.1 Requirements Engineering 27
3.2 Problem and Solution 28

3.2.1 Problem . 29
3.2.2 Solution . 30

3.3 System . 30

v

Contents

3.4 Models . 31
3.5 Default Problem and Solution 32

4 On Requirements Modelling Languages 37
4.1 Formal Language . 38

4.1.1 Syntax . 38
4.1.2 Semantics . 39

4.2 Role in Problem Solving 41
4.3 Rough Historical Overview 42
4.4 i-star . 48

4.4.1 Motivation . 49
4.4.2 Syntax . 50
4.4.3 Semantic Domain and Mapping 52
4.4.4 Comments . 53

4.5 Techne . 54
4.5.1 Motivation . 54
4.5.2 Semantic Domain and Mapping 57
4.5.3 Syntax and More Semantic Mapping 61
4.5.4 Analysis . 66
4.5.5 Formalisation . 68
4.5.6 Comments . 74

5 Requirements Problem Solving Cases 76
5.1 Brussels Law . 77

5.1.1 Terminology . 78
5.1.2 Interviews Summary 78
5.1.3 Problems . 81

5.2 Copenhagen Sports . 83
5.2.1 Terminology . 84
5.2.2 Interview Summary 84
5.2.3 Problem . 86

5.3 Dubai Telecom . 86
5.3.1 Interviews Summary 86
5.3.2 Problem . 89

5.4 London Lights . 89
5.4.1 Terminology . 89
5.4.2 Interviews Summary 90
5.4.3 Problem . 94

5.5 London Ambulance . 94

vi

Contents

6 Checklists, Templates, and Services 97
6.1 Problem Solving Services 98
6.2 Checklists and Templates 100
6.3 Language and Module Names 101

7 Relations 103
7.1 Motivation . 104
7.2 Single Relation Language 105

7.2.1 Choose a Language Service 106
7.2.2 Models over Fragments 107
7.2.3 Trivial Modelling Language 109

7.3 Modular Definitions . 112
7.4 Some Influence Relations 118

7.4.1 Presence of Influence 119
7.4.2 Direction of Influence 122
7.4.3 Relative Strength of Influence 124
7.4.4 Summary on Influence Relations 129

7.5 Arguments in Models . 130
7.5.1 Support and Defeat 132
7.5.2 Accepted or Rejected 138

7.6 Combinations of Relations 146
7.6.1 Independent Relations 147
7.6.2 Interacting Relations 147

7.7 Summary on Relations 151

8 Guidelines 153
8.1 Motivation . 154
8.2 Guidelines from Arguments 155
8.3 Composite Guidelines 159
8.4 Stronger and Weaker Guidelines 163
8.5 Summary on Guidelines 166

9 Categories 167
9.1 Motivation . 168
9.2 Independent Categories 168
9.3 Taxonomy of Categories 175
9.4 In Meta-Models and Ontologies 177
9.5 Derived Categories and Relations 179
9.6 Enforce Category Use . 183
9.7 Summary on Categories 184

vii

Contents

10 Valuation 186
10.1 Motivation . 188
10.2 Propagating Binary Values 188

10.2.1 Binary Value Type 189
10.2.2 Value Propagation 190

10.3 Combining Several Binary Value Types 202
10.3.1 Independent Value Assignments 203
10.3.2 Dependent Value Assignments 207

10.4 Sets of Values . 208
10.5 Constraints on Assignments 210
10.6 Real Numbers . 212
10.7 Summary on Valuation 214

11 Uncertainty 216
11.1 Motivation . 217
11.2 Independent Random Variables 218
11.3 Dependent Random Variables 228

11.3.1 Ignoring Existing Relations 229
11.3.2 Using Existing Relations 230

12 Alternatives 234
12.1 Motivation . 235
12.2 Alternatives over Binary Value Types 237
12.3 Picks and their Use . 250
12.4 Several Arbitrary Value Types 270
12.5 Summary on Alternatives 275

13 Constraints 278
13.1 Representing Constraints 279
13.2 Constraints in Outcome Search 286
13.3 Summary on Constraints 294

14 Preferences 295
14.1 Motivation . 296
14.2 Preferences and Criteria Basics 297

14.2.1 Core Preference Relations 297
14.2.2 Domains of Preference Relations 298
14.2.3 Criteria . 299

14.3 Representing Preferences 299
14.4 Finding Criteria . 307
14.5 Better and Best Outcomes 313

viii

Contents

14.6 Summary on Preferences 321

15 Links to Formal Logic 327
15.1 Motivation . 328
15.2 Models to Theories, Approach One 329
15.3 Models to Theories, Approach Two 334
15.4 Risks of Mapping to Formal Theories 335
15.5 Summary on Formal Theories 336

ix

List of Figures

4.1 An i-star Strategic Rationale diagram from Yu et al. [154]. 51
4.2 Inference as refinement in Example 4.5.3. 61
4.3 Conflict in Example 4.5.4. 62
4.4 Preference in Example 4.5.5. 63
4.5 Mandatory and optional in Example 4.5.6. 64
4.6 Softgoal approximation in Example 4.5.7. 65
4.7 A consistent (sub)net is highlighted. 68
4.8 Another consistent (sub)net is highlighted. 69
4.9 Candidate Solution r-net A is highlighted. 70
4.10 Candidate Solution r-net B is highlighted. 71
4.11 Allowed sentences in an r-net. 71
4.12 The R̄ from Figure 4.3 rewritten as four proofs. 72
4.13 Members of T∗ and K∗ are highlighted. 74

7.1 A visualisation of a model in L.D1. 111
7.2 Visualisation of a model in L.Alpheratz(r.inf). 121
7.3 A visualisation of a model in L.Ankaa. 125
7.4 A visualisation of a model in L.Schedar. 128
7.5 A visualisation of a model in L.Diphda. 137
7.6 Illustration of acceptability values, part one. 141
7.7 Illustration of acceptability values, part two. 142

8.1 A visualisation of a model in L.Hamal. 160
8.2 A visualisation of a model in L.Acamar. 164

9.1 A visualisation of a model in L.Menkar. 174
9.2 Taxonomy of categories from Sections 9.2 and 9.3. . . 177
9.3 Visualisation of two ontologies. 180

x

List of Figures

10.1 Satisfaction values assigned with f.sat.leaf. 198
10.2 After applying f.sat.inf.pos and f.sat.inf.neg. 199
10.3 One Outcome. 200
10.4 Two Outcomes. 201

11.1 A model in L.Adhara with assignments of probability
values. 227

11.2 A model in L.Adhara, with no assignments of probabil-
ity values. 232

11.3 Bayesian network made by applying f.map.inf.pos.baynet
to the model in Figure 11.2. 233

12.1 A visualisation of a model in L.Mirfak. 244
12.2 Value Assignments for an Incoherent Outcome. 245
12.3 Value Assignments for an Incoherent Outcome. 246
12.4 A Coherent Outcome in a L.Mirfak model. 249
12.5 A L.Pollux model. 255
12.6 A L.Pollux model. 256
12.7 One Complete Outcome. 260
12.8 Second Complete Outcome. 261
12.9 Third Complete Outcome. 262
12.10Fourth Complete Outcome. 263
12.11A model in L.Avior. 276
12.12A model in L.Avior based on the model in Figure 12.7. 277

13.1 A model in L.Alphard. 287
13.2 Abbreviations of Fragments in variable numbers. . . . 288

14.1 Preferences and Criteria in a model in L.Bellatrix. . . . 304
14.2 More preferences and Criteria in a model in L.Bellatrix. 306
14.3 Model in L.Elnath, with no Value Assignments. 322
14.4 CP-Net made from conditional preferences in Figure

14.3. 323
14.5 Preference graph from the CP-Net in Figure 14.4. . . . 323
14.6 Best approval Outcome, assuming 1 is the preferred

approval value on all relation instances. 324
14.7 Best Outcome according to conditional preferences. . 325
14.8 Best Outcome which ignores conditional preferences. 326

xi

Chapter 1

Requirements Problem
Solving

This Chapter clarifies what Requirements Problem Solving is. Section
1.1 gives reasons why it is interesting to study Requirements Problem
Solving and learn how to make Artificial Intelligence which auto-
mates tasks of Requirements Problem Solving. Sections 1.2 to 1.4 give
the characteristics of Requirements Problem Solving, by describing
the Problem Situations which initiate Requirements Problem Solv-
ing, tasks done in Requirements Problem Solving, and the Solution
Situations sought by doing these tasks. Section 1.5 gives a synthetic
definition of Requirements Problem Solving.

1

Chapter 1. Requirements Problem Solving

1.1 Motivation

This Section argues why Requirements Problem Solving is interesting
to study, and why it is relevant to make Artificial Intelligence which
automates tasks in Requirements Problem Solving.

This book is about how to make Artificial Intelligence that helps
you solve Problems. If your expertise is in, or is related to these
topics, then this probably brings to mind many ideas on notions
such as ontologies, formal languages, algorithms, complexity, and so
on. They will turn up later.

In non-technical terms, this book is about how to define specific
kinds of instructions which can be given to computers. This is done
so that you can delegate to them some of the work done when solving
a particular kind of common, but hard problems.

Consider the following situations. To successfully get out of each,
you have to solve a problem. All these problems share some common
characteristics, and because of this belong to the class of so-called
Problems.

• A law firm has a new owner. She saw that the employees are
delivering the same services in different ways, and believes
these inconsistencies will inevitably lead to lower quality in the
future. She asks you to suggest how to avoid this in the long
term.

• A company makes software which sports coaches use to give
training instructions to athletes. The owner wants that every fu-
ture software improvement helps reduce the time that coaches
spend on repetitive tasks. You are asked how to ensure this.

• A company makes software products for telecommunications
service providers. The company CEO wants that all its current
and future software products have clearly defined rules and
processes for customisation, installation, maintenance. He
asks you to propose how to ensure this in the long-term.

• A small firm designs its products and outsources manufactur-
ing and distribution to other companies. The managing di-
rector is interested in investing in software, which would help
keep track of the status of new product development tasks. You
are asked to suggest how to proceed.

2

Chapter 1. Requirements Problem Solving

• An electronics manufacturing company sells its products through
distributors. A regional marketing director wants to improve
sales decisions by collecting more merchandising data, that is,
data about product placement in distributors’ points of sale.
You are asked for advice on how to do this.

These situations are different. They are about different indus-
tries, companies, products. They involve different people, and con-
sequently not the same expertise, experiences, or expectations. In
reality, they also happened to me at different times and places, over
the course of a few years.

The obvious question is:

What would you do to successfully resolve each of these situations?

The motivation for this book does originate in the need to answer
this question. However, the book’s focus is not to answer it. As I will
mention later, there are several fields of research and practice which
already provide ample material about what to do in these situations.

Instead, the book aims to answer the following question:

If you do know how to successfully resolve situations such as the
above, and are often in such situations, then how can you delegate

some of your problem solving effort to computers?

There are several simple reasons to want to answer this question.
If computers do part of the work, you have more time to apply intu-
ition and creativity to the rest of problem solving, or for solving other
problems. Others can use these same computers, or more precisely
software, when in similar situations on their own. Finally, the instruc-
tions you define, and which the computers apply, constitute a record
of parts of your problem solving knowledge, which may be a relevant
source of learning for others.

1.2 Problem Situations

This Section lists the characteristics of Problem Situations which trig-
ger Requirements Problem Solving.

I briefly described five situations in the preceding section. Each
gave cues to there being problems, but it gave no clear, complete,
precise, and coherent description of each problem. This absence of a

3

Chapter 1. Requirements Problem Solving

given problem is one of several characteristics of situations, which I
focus on in this book. There are Problems to solve in these situations.

The interesting situations, called Problem Situations hereafter,
have the following characteristics.

1. The problem needs to be defined. It is not a given. Instead,
there is information about what someone wants and believes
about the situation, the reasons and causes behind it. There is
nothing that guarantees that realising what they say they want,
will indeed alleviate the troubles observed in that situation.

In absence of the exact and precise problem to solve, you have
to find it out, describe it clearly, communicate it to those who
expect the solution, and have them agree that solving that
problem, rather than another, will make them happy.

For example, the owner of the law firm may know what she
dislikes about the current situation. But that tells you nothing
about the events which led to that situation, and the actions
which led to these events. The problem may be, for instance,
that current instructions and incentives allowed and motivated
these actions.

2. Defining the problem requires collaboration. A given situation
may involve one or many different problems, which may be
independent or somehow related. There is rarely one clear
problem that you can observe and describe in isolation from
everything else. I emphasise that the problem is defined, and
the parties involved need to agree that this is indeed the prob-
lem to solve.

The information you may need to define the problem is not
necessarily held by one individual. Problems may arise in situ-
ations, or cause situations, which involve people with different
backgrounds, expertise, and expectations, and it may be that
many of them have information which you need to define the
problem.

The regional marketing director of the electronics manufac-
turer may want to collect some merchandising data. It may
be that only the distributor’s lawyer knows if giving that data
clashes with the distributor’s contracts with other manufactur-
ers.

4

Chapter 1. Requirements Problem Solving

To find the with repetitive tasks that sports coaches do, and
which the software should help them with, makes it necessary
to collaborate with these coaches, on identifying and under-
standing such tasks, with engineers to understand the feasi-
bility of automating these tasks, with the software product de-
signer to prioritise which tasks the software should automate,
in which release, and so on.

3. Different people see different problems. Different people in-
volved in a given situation perceive the problem or problems
in it differently, depending on their expertise, experience, mo-
tivations, and so on. In the same situation, a management
professional may focus more on coordination between people,
a lawyer on the relationships between actions and applicable
legal constraints, a finance professional will look for incentive
problems, and so on. Not all perspectives always matter, but it
may also be that defining the problem by focusing on one of
them only will lead to irrelevant solutions.

You might think the law firm owner’s problem as one of leader-
ship. An employee of the same firm may see it as an incentive
problem. A information technology specialist could conclude
that the situation is caused by the absence of relevant software.

1.3 Problem Solving Tasks

This Section lists the characteristics of tasks done in Requirements
Problem Solving.

What to do in a Problem Situation? A number of different tasks
can be done. The overall aim is to move from the situation in which
you recognised that there is a problem, to a situation in which the
relevant parties, stakeholders hereafter, recognised that the problem
no longer exists. All that happens between these two points is called
problem solving.

There are different kinds of problem solving tasks. They require
different skills and inputs, give different outputs, and can be done
at different times during problem solving. The following are typical
kinds of problem solving tasks done for Problems. I cite some of the
relevant research on each.

5

Chapter 1. Requirements Problem Solving

• Elicitation are all tasks done in order to obtain information
from people, or any other source. Collection and analysis of
documentation, interviews, workshops, observation of stake-
holders or others, are some of possible elicitation tasks [56, 71,
38].

• Representation, or modelling are tasks that aim to divide avail-
able information, about the problem or its solutions, into
pieces that share similar characteristics, and, or which some-
how make a coherent whole, and to represent these pieces in
models, which in turn are used to draw conclusions useful for
deciding what to do next in problem solving [36, 155, 88].

• Clarification involves identifying, for example, ambiguous,
vague, or otherwise unclear information, and finding out more
in order to repair these deficiencies, if they are deficiencies in
the first place [108, 99, 85].

• Prioritisation consists of deciding what the relative importance
of various sub-problems is, so as to better use the available
resources to work on dedicating more resources to work on
the most pressing ones. It also means deciding which solution
parts to implement before others [91, 11, 70].

• Negotiation aims to reconcile disagreements about the prob-
lem and its solutions among the stakeholders [98, 13, 82].

There are other problem solving tasks, and they include responsibility
allocation [36, 23, 51], cost estimation [14, 17, 131], conflicts and
inconsistency [110, 69, 145], comparison [108, 99, 100], satisfaction
evaluation [16, 108, 93], operationalization [54, 51, 47], traceability
[57, 118, 31], and change [26, 149, 20].

Almost all kinds of problem solving tasks mentioned above are
not specific to solving Problems. Medical diagnostics involves, for
example, elicitation from the patient, via interview and medical de-
vices, clarification to the patient, prioritisation of symptoms and
potential conditions, negotiation in case the patient disagrees with
the treatment, responsibility allocation to the patient to take medica-
tions or medical personnel to administer treatment, comparison of
possible treatments for the same condition, change of treatment in
case it proves inadequate.

6

Chapter 1. Requirements Problem Solving

The following characteristics of problem solving for Problems
sets them to some extent apart from other classes of complicated
problems.

1. Problem definition and solution definition are intertwined. In
simple terms, since you are defining the problem to solve, you
are also defining what its solutions can be. Pushing this idea to
its extreme, perhaps you can convince the stakeholders that
there is no problem, which is a solution. The other extreme
is that you are defining an unsolvable problem, within any, or
the given resources. Most cases are between the two, where
the problem you define is influenced and influences the expec-
tations of the stakeholders, and restricts the range of possible
solutions that can be considered, and the extent to which their
expectations can be met.

If, for instance, you convince the law firm owner that the prob-
lem is something intangible and abstract as employees react
by being destructive to her excellent leadership style, then
potential solutions narrow down to, for example, firing every-
one, which would likely close the law firm, given that it will
become impossible to serve the same clients with untrained
new employees.

2. Problem definition identifies new (sub-)problems. There is no
guarantee that defining one problem will not lead you to find
others. Defining the problem in one Problem Situation can
lead you to another.

In the company which makes software products for telecom-
munication service providers, elicitation from an employee
experienced in product customisation may tell you that cus-
tomisations take time to define clearly with clients, and that
shorter times are not feasible. Elicitation with the CEO may
suggest that this should take considerably less time. The clash
between the two pieces of information may be a symptom of a
problem of there being few people, with little time to actually
talk to clients to define customisations. It may be that clients
take time to decide. Both are new problems, which may need
to be solved, in order to proceed to the solution of the initial
problem.

3. Problem solving rarely stops because the best solution is defined.

7

Chapter 1. Requirements Problem Solving

A solution changes the initial Problem Situation. Even elic-
itation changes it, since your interaction with stakeholders
can change what they understand the problem to be. Events
occur, which may or may not be under your or stakeholders’
influence. They can change stakeholders’ understanding of
the Problem Situation, of what worked or did not, and why you
got involved in the first place.

Change means that the best, optimal solution is a moving
target. Problem solving thus stops more due to resource con-
straints, than to the willingness to seek the best solution, or
more generally, to move from the Problem Situation, to one
which is more desirable.

In the law firm, elicitation involved questions about when and
what caused errors in the work with clients. These questions
alone create expectations with the employees, who expected
some inevitable change in the organisation, be it training,
changes of work processes and rules, firing, and so on. This in
turn created anxiety, which contributed to errors observed in
work with clients, which were observed during problem solv-
ing. Changed work practices and rules in turn generated new
anticipated problems, creating new Problem Situations, and
requiring problem solving to continue.

1.4 Solution Situations

This Section lists the characteristics of Solution Situations when Re-
quirements Problem Solving stops.

A Solution Situation is when problem solving can stop. This can
be a hard target to aim for, given that solutions to Problems tend to
share the following characteristics.

1. Solutions are temporary. Change in the environment and stake-
holders’ expectations will make you move from one Problem
Situation to another, requiring moves from one Solution Situa-
tion to another.

Sports coaching is not a well-defined, and unchanging activity.
It changes as coaches learn new knowledge about the mechan-
ics of the body, about the psychology of the athletes, about the
relationship of these to environment conditions. Automating

8

Chapter 1. Requirements Problem Solving

some of the tasks in sports coaching is consequently a task
which can go on indefinitely, or at least for a very long time, as
a perfect universal sports coaching method is a long way off,
or simply does not exist.

2. Best Solutions are elusive. Given that different people can see
different problems in the same Problem Situation, that prob-
lems cannot be treated in isolation, and that conditions change,
optimal solutions are unlikely to be easy to find, or may not
exist at all. Good enough solutions have to do instead. Good
enough in practice means that at least some of the most im-
portant expectations of the stakeholders are satisfied.

3. Defining, making, and running a solution requires collabora-
tion. Agreeing that the solution should, for example, involve
the introduction of new work rules and processes, requires
designing these, training people to use them, perhaps mak-
ing software that automates some, and responding to issues
that arise, once the processes and rules are used. This can
require expertise from management professionals, organisa-
tional psychologists, human resources specialists, business
analysts, software and hardware engineers, technical support
specialists.

1.5 Requirements Problem Solving

This Section gives the definition of Requirements Problem Solving used
throughout this book. The definition does not list activities done when
doing Requirements Problem Solving. Instead, it says that Require-
ments Problem Solving includes all activities triggered in response to
situations which satisfy specific properties. The definition lists these
properties.

The characteristics of Problem Situations and Solution Situations
presented in this Chapter suggest that there is no known best way
to do Requirements Problem Solving. It is not known exactly which
problem solving activities need to be done, when one starts and the
other stops, the exact properties their inputs and outputs should
have, and the steps to take to collect the required inputs, and to
produce the desired outputs.

9

Chapter 1. Requirements Problem Solving

As I will argue in Chapter 2, Requirements Problem Solving is
a kind of ill-structured problem solving, an argument which will
further support observations in the paragraph above.

In conclusion, an exact and relevant list of activities that make
up Requirements Problem Solving is elusive. A definition of Require-
ments Problem Solving via such a list is consequently also elusive.

My suggestion is to define Requirements Problem Solving as all
activities that people do, when confronted to Problem Situations that
satisfy specific properties or rules. These rules are not as elusive.

Definition 1.5.1. Requirements Problem

Solving

Requirements Problem Solving are all activities
done in response to situations, called Problem Situations, which
satisfy the following conditions

1. there are unclear, abstract, incomplete, potentially conflicting
information about expectations of various stakeholders, and
about the environment in which these expectations should be
met,

2. there is presently no clear definition of the problem to solve,
in order to satisfy these expectations, and no solution which
indeed meets them, and

3. it is necessary to define and document a set of clear, concrete,
sufficiently complete, coherent statements which

(a) define the problem that stakeholders agree on, and

(b) define the solution that the stakeholders agree on, such
that if the solution is made and used, then it should in
fact meet stakeholders’ expectations, and thereby solve
the problem.

The resulting definition of Requirements Problem Solving places
emphasis on conditions which trigger it. It suggests that Require-
ments Problem Solving includes all activities done in response to
these triggers. The definition is therefore not prescriptive, suggesting
what Requirements Problem Solving should be, or when it is good
or bad. Requirements Engineering is an engineering discipline and
field of research which prescribes which activities to do, a topic I
develop in Chapter 3.

10

Chapter 2

Problem Solving
Automation with Artificial
Intelligence

This Chapter connects Requirements Problem Solving with central
ideas and terminology of problem solving and Artificial Intelligence.
Section 2.1 clarifies what automation means in this book, and why
it is interesting to automate tasks in Requirements Problem Solving.
Section 2.2 argues that Requirements Problem Solving is one type of
ill-structured problem solving, which makes it impossible to automate
fully, and recalls the characteristics of ill-structured problems. Sec-
tion 2.3 recalls the characteristics of well-structured problems, whose
resolution can be automated, and Section 2.4 argues that there are
well-structured sub-problems that can be identified in Requirements
Problem Solving. Section 2.5 argues that there are tasks in Require-
ments Problem Solving, which reappear across cases, and automating
them is particularly interesting. Section 2.6 connects automation of
recurrent Requirements Problem Solving tasks to the concepts of for-
mal language and algorithm. Section 2.7 connects these ideas to the
basic terminology of Artificial Intelligence.

11

Chapter 2. Problem Solving Automation

2.1 Automation

This Section clarifies what automation means in this book, what its
purpose is in Requirements Problem Solving, and gives an outline of
ideas developed in the rest of the Chapter.

AI’s role in this book is practical. It is used to automate problem
solving tasks. I will say that a task is automated if it can be done by a
computer. The specifics of the computer, its speed, memory, or other
characteristics, are not relevant for now.

There are machines which automate tasks without being com-
puters. For example, a mechanical arm which closes a door. I am
interested specifically in computers and not such machines, be-
cause Requirements Problem Solving tasks involve taking and mak-
ing changes to data. There is no need for the mechanical arm to
have a representation of the door being open or closed, or of the
door itself, and do computations on those representations, in order
to accomplish closing the door. In Requirements Problem Solving,
there is a need to have data about phenomena in Problem Situations
and Solution Situations, and to do computations on it. The AI for
Requirements Problem Solving may recommend through that data
what to do next, but I will assume that people who read this data
remain autonomous to choose themselves the course of action.

Benefits of automation should be obvious, and I already men-
tioned them earlier. If a machine can do part of the problem solving
work, you can invest it in improving the quality of the solution to the
current problem, or on improving your overall efficiency in problem
solving (by solving more problems in the same amount of time).

Artificial Intelligence is the means to automate some Require-
ments Problem Solving tasks. It cannot automate all of them, be-
cause it is still not clear which they are and how exactly to do them.
Many of them rely on intuition and creativity. For example, it is not
clear today how to automate elicitation via interviews, negotiation
between stakeholders, or the creation of relevant representations of
what stakeholders say, to name some. All this might be amenable to
automation using some advanced, and currently unknown forms of
AI, a topic which is speculative and remains outside the scope of this
book.

To explain the practical role AI has in Requirements Problem
Solving, I will present and argue for the following ideas and in the
given order. Each has its own section in the rest of this chapter.

12

Chapter 2. Problem Solving Automation

1. Requirements Problem Solving is one of many kinds of ill-structured
problem solving. This is important, because if Requirements
Problem Solving is a kind of ill-structured problem solving,
then I am right to argue that Requirements Problem Solving
cannot be fully automated.

2. It is possible to identify tasks in Requirements Problem Solving,
in which the sub-problems to solve are not ill-structured, but
well-structured, in that the tasks for solving them can be auto-
mated. In other words, although Problems are ill-structured
as a whole, there is some structure to some of their parts, and
such parts can be treated as well-structured problems.

3. To automate the solving of a well-structured sub-problem, it is
necessary to have algorithms which solve it, and in turn, to have
rules for how to communicate with these algorithms. You need
to communicate the data about Problem Situations and Solu-
tion Situations, and the algorithms should be able to commu-
nicate back data in a way which is understandable to human
problem solvers. If this is the case, then it is relevant to have
specialised languages for communicating with the algorithms.

4. AI for Requirements Problem Solving amounts to combinations
of algorithms that automate problem solving tasks, and lan-
guages for communicating with these algorithms.

2.2 Ill-Structured Problems

This Section argues that Requirements Problem Solving as a class, or
type of activities falls within a broader class of activities called ill-
structured problem solving. Characteristics of ill-structured problems
are given, so that you can compare them to those of Requirements
Problem Solving.

You can see this by comparing the characteristics I gave for Re-
quirements Problem Solving, and the characteristics of ill-structured
problem solving, which I give in this section. By Requirements Prob-
lem Solving characteristics, I mean those of Problem Situations, prob-
lem solving tasks, and Solution Situations in Chapter 1.

There are two main reasons why it is important to be concerned
with whether Requirements Problem Solving is a kind of ill-structured

13

Chapter 2. Problem Solving Automation

problem solving. Firstly, it influences the perception of how much
of Requirements Problem Solving can be automated. Secondly, it
is relevant to know if Requirements Problem Solving is something
entirely new, unrelated to existing research and practice, or an old
discussion topic.

Given the similarities between the characteristics of Require-
ments Problem Solving and ill-structured problem solving, my first
conclusion is that Requirements Problem Solving cannot fully be
automated. Only some parts of it can, as I will argue in Section 2.3.
My second conclusion is that Requirements Problem Solving is nei-
ther a fundamentally new kind of problem solving, nor targets a new
class of problems. However, Requirements Problem Solving is a hard
activity to do well and it is very relevant to research how to better do
and automate Requirements Problem Solving. At least three decades
of existing research agree on this, as I will mention in Chapter 3.

The rest of this section recalls the well-known characteristics of
ill-structured problem solving, specifically in engineering domains. I
give these characteristics so that you can decide if you agree with my
conclusions above.

To illustrate the characteristics, I borrow quotes from interviews
that Jonassen, Strobel, and Lee [81] did with engineers experienced
in solving ill-structured problems.

Workplace problems are often ill-structured, including in engi-
neering domains, in that information is missing, there is a need to
work and coordinate with other people to get and clean up the in-
formation, there is a need to negotiate, to reach agreement, and so
on.

“Probably the biggest challenge that we see in some of
these projects is dealing with incomplete information.
Invariably people won’t know what the output is going
to be for the product. So you don’t know what kind of
cooling load or heating load [is] to be expected. You don’t
know the specific heat is because its not listed. Or any
number of design parameters that are not defined. In
some cases you are making assumptions in design and
you’re making critical assumptions that you can do what
you’re wanting to do based on some piece of information
or lack of information.”

Ill-structured problems include well-structured sub-problems, as

14

Chapter 2. Problem Solving Automation

there may be sub-problems which, if properly formulated, can be
solved with existing tools and algorithms.

“We had to decide how big [to build] a lagoon to hold the
dirt and the possible rain for the possible amount of time
we were treating this soil. And we had to decide how best
to treat the soil. We had to make calculations how long
[it] would take to put back into the ground. As we were
doing all this [we had to] decide where we would sample
the soil and separate [it]. We had to figure out what we
were going to find in the hole, how we would treat it so
what we would know about the size, and what to put in
the water treatment system, and how we were going to
power it. So those were a few of the decisions we needed
to make.

With all the data that we collected out in the field on
the performance of them in the past years, we looked at
which had the fewest cracks, which had come loose the
most, which had the fewest repairs, and which were more
impermeable to chlorite, to salt that gets down in them
and corrodes the rebar. It was analysing the data and
then also trying to confirm that with me other state DOTs
that had used the same thing.”

Ill-structured problems often involve many potentially conflicting
goals, meaning that even when there is one seemingly clear main
goal, such as “build new terminal to increase the capacity of the
airport”, there are sub-goals, or equally important goals which can
come from other stakeholders, such as “keep the number of flights
constant or lower, in order to maintain or reduce noise pollution”.
Here is an example from a construction project, still from Jonassen,
Strobel, and Lee [81]:

“We’ll measure it with a variety of things. Number 1, did
we meet the anticipated goals for hiring of a diverse work
group. That is part of the contractual requirements as
well as the participation of a variety of different kinds of
enterprises. Our safety record, and of course, did we make
any money on the project? [...] Our goal is always to work
safely and make money. Safely and on time and make our
clients happy and to get additional work from our client.”

15

Chapter 2. Problem Solving Automation

There can be many different, and initially unknown ways to solve
an ill-structured problem, so that the best approach is normally not
known, and has to be designed from scratch, or found among known
alternative approaches.

The success of a solution is rarely measured by engineering stan-
dards, as it involves criteria such as satisfying the client, on-time
completion, staying within the budget, as well as various legal, regu-
latory, and other.

“So we are pretty savvy as to understanding what the
code is trying to say. You have some people in these code
making bodies that you can consult to make formal in-
terpretations and writen interpretations. So we had to
make sure the bank would give us a line of credit and we
had to talk to our client to see if they would pay us some
up front money to start building these systems. Funding
was a big concern, and we have to make sure we have
legal constraints as long as we are complying with the
law, and we want to make sure the client is not asking
us to do something illegal. We also want to make sure
that we have a contract where every party is happy, if that
is possible. Make sure we get paid, and they understand
what we are going to do and we understand what their
expectations are.”

Many constraints in problem solving are unrelated to engineering,
such as cultural, political or environmental ones.

“We are solving a whole series of things in the fact that an
architect or owner wants to build a building a certain way,
and he has certain needs and desires, but yet we have all
these safety codes that need to be met...the state...building
and Fire Department that had their whole set of require-
ments. And we had to make sure that those requirements
also didn’t pose problems. So we had a whole series of
requirements one playing off against the other that we
had to balance out. And there were several environmental
issues up there, concerns from the U.S. Fish and Wildlife
that we were going to hurt the fish.”

Knowledge required to solve the problem is distributed across dif-
ferent people, in same or different, related or unrelated organisations,
and they all have to contributed during problem solving.

16

Chapter 2. Problem Solving Automation

“There’s certainly the property owner, there’s the telephone
company regional manager, there’s the utility company
chief engineer, there’s the utility company distribution
engineer, there’s there utility company attorney. There’s
the utility company’s insurance company attorney. There’s
the homeowners, the homeowners’ insurance company
attorney. There’s his insurance adjuster. There’s a fire
investigator, two fire investigators, that’s about all, there’s
my electrical testing company technicians.

Inside our organization engineers, partners, cad drafters,
graphical, computer, secretarial help. Outside our form
we interfaced with the architect, the owner, the structural
engineer, mechanical engineer, electrical engineer. We
interfaced with all those disciplines because it is essential
to have all those things working together as a package.”

Problem solving requires extensive collaboration, which is not
unusual, given that the problem solving knowledge is distributed.

“We all pretty much know our roles but know that in our
specialisation those people touch on certain things affect
fire protection engineering and life safety.

We are all working together for a common goal, which is
to make sure that we have an economically viable build-
ing and a safe building – on that is going to function the
proper way. We all sit down at the conference table to-
gether and we come up with a plan and then we work
very closely with the engineering disciplines so we have
all the details ironed out.”

Experience guides problem solving, in that they will rely on in-
formation that they can recall from the past, when they faced and
did, or failed to solve similar problems, and do so more than rely
on their understand of the abstractions which the concrete problem
instantiates.

“Experience some problems like [those] that have occurred
in the past. Experience on those things is probably the
biggest way we get them solved quickly anyway.”

Unanticipated problems often arise in problem solving, as the
environment and expectations may change, and more specifically
budgets, regulations, client’s goals, and so on.

17

Chapter 2. Problem Solving Automation

“Also at different times we don’t live in a perfect world and
when buildings get put together at times people can make
mistakes. Sometimes they can’t be rectified and need to be
ripped out and other times where it would be disastrous
to do that so we develop equivalency concepts for that.
The other unanticipated thing is you can get in a project
and the owner can change his mind and all of a sudden
the whole dynamics of the project changes.”

2.3 Well-Structured Problems

This Section recalls the characteristics of well-structured problems.
This is relevant, because the solving of well-structured problems can
be automated.

A problem is well-structured if there is sufficient knowledge about
how exactly to describe it, what its solution is, and what exactly to do,
in order to reach the solution. This is reflected in the characteristics of
well-structured problems, which I recall below. They are essentially
the same as those that Herbert Simon argued for, and which seem to
be widely accepted in artificial intelligence research [130].

(1) Well-defined Solution Situation: There is a well-defined situ-
ation, called Solution Situation, which if observed, means that the
problem is solved.

A well-defined situation means thaty there is a set of variables,
and each obtains a value. This is also called a solution state. I use
the terms “situation” and “state” interchangeably. Variables can be
“product profitability”, “employee satisfaction”, or something that
has a widely accepted definition, such as “outside temperature”, or
“elevation”.

Clearly defined also means that there is no room for interpreta-
tion of what variables and their values stand for. For example, x = 5 is
clearly defined only if it is known how to measure, observe, compute,
or otherwise obtain the value of x, in a way stakeholders agreed on.

A condition such as “product is profitable” is not clearly defined
if stakeholders disagree about the exact way to measure product prof-
itability. If, however, all agree about what exactly profitable means
for that specific product (say, that if the accounting profit generated
through sales of a product, is above a given threshold amount of
money), then it is clearly defined.

18

Chapter 2. Problem Solving Automation

(2) Solution test: There is a test, called solution test, which can
be done to check if the Solution Situation is reached. If the Solution
Situation is, for example, that “employees are satisfied with new work
processes”, there has to be a procedure to apply, in order to check if
this is the case. To have the procedure, you have to know how to mea-
sure “employee satisfaction”, and in absence of a universal definition
(which is present if you are measuring, say, distance on land), you
need an instrument for measurement, and the stakeholders have to
agree on it. The instrument could be a survey questionnaire. The
test, in turn, could be that you distribute the questionnaire to a sam-
ple of employees, or all of them, and observe a specific pattern of
responses.

(3) Language: There is a set of agreed upon terms, and of rules
for using these terms, for describing the Problem Situation, Solution
Situation, and intermediate situations. Such languages will be called
Requirements Modelling Languages in this book, as they are used to
represent, or make models of information used during Requirements
Problem Solving.

Take a simple example, such as a heating a room when you are
cold. The thermometer reads 20 centigrade, the heater is on, and at
heating intensity 2 (out of five intensity values). What I just wrote are
the terms which define three variables, for temperature, heater being
on, and heating intensity. Each is clearly defined, as you know the
possible values, you know which of them you can directly change val-
ues of (heater being on, and heating intensity), and how to measure
the one you cannot (temperature). The initial state of the problem
is defined as that assignment of values to the variable, that is, tem-
perature is equal to 20 centigrade, heater status is on, and heating
intensity is 2. You decide that the Solution Situation is temperature
being 25 centigrade. In an intermediate situation, you may measure
that temperature is 22 centigrade.

In other words, there is an agreed on language for describing
the initial conditions, in which there is the problem, the intermedi-
ary conditions that you get into by doing problem solving, and the
solution that you want to reach.

(4) Operator: There is a set of operators used to change from one
situation to another. For each operator, the conditions when it applies
are known, that is, it is known which values variables have to have, in
order to be able to apply the operator.

You can think of an operator as an action that can be taken when

19

Chapter 2. Problem Solving Automation

specific conditions are satisfied (that is, some variables take some
values), and which changes the values of some other variables.

Continuing the heating example, an operator is you changing the
heating intensity level, by turning a knob on the heater. The operator
applies when heater status value is on, and its effect can be that you
reduce or increase heating intensity from the current, to any one
of the five intensity values. Another operator may be that you can
turn the heater on or off, and thus change the value of heater status
variable to either of its two values.

(5) Difference tests: There are tests that can detect differences be-
tween values of variables in two situations. They are used to detect
how applying operators changed the values of variables.

A difference test may consist of you measuring room temperature,
that is, checking the temperature, to conclude that changing heating
intensity from value 2 to value 4 increases the room temperature by
6 degrees centigrade.

(6) Difference rules: There are rules defining which operators to
use, to reduce differences observed with difference tests.

A difference rule may say that if the difference between the tem-
perature in Solution Situation and the temperature in the current
state is between 2 and 4 degrees centigrade, then apply the operator
to increase heating intensity level, and increase it to level 3.

2.4 Well-Structured Sub-Problems

This Section argues that although Requirements Problem Solving is ill-
structured problem solving, it is possible to identify tasks in it, which
target sub-problems having all the characteristics of well-structured
problems. Such tasks in Requirements Problem Solving can be auto-
mated.

If you wanted to approach the law firm owner’s case as if it was a
well-structured problem as a whole, then can you describe Solution
Situation? What is the language to use to describe the Problem Situa-
tion, intermediary situations, and the Solution Situation? What are
the variables? What are the possible values of these variables? What
operators are there to act in those situations? How would you test is
you reached Solution Situation? Same questions arise, if you wanted
to apply well-structured problem solving to all cases in Chapter 1.

The trouble with these questions, and the main reason why those

20

Chapter 2. Problem Solving Automation

cases involve ill-structured problem solving is that there is no existing
knowledge, in research or practice, which gives agreed on answers.
There is no standard which prescribes what to do in those cases.
There is no book which guides you step-by-step from the Problem
Situation to a satisfactory Solution Situation.

It is possible, however, to identify parts of the ill-structured prob-
lem, for which you can answer the questions above in some satisfac-
tory manner.

In the law firm owner’s case, issues seems related to how employ-
ees deliver services. It is likely that solving them requires the help
of employees. It thus seems useful to evaluate employee satisfac-
tion at present and in the future. Their satisfaction matters, and it
would be relevant not to judge it informally, but to have an evaluation
procedure, which they and the owner agree on.

Is making and doing the survey to evaluate employee satisfaction
a well-structured sub-problem in the law firm case?

There is no standard or scientific rule for this. The quality of a
solution is ultimately evaluated by stakeholders. The solution itself
is influenced by the problem that you defined during Requirements
Problem Solving.

It follows that you have three options. In one, the sub-problem
is well-structured, because it you have the knowledge required to
address it as a well-structured problem. This means that you know a
language, relevant operators, and so on, and stakeholders agree that
your approach is appropriate. You would define and do the surveys,
which would require that you define the variables whose values are
measured via data collected in the survey, the survey questions, and
so on.

A second option is that you do not know how to solve it as a well-
structured problem, and so for you it is an ill-structured problem.
But, you may know someone whom you can delegate it to, and for
whom it is a well-structured problem.

It is important to keep in mind that the resulting well-structured
problem is one of measuring employee satisfaction, not changing it.
The change is not part of this sub-problem.

Take another example. One of the tasks many of the sports
coaches from the earlier case do, is invoicing, and some outsource it
to their accountants. Invoicing includes producing invoices at regu-
lar intervals. There accountants capable of doing this, and there is
also software capable of doing this. It may thus be that producing

21

Chapter 2. Problem Solving Automation

invoices is a well-structured sub-problem. And notice that while to
produce an invoice is an ill-structured problem for a coach, it is not
for an accountant, or for software designed to do it.

The third option is that the sub-problem is ill-structured, when
neither of the two options above are feasible.

The first two options are interesting, because they mean that

you managed to divide the ill-structured problem into
parts, you can call them sub-problems, or at the very
least, you identified one sub-problem which you, or some-
one you choose, is capable of solving as a well-structured
problem.

Problem structuring is the tasks which aims to identify sub-problems,
and understand the relationships between them, as well as their so-
lutions. This task itself need not be a well-defined sub-problem. You
may never manage to have an accurate map, a description of all the
sub-problems, and of all their relevant relationships.

But while you recognise one or some well-defined sub-problems,
the rest of the initial and overall ill-structured problem need not be
as well-behaved. Simon described the challenge as follows [130]:

“Interrelations among the various well structured sub-
problems are likely to be neglected or underemphasized.
Solutions to a particular subproblem are apt to be dis-
turbed or undone at a later stage when new aspects are
attended to, and the considerations leading to the original
solutions forgotten or not noticed.”

One of the recurrent topics in Requirements Problem Solving
research is how to document the decomposition of the ill-structured
problem onto sub-problems, to record their relationships, and to
evaluate how solving some sub-problem in one way influences the
resolution of another sub-problem.

2.5 Case-Specific and Recurrent Tasks

This Section argues that Requirements Problem Solving involves case-
specific and recurrent tasks. It is interesting to automate recurrent
tasks which target well-defined sub-problems.

22

Chapter 2. Problem Solving Automation

In the preceding Section, I used as examples two tasks that can be
relevant to do, in two different cases. One is surveying the employees
of the law firm, the other is invoicing in the sports coach software
case. An important idea to keep in mind, is that producing invoices
and doing surveys are tasks specific to the Problem Situation. They
are case-specific tasks.

It is interesting to develop knowledge of how to solve these sub-
problems as well-structured problems. If you manage to do so, per-
haps you can go further and automate the solutions. The result
might be relevant to companies and, or individuals who happen to
encounter similar Problem Situations.

This book focuses instead on the automation of recurrent tasks in
Requirements Problem Solving, of tasks which reappear in different
cases.

Problem structuring is one example of such a task. It is hard to
avoid it when solving Requirements Problem Solving, regardless of
case specifics. Keeping track of sub-problems and their relationships
is not specific to a given Problem Situation, but seems necessary
for any ill-defined problem, that is, whenever you do Requirements
Problem Solving. It is therefore particularly interesting to try to make
AI which helps with these recurrent Requirements Problem Solving
tasks.

2.6 Languages and Algorithms

This Section argues that automating a task in Requirements Problem
Solving requires defining formal languages, used to represent informa-
tion about Problem Situations, Solution Situations, and intermediary
situations, and algorithms which perform computations over these
representations.

To have a computer automate a recurrent Requirements Problem
Solving task, such that the task solves a well-defined sub-problem,
you need to identify the sub-problem, define all the components
required for it to be a well-structured sub-problem, and have them in
a format which the computer can store, read, and do computations
on.

This book is about how to do the above. Using simpler, but still
technical terms, the challenge is to define languages and algorithms,

23

Chapter 2. Problem Solving Automation

which together can be used to make software to which you can dele-
gate a recurrent task in Requirements Problem Solving.

I will not go so far as to show how to actually make that software.
Instead, I will stop at the point where it is clear what that software
would do, and how.

Languages need to be formal languages, that is, sucht that terms
and rules for using terms of the language are precisely defined. Such
languages are used to describe situations, be they Problem Situations,
Solution Situations, or intermediary ones.

Algorithms describe procedures applied to descriptions of situa-
tions. Algorithms will be doing calculations over variables that de-
scribe situations. They will takes some input written in the language,
do computations (value calculations, changes, additions, deletions,
etc.) to these, and produce results which are, again, written with the
language, and describe situations.

You can see the algorithms as combinations of operators, solution
tests, difference tests, and difference rules, all used when solving a
well-structured sub-problem.

2.7 Artificial Intelligence

This Section argues that AI for Requirements Problem Solving amounts
to combinations of a formal language and algorithms.

AI is a science on its own, and this book makes no contributions
to it. Instead, I will use existing results in AI when they are useful to
automate Requirements Problem Solving tasks.

Making AI for Requirements Problem Solving in this book equates
to the problem of how to make languages and algorithms which can
automate specific Requirements Problem Solving tasks. Both the
languages and algorithms are not somehow made by, or discovered
by the AI, but at best imperfectly reflect the knowledge of human
problem solvers. The resulting AI is thus not smart in any meaningful
way, but is only able to apply quickly many rules which are inspired
by what an expert problem solver would otherwise do.

In the rough classification of major lines of research in AI, which
Stuart Russell and Peter Norvig suggested in a classical textbook
[123], AI for Requirements Problem Solving in this book falls in the
so-called “laws of thought”, or logicist approach. In it, the emphasis
is on defining rules for how to draw a correct conclusion from some

24

Chapter 2. Problem Solving Automation

given information. The rules to apply to the given information when
drawing conclusions can reflect the thinking patterns of a typical
individual or of an expert.

It is consequently true that AI for Requirements Problem Solving,
as it is developed in this book, also suffers from two main limitations
of the logicist approach, which Russell and Norvig summarise as
follows [123]:

“First, it is not easy to take informal knowledge and state
it in the formal terms required by logical notation, par-
ticularly when the knowledge is less than 100% certain.
Second, there is a big difference between being able to
solve a problem ‘in principle’ and doing so in practice.
Even problems with just a few dozen facts can exhaust
the computational resources of any computer unless it
has some guidance as to which reasoning to try first. Al-
though both of these obstacles apply to any attempt to
build computational reasoning systems, they appearerd
first in the logicist tradition.”

This book is intended to help solve the first issue, specifically
for Requirements Problem Solving. If you yourself have that infor-
mal knowledge relevant for solving recurrent Requirements Problem
Solving tasks, or you have access to someone who does, the book will
suggest how to go from that informal knowledge to languages and
algorithms.

As for the second issue, I have no better solution than to map
algorithms used for Requirements Problem Solving to well known
algorithms in AI. This book will illustrate, for example, that there is
quite a lot you can automate in Requirements Problem Solving by
using a language whose sentences can be converted into graphs, and
by applying algorithms for reasoning on graphs (such as searching
sub-graphs with some interesting properties). This will be clearer
later in the book.

25

Chapter 3

Problem and Solution
Concepts in
Requirements
Engineering

Requirements Engineering designates both the practice of rigorously
doing Requirements Problem Solving, and the field of research which
studies this practice and ways to improve it. This Chapter connects the
ideas discussed in Chapters 1 and 2 to the basic ideas and terminology
of Requirements Engineering. This is important, because various
Requirements Modelling Languages and algorithms, that is, AI for
Requirements Problem Solving, have been proposed in Requirements
Engineering since the origins of the field in the 1970s.

26

Chapter 3. Problem and Solution Concepts

3.1 Requirements Engineering

This Section suggests the following relationship between Requirements
Problem Solving and Requirements Engineering: The former desig-
nates the phenomenon which the latter studies and aims to influence.

Requirements Engineering is a term which designates both an
engineering discipline and a field of scientific research.

The engineering discipline covers the various activities, such as
elicitation, modelling, analysis, negotiation, and so on, which are
done in order to define rules that a system has to satisfy when it is
made and used. The rules can originate in expectations of stakehold-
ers who invest, use, or otherwise influence and are influenced by the
system, in the conditions of the system’s operating environment, its
regulatory environment, and so on.

It is an engineering discipline. These activities have to be done
rigorously, in planned steps, using tried and tested mathematical or
other tools.

Requirements Engineering as a field of scientific research stud-
ies a variety of topics, such as information elicitation [56, 71, 38],
categorization [36, 155, 88], vagueness and ambiguity [108, 99, 85],
prioritization [91, 11, 70], negotiation [98, 13, 82], responsibility al-
location [36, 23, 51], cost estimation [14, 17, 131], conflicts and in-
consistency [110, 69, 145], comparison [108, 99, 100], satisfaction
evaluation [16, 108, 93], operationalization [54, 51, 47], traceability
[57, 118, 31], and change [26, 149, 20]. Each topic is related to issues
and tasks which occur during Requirements Problem Solving.

Historical origins of Requirements Engineering are in software en-
gineering, and specifically in the challenge to define and document
what the system should do for its stakeholders and in its environment,
without saying exactly how it will do this. The “how” usually remains
outside the scope of Requirements Engineering, and is the responsi-
bility of those engineering, making, maintaining, and changing the
system.

The notion of system-to-be, a term which emphasises that it is not
made yet, or simply system is central to Requirements Engineering.

Due to the historical origins, system usually designates software
and hardware. At its boundary are the people who interact with
it, and any other things in the environment which the system can
somehow exchange information with, influence, and be influenced
by.

27

Chapter 3. Problem and Solution Concepts

The phenomenon which the Requirements Engineering disci-
pline and field focus on existed before either the discipline or the
field were formally recognised. Requirements Engineering arose in
response to situations observed in systems engineering in general,
of not knowing how to make sure that the system being made will in
fact appropriately address the issues which motivated making it in
the first place.

Requirements Problem Solving designates that phenomenon,
namely all that people do, when they have unclear, abstract, in-
complete, potentially conflicting information about expectations
of various stakeholders, and about the environment in which these
expectations should be met, a system should be made to satisfy these
expectations, and they want to define rules, such that if the system is
made to satisfy these rules, then it will also satisfy the expectations
in its given environment.

Requirements Problem Solving is present when designing new
and changing existing systems. It needs to be done for any system
class and domain, and regardless of the extent to which people are
involved in the system, from autonomic Internet-scale clouds, to
traditional desktop applications, industrial expert systems, and em-
bedded software, all enabling anything from massive mobile applica-
tions ecosystems, global supply chains, medical processes, business
processes, mobile gaming, and so on. Requirements Problem Solving
is done regardless of how the software in the system is designed and
made, from a military waterfall approach to a startup’s own agile di-
alect, and from organisations where software engineers talk directly
to customers, to those where product designers, salespeople, or oth-
ers mediate between requirements and code. In all these cases, there
will be unsatisfied expectations, and the need to make systems to
satisfy them.

3.2 Problem and Solution

This Section introduces definitions for the terms problem and solu-
tion, and relates them to the notions of Problem Situation, Solution
Situation, and Requirements Problem Solving.

Problem and solution are common terms. The dictionary defini-
tion of problem is that it designates “a matter or situation regarded as
unwelcome or harmful and needing to be dealt with and overcome”.

28

Chapter 3. Problem and Solution Concepts

The corresponding definition for solution is that is is “a means of
solving a problem or dealing with a difficult situation”.1

This Section introduces definitions for “problem” and “solution”
which are specific to this book. They are simple, uncontroversial, and
coherent with their dictionary definitions. The main benefit of having
specific definitions is that they use the terminology introduced for
Requirements Problem Solving in Chapter 1. Secondary benefits are
less obvious, and I will highlight them below.

3.2.1 Problem

I use the term “problem” to refer to ideas about what is observed,
or believed to be true in a Problem Situation. Problem is what you
observed or think is true in the Problem Situation. It is not a record
of these ideas, such as, for example, a document where you wrote
them down. It is the ideas or thoughts themselves.

It is important that problem designates ideas, not their represen-
tations. This is because I argued earlier, in Section 1.2, that different
people can see different problems in the same situation. They may
pay attention to different events, things, and individuals. They may
draw different conclusions about what is and is not desirable in that
situation. You may hold one set of ideas, but there is no reason others
should share them.

Instead of using the terms “ideas” and “thoughts” in my defini-
tions, it is more conventional in Requirements Engineering to talk of
propositions. I consequently say that you and I may believe different
propositions to be true of a situation, even if we are in that same situ-
ation. The term “proposition” has a specific definition in philosophy,
and I follow the one from Matthew McGrath [104] in the Stanford
Encyclopaedia of Philosophy:

“Propositions [...] are the sharable objects of the attitudes
and the primary bearers of truth and falsity. This stipula-
tion rules out certain candidates for propositions, includ-
ing thought- and utterance-tokens, which presumably
are not sharable, and concrete events or facts, which pre-
sumably cannot be false.”

1Both quotations come from a Google search for keywords “define:problem” and
“define:solution”.

29

Chapter 3. Problem and Solution Concepts

Tying the above to Problem Situation leads me to the following
simple definition for the term “problem”.

Definition 3.2.1. ProblemProblem: propositions believed to be true of a Prob-
lem Situation.

3.2.2 Solution

Comments I made for the term “problem” apply for the term “solu-
tion”. Solution are ideas believed to be true of the Solution Situation.
Hence the following definition.

Definition 3.2.2. SolutionSolution: propositions believed to be true of a Solu-
tion Situation.

The major difference from the common sense definition of the
term “solution” is that here, “solution” is not that which brings about
the Solution Situation. It amounts to propositions about the Solution
Situation. As I explain in Section 3.3, I use the term system for that
which brings about the Solution Situation.

3.3 System

This Section introduces the term system and relates it to the terms
introduced so far.

Although the historical origins of Requirements Engineering are
in software engineering, the term “system” in contemporary Require-
ments Engineering is not restricted only software and, or hardware.
Its scope can include only limited to specific (parts of) software and
hardware, or widened to include such issues as work guidelines, busi-
ness processes, responsibilities, contracts, or other concerns.

As various things can be part of a system, I prefer not to define
the term by saying what can be in it, or has to stay outside. It makes
no difference in this book what exactly is, or is not part of a system.
What matters is that the system is all that is made and used to bring
about a solution.

Definition 3.3.1. SystemSystem: that which is made and used in order to
make Solution true.

A system need not be about software or hardware. It can be a
brand, a political election programme, a corporate strategy, or a
business process.

30

Chapter 3. Problem and Solution Concepts

In all cases I discuss in this book, the system is not restricted to
software and hardware. In some of the cases, software and hardware
were not mentioned at all as important parts of systems which were
actually used.

3.4 Models

This Section introduces the terms model, Problem Model, Solution
Model, and relates them to those introduced so far.

The remaining piece of the puzzle is to describe solutions, prob-
lems, and systems in such a way that we can communicate about
them during Requirements Problem Solving. This is done with mod-
els.

Definition 3.4.1. ModelModel: representation of propositions.

This is not a conventional use of the term model in Requirements
Engineering. Model is normally used to designate the representation
of the system only. However, I need to talk about representations of
solutions, problems, and systems, which leads me to several kinds of
models.

Definition 3.4.2. Problem ModelProblem Model: representation of a Problem.

Definition 3.4.3. Solution ModelSolution Model: representation of a Solution.

Definition 3.4.4. System ModelSystem Model: representation of propositions be-
lieved to be true of the system.

It is on the basis of System Model that the system is implemented,
updated, changed, its new releases planned, made, announced,
rolled out. The System Model’s scope may be limited to specific
(parts of) software and/or hardware, or widened to include such
issues as work guidelines, business processes, responsibilities, incen-
tives, contracts, or other concerns.

System Model can take different forms, from minimalistic to-do
lists that hint at stakeholders’ expectations and subsume implicit de-
sign and engineering solutions, to elaborately structured documen-
tation on contracts with employees and suppliers, responsibilities of
positions in the value chain, guidelines for employee coordination
and collaboration, as well as software pseudo-code.

A system is not the output that Requirements Engineering pro-
duces. Requirements Engineering does not include, for example, the

31

Chapter 3. Problem and Solution Concepts

detailed engineering, development, testing, release, maintenance,
and so on, of software which may be part of the system, nor can it
include the training of people who should use it. In the law firm
owner’s case, the Solution included changes in contracts with em-
ployees, in incentives, training, team building, among others. They
are activities which, to be done well, each require specific expertise,
and are delegated to those who have it.

Problem Models, Solution Models, and System Models are the
output sought in Requirements Engineering and Requirements Prob-
lem Solving.

3.5 Default Problem and Solution

This Section presents and discusses the Default Problem and Default
Solution concepts in Requirements Engineering.

There is a default definition of the Problems that Requirements
Engineering tries to solve when applied. There is also a default defi-
nition of the Solution sought. It is important to know them, because
they highlight a number of assumptions made in Requirements Engi-
neering.

The de facto default view in Requirements Engineering is that Re-
quirements Problem Solving is done incrementally, starting from in-
complete, inconsistent, and imprecise information about the require-
ments and the environment, and that each design step reduces in-
completeness, removes inconsistencies, and improves precision, to-
wards the System Model [15, 36, 59, 110, 49, 155, 144, 23, 122, 83, 47].

This general view of the problem solving process, that you start
with less detailed and somehow deficient information, and increase
detail and remove deficiencies, is also shared in other domains in-
volving design, such as architecture [137, 95] and civil engineering
[4].

Within that view, which Requirements Engineering has of Re-
quirements Problem Solving, what is the default definition of Prob-
lems and Solutions?

The most influential treatment of this question is in Pamela Zave
and Michael Jackson’s seminal paper “Four dark corners of require-
ments engineering” [155], and is echoed in discussions on the phi-
losophy of engineering [135]. Their view is aligned with some of
the most influential research in Requirements Engineering, which

32

Chapter 3. Problem and Solution Concepts

both preceded and followed the said paper. This includes, for exam-
ple, contributions from Boehm et al. [15, 13], van Lamsweerde et al.
[36, 37, 145, 146, 144, 99], Mylopoulos et al. [108, 59, 23], Robinson
et al. [122], Nuseibeh et al. [110, 76], to name some.

According to Zave and Jackson Requirements Engineering is suc-
cessfully completed in any concrete engineering project when the
following conditions are satisfied [155]:

1. “There is a set R of requirements. Each member of R
has been validated (checked informally) as accept-
able to the customer, and R as a whole has been val-
idated as expressing all the customer’s desires with
respect to the software development project.

2. There is a set K of statements of domain knowledge.
Each member of K has been validated (checked in-
formally) as true of the environment.

3. There is a set S of specifications. The members of
S do not constrain the environment; they are not
stated in terms of any unshared actions or state com-
ponents; and they do not refer to the future.

4. A proof shows that K ,S ` R. This proof ensures
that an implementation of S will satisfy the require-
ments.

5. There is a proof that S and K are consistent. This
ensures that the specification is internally consistent
and consistent with the environment. Note that
the two proofs together imply that S, K , and R are
consistent with each other.”

Using the terms I introduced so far, Zave & Jackson’s conditions
translate as follows:

1. There is a Requirements Model, call it R, which stakeholders
agreed on. It represents propositions that convey stakeholders’
expectations.

2. There is an Environment Model, called K , which stakeholders
agreed on. It represents propositions believed to be true of the
environment in which the System will run.

33

Chapter 3. Problem and Solution Concepts

3. There is a System Model, call it S, which describes propositions
true of the System.

4. If the propositions represented in the Environment Model are
true, that is, the environment is as described, and the System
is made and runs in that environment according to the Sys-
tem Model, then propositions described in the Requirements
Model will also be true.

5. If the System is made and runs according to System Model,
then the environment will remain as described in the Envi-
ronment Model, and if the environment remains as described,
then the System will continue to run without violating System
Model.

The translation emphasises that there are representations of three
kinds of propositions, namely requirements, domain knowledge, and
system propositions. The translation also does not assume that any
of these representations is written in classical logic, and therefore,
cannot talk about proofs. Instead, it rewrites the fourth and fifth
conditions without assuming the language used to make the repre-
sentations. All these are minor changes, and the translation preserves
the central ideas.

Perhaps the most important observation to make about the con-
ditions from Zave & Jackson is that they do not talk about the struc-
turing of the Problem and Solution, and about the design of the Sys-
tem. In other words, there is no indication that this is ill-structured
problem solving. The conditions should be checked after the require-
ments, environment, and system are clear enough, to make problem
solving well-structured.

Returning to the main topic of this Section, the translation sug-
gests a default Problem and Solution for Requirements Engineering.

Definition 3.5.1. Default ProblemDefault Problem: there are

1. a set Rp of requirements propositions, which are propositions
believed to be true of what stakeholders expect, and

2. a set K p of environment propositions, which are propositions
believed to be true about the environment in which the system
will be used,

and it is not sufficient for the environment propositions alone to be
true, in order for requirements propositions to be true.

34

Chapter 3. Problem and Solution Concepts

The Default Problem is that you know something about stake-
holders’ expectations and about the environment in which they need
to be satisfied, yet that environment alone does not ensure that these
expectations indeed are satisfied.

Convention 3.5.2. I write X p for a set of propositions, and X for the
set of representations of propositions, which may, but need not be
related to those in X p . The reason I dissociate X from X p , is that it is
hard to be sure that all propositions in Rp are accurately represented
by the content of R. Keep in mind that propositions in Rp are ideas,
not representations of ideas. They are hard to access, so to speak,
because by being ideas, they are “in the mind” of your own, and of
others. Going from Rp to R is complicated, involves having people
communicate with you during elicitation about propositions, and
thus probably means that you and someone else would produce
different R sets, from presumably the same Rp .

In contrast to the Default Problem, the Solution is not the input,
but the output of problem solving, comes therefore after problem
structuring, and is about Models.

Definition 3.5.3. Default SolutionDefault Solution: there are

1. a Requirements Model R, which stakeholders agreed on, and
which may represent propositions from Rp in the Default Prob-
lem,

2. an Environment Model K , which stakeholders agreed on, and
which may represent propositions form K p in the Default Prob-
lem,

3. a System Model, call it S, which describes propositions true of
the System,

and the System Model S is such that

1. if the propositions represented in K are true, that is, the envi-
ronment is as described, and the System is made and runs in
that environment according to the System Model, then propo-
sitions represented in the Requirements Model R will also be
true, and

2. if the System is made and runs according to S, then the envi-
ronment will remain as described in the Environment Model

35

Chapter 3. Problem and Solution Concepts

K , and if the environment remains as described in K , then the
System will continue to run without violating the propositions
represented in S.

Keep in mind that K in the Default Solution does not need to
represent exactly, all, or any of the propositions in K p in the Default
Problem. Same applies to requirements propositions in Rp and the
Requirements Model R . This is because the Default Problem triggers
Requirements Problem Solving, which involves problem structuring,
and the information known for the original Problem can be removed
or replaced.

36

Chapter 4

Introduction to
Requirements Modelling
Languages

Requirements Modelling Languages are formal languages specialised
for use in Requirements Problem Solving. This Chapter clarifies what
a formal language is normally made of, and explains its role in prob-
lem solving in general. To give a clearer idea of where Requirements
Modelling Languages come from and look like, this Chapter gives a
rough historical overview of their design, discusses their broad sim-
ilarities and differences, and presents two Requirements Modelling
Languages called i-star and Techne.

37

Chapter 4. On Requirements Modelling Languages

4.1 Formal Language

This Section explains what a formal language is normally made of,
regardless of the kinds of problems it is used for. The basic components,
syntax and semantics, are explained and a trivial example of a formal
language is given.

Formal languages are used for communication, same as natu-
ral languages such as English or French. An important difference
between a formal language and a natural language, is that every sen-
tence in a formal language is made according to clearly defined and
finite set of rules. A definition of a formal language amounts to a
number of rules, which together define what sentences of that lan-
guage can look like and what they are about, that is, what they refer
to.

I follow David Harel and Bernhard Rumpe [68] in seeing a formal
language as made of two basic sets of rules. They are syntax rules
and semantics rules, or simply, syntax and semantics. Each set can
be further broken down into pieces, and this Section clarifies the
purpose of these pieces, and how they fit together to define a formal
language.

4.1.1 Syntax

Syntax rules say which symbols can appear in sentences, and how
these symbols are combined into sentences. Syntax is defined with
two sets of rules. Symbol rules define all allowed symbols. Grammar
rules define all allowed combinations of symbols.

For illustration, suppose that you want the language L to have
sentences in which there are only Arabic numerals symbols. You first
define the set of allowed symbols, call it S, as follows

S = {0,1,2,3,4,5,6,7,8,9}.

The above is a set of symbols, not of numbers. I still have not said
what each symbol represents, or stands for, and I will do it later with
semantics.

Suppose, then, that you want all sentences of this language to
include exactly 10 symbols. In other words, any sentence in L has the
following format:

38

Chapter 4. On Requirements Modelling Languages

where each must be replaced by any one symbol in the set S. It
follows that 0019200216 is a sentence in L, but 108141 is not, and
neither is 401−8208w28085 < k%0258.

To define that all sentences in L must include exactly 10 symbols
from S, and that there can be no white spaces between them, you
can write that every sentence of L, call that generic sentence a must
have the following format:

a ::= xxxxxxxx

where x is any member of S, that is x ∈ S. The rule above is itself
written in a formal language, called Backus-Naur Form.

If you need no more symbols and no more rules for how to com-
bine symbols, then the syntax of L is defined with the following rules,
where the first three are symbol rules, and the fourth is a grammar
rule.

L = {a1, a2, . . .},

S = {0,1,2,3,4,5,6,7,8,9},

x ∈ S,

a ::= xxxxxxxx.

It is important to keep in mind that symbols can be anything
really, and it is up to you to choose them and the grammar for com-
bining them into sentences. They do not need to look like anything
in natural language. Modern musical notation is one example. You
may want to use pictures as symbols, or sketches, or physical objects.
As long as they serve the purpose of the language you are making.

4.1.2 Semantics

Semantics are rules which define what the symbols and sentences
are meant to represent, and how to determine which symbol and sen-
tence represents what. In more technical terms, semantics defines
the semantic domain of the language and the semantic mapping,
which ties sentences to elements in the semantic domain.

Suppose that I want to use the syntax defined above to represent
cell phone numbers in Belgium. The semantic domain is therefore
the set of all possible cell phone numbers in Belgium.

I know that any cellphone number in Belgium must have ten dig-
its, so sentences in syntax have good length. To map these sentence

39

Chapter 4. On Requirements Modelling Languages

to cell phone numbers, it is enough to map each symbol to a number,
and I can do this with the following rules:

symbol 0 represents number 0,

symbol 1 represents number 1,

symbol 2 represents number 2,

. . . ,

symbol 9 represents number 9.

The above is the same as defining a function, called the semantic
mapping function, or simply semantic mapping. Denote that func-
tion m, and let it take any symbol, and return the corresponding
number, so that m(symbol 1) = 1, and so on.

I also know that Belgian cell phone numbers always begin with a
zero. This is something that I know about the domain, and the lan-
guage should reflect this. Above, the syntax of L allows any number
symbol to be on the first place in the sentence. I therefore change the
syntax by using the following rule instead of the previous rule for a:

a ::= 0xxxxxxx.

The reason why it is relevant to map sentences to numbers, is
because of how cell phone operators defined cell phone numbers,
and their systems recognise cell phone numbers as 10-digit integer
numbers.

Suppose, instead, that a cell phone numbers are not numbers,
but that to call someone’s cell phone, you have to input ten Latin
alphabet letters. In that case, the semantic domain would be all
10-place words made from Latin alphabet letters. The syntax of
L would no longer be appropriate, since it has no unique symbol
for every smallest relevant element of the semantic domain. This
does not mean that Arabic numerals symbols are not good, but only
that I can no longer map individual symbols to individual elements
of the domain, and ensure that each element in the domain has
a corresponding unique representation in syntax. This change in
the semantic domain would result in changes to both syntax and
semantic mapping.

Defining formal languages is usually harder than in the example
above, but this is a fair start. The rest of the book will raise and

40

Chapter 4. On Requirements Modelling Languages

discuss many language design issues. The terminology of syntax and
semantics will come back every time, and it will keep being used in
the same way as above.

4.2 Role in Problem Solving

This Section argues that the role Requirements Modelling Languages
have in Requirements Problem Solving and Requirements Engineering
is based on the assumption that they influence how Requirements
Problem Solving is done, by influencing how information used during
problem solving is represented, and that this in turn influences how
human problem solvers think during problem solving.

Requirements Modelling Languages are formal languages. They
differ from various other types of formal languages in that their syntax
and semantics are designed to support specific tasks in Requirements
Problem Solving.

It is an implicit assumption in Requirements Engineering that
how information is represented during problem solving influences
how problem solving is done. That assumption is an important
motivation for doing research on and teaching formal languages for
Requirements Problem Solving and Requirements Engineering, and
on the creation of guidelines, processes, methods for making and
manipulating the resulting representations.

The assumption is very much related to research on the rela-
tionship between language and thought in linguistics and cognitive
science. It is aligned with the Sapir–Whorf hypothesis [92], which
is that “[s]tructural differences between language systems will, in
general, be paralleled by nonlinguistic cognitive differences” and
that “[t]he structure of anyone’s native language strongly influences
or fully determines the world-view he will acquire as he learns the
language”. It is related to the linguistic relativism position [63, 52],
which is that [112] “use of the linguistic system [...] actually forces
the speaker to make computations he or she might otherwise not
make.”1

1Linguistic relativism is usually related to the nativist position; the latter argues
that concepts are prior to and progenitive of natural language. The two positions
are usually not seen as conflicting. As Gleitman & Papafragou note [55]: “To our
knowledge, none – well, very few – of those who adopt a nativist position on these
matters reject as a matter of a priori conviction the possibility that there could be
salience effects of language on thought. For instance, some particular natural language

41

Chapter 4. On Requirements Modelling Languages

In cognitive science, there are empirical results [157, 34, 80] sup-
porting the claim that “external representations”, or sentences of a
formal language, are relevant when solving complex problems. They
are not only memory aids, but they also influence how people dis-
cover, describe, and explore problems and their solutions. Similar
views were echoed in programming language design, for example, in
Kenneth E. Iverson’s 1979 Turing award lecture, on notation as a tool
of thought [78].

4.3 Rough Historical Overview

This Section gives a rough historical overview of Requirements Mod-
elling Languages in Requirements Engineering research. The Section
uses specialised terminology of Requirements Engineering to mention
main similarities and differences between these languages.

Requirements Modelling Languages are formal languages pro-
posed in Requirements Engineering research to support various tasks
in Requirements Problem Solving. They arose in response to three in-
tertwined questions which remain among the central ones in the Re-
quirements Engineering research field, and for at least four decades
now [61]:

1. What information should be elicited from the stakeholders of
the System?

2. How to represent, create models of the elicited information?

3. What kinds of computations should be performed over these
models, and why?

The initial response to these questions was to apply formal meth-
ods [150, 30] in Requirements Problem Solving. Formal methods
are highly developed formal languages for the specification of the
properties of a System. Examples of formal methods are VDM [8],
Larch [65], Z [133], B [1], Alloy [79].

Since the 1990s, it is recognised in Requirements Engineering
research that formal methods are not relevant as formal languages

might formally mark a category whereas another does not; two languages might draw a
category boundary at different places; two languages might differ in the computational
resources they require to make manifest a particular distinction or category.”

42

Chapter 4. On Requirements Modelling Languages

for Requirements Problem Solving [59]. The main complaint is that
they are too generic. They give no indications about which types of
information to elicit or represent about the Problem Situation and
Solution Situation, how to organise and represent this information
in ways which can help such tasks as the negotiation and validation
of requirements by stakeholders. Their syntax and semantics are not
designed with Requirements Problem Solving in mind. They have no
specific features for answering recurring questions in Requirements
Problem Solving.

Contemporary view is that Requirements Modelling Languages
have the difficult task to bridge the messy steps in Requirements
Problem Solving and those when rigorous application of formal meth-
ods becomes feasible. This view is reflected in many Requirements
Modelling Languages, as they include concepts and rules for how to
translate their models, or some parts thereof, into models in formal
methods.

The first formal language that was considered a Requirements
Modelling Language is RMF [60]. It is “a notation for requirements
modeling which combines object-orientation and organization, with
an assertional sublanguage used to specify constraints and deductive
rules” [59].

An idea in RMF, which remains important still today, is that a
Requirements Modelling Language should explain how its sentences
can be translated into sentences of a formal logic, such as classical
first order logic, or a specialised variant, such as linear temporal first
order logic. This ensures that algorithms which can be applied to
sentences of such logics can be applied, after translation, to sen-
tences in a Requirements Modelling Language. It also means that
representations made with the Requirements Modelling Language
can be translated into those of a formal method, as long as the formal
method has a translation to the same formal logic as the Require-
ments Modelling Language.

The semantic domain of RMF distinguished between proposi-
tions about entities and about activities. This may be generic and
consequently versatile, but it is also still generic. For example, it
may be relevant to know which of some given activities are more
important than others, or which are more desirable than others, as
this may influence deciding which activities to include and exclude
from a Solution.

The distinction between entities and activities in the semantic

43

Chapter 4. On Requirements Modelling Languages

domain of RMF was judged limited [59] and responses to limitations
went in two directions.

One direction, in Requirements Modelling Languages such as
KAOS and i-star, is to have more categories and relations predefined
in the semantic domain, and to keep that set of categories and re-
lations fixed. This means, for example, that if the language has no
category or relation that you can use to indicate that some situation
is more desirable than another one, or that an activity is more impor-
tant, then you cannot show this in models made with this language.
The language does not have rules for how to add new categories and
relations to it, so that you can, for example, add a new relation and
use it to show that a situation shown in a model is more desirable
than another situation shown in the same model. To compensate for
this, the languages in this approach often include many categories
and relations judged relevant for Requirements Problem Solving in
general.

The other direction was adopted in the formal language Telos
[107] and consists of leaving the concepts and relations in the se-
mantic domain undefined. The language includes tools to define
the categories and relations in the semantic domain. This second
approach is more versatile, but its abstraction makes it difficult to
provide methodological guidance which can be given when a fixed
set of concepts is known and manipulated every time the language
is used. Although Telos could be used for Requirements Problem
Solving, it has rarely had that role.

KAOS remains an important Requirements Modelling Language.
“The overall approach taken in KAOS has three components: (i) a
conceptual model for acquiring and structuring requirements mod-
els, with an associated acquisition language, (ii) a set of strategies
for elaborating requirements models in this framework, and (iii) an
automated assistant to provide guidance in the acquisition process
according to such strategies” [36]. The conceptual model of KAOS
defines the categories and relations which make up the semantic
domain. There are objects, operations, agents, goals, obstacles, req-
uisites, scenarios, and relations such as specialisation, refinement,
conflict, operationalisation, concern, and so on. There are rules in
KAOS for how to translate its models into sentences of linear tempo-
ral logic.

KAOS introduced many important new ideas in the design of
Requirements Modelling Languages. It introduced the concept of

44

Chapter 4. On Requirements Modelling Languages

“goal” to Requirements Modelling Languages, and used it to repre-
sent stakeholders’ expectations, which the system and stakeholders
should work together to achieve. KAOS gave the template for the
definition of new Requirements Modelling Languages, by showing
how to closely fit the language and the guidelines for using it. The
language also allowed one to have models which are written only in
a visual notation and simple templates, and rewrite parts of models
in linear temporal logic only if that was relevant in the specific case
of Requirements Problem Solving. This role of linear temporal logic
in KAOS made it possible to see KAOS as a language which comes
before and naturally precedes the application of formal methods, at
least those which also use linear temporal logic. One could use KAOS
for Requirements Problem Solving, and once the Solution is found,
take relevant parts of the KAOS model of that Solution, and carry
them over into a detailed System model made with linear temporal
logic.

i-star is language that distinguishes itself from those mentioned
above both in its design and its focus. In terms of design, its initial
definition did not come with rules for how to translate its models
in sentences of a formal logic or formal method. The focus of i-
star is on helping the engineers and stakeholders understand the
interdependencies of actors within and in relation to a System, their
individual and joint goals, tasks, and available or necessary resources,
the roles they occupy.

A model in i-star aims to be a snapshot of the intentional states
(what they want, assume, know, and so on) of actors in a situation,
along with what roles they adopt, and how they depend on each other
for the satisfaction of individual and joint goals, the performance
of tasks, and use of resources. The System or its components are
considered as actors, alongside human individuals and groups.

i-star is a lightweight language relative to KAOS. This should
make it easier to learn. This was recognised as a critical feature, given
that requirements must be validated by stakeholders who cannot be
expected to manipulate artefacts produced with formal methods and
formal logics.

i-star was used as the Requirements Modelling Language com-
ponent of Tropos [23], a methodology for information systems engi-
neering. Once i-star models of the System within its organizational
environment are made, Tropos suggests how to proceed towards
models of data and behaviour, useful for detailed engineering of

45

Chapter 4. On Requirements Modelling Languages

the System. Formal Tropos [51] continued the tradition of mapping
models to first order logic sentences, by mapping i-star models to
sentences of linear temporal logic. This connected i-star to formal
methods, in an analogous way to how KAOS is related to formal
methods.

Techne[83] was a more recent development in Requirements
Engineering research. It highlighted and promoted three ideas for
the design of Requirements Modelling Languages. One is that each
Requirements Modelling Language comes with its own assumptions
about what Requirements Problem Solving involves, and what the
Problems and Solutions should look like. However, it might be the
first language which explicitly defined the generic Problems it is used
to solve, and gave formal properties that a model has to satisfy, in
order to include a Solution to a given Problem. The second idea is
that there can be different candidate Solutions to the same Problem,
and that it is important for a language to have tools to indicate which
of these Solutions is more desirable than others, and to compute
which of them is the most desirable, or roughly speaking, “the best”.
The third idea is that it is possible to have a language with a relatively
simple semantic domain, and be able to represent in its models many
things that were normally thought to require more categories and
relations in the semantic domain of a language.

Another interesting characteristic of Techne is that it is perceived
as an “abstract” Requirements Modelling Language intended to be
used as the starting point for the definition of new Requirements
Modelling Languages. Languages made from Techne are bound to
be quite different from RMF, KAOS, and i-star. Techne is not object-
oriented and does not incorporate the specialisation relation. Ele-
ments of the semantic domain in Techne are propositions. Techne
supports neither the definition of temporal constraints, nor task se-
quencing, nor can it distinguish between domain assumptions which
are facts (say, laws of nature) from those which are open to debate.
Emphasis is on straightforward knowledge representation and its use
towards the identification of candidate solutions.

Techne and i-star, for example, differ in several respects. i-star
cannot represent conflict, preferences, or mandatory and optional
requirements. Alternative decompositions of a goal in i-star are
compared in terms of their contributions to softgoals. Techne keeps
softgoals, but due to the vagueness of softgoal instances [86, 88] it
requires that they are approximated, meaning “refined” by other non-

46

Chapter 4. On Requirements Modelling Languages

softgoals, among which preference relations can be added to indicate
which satisfy the softgoal in more desirable ways than others. Techne
includes no concepts pertaining to actors and roles.

Paolo Giorgini et al. [54] recognised the need to formalise repre-
sentations of goals identified during Requirements Problem Solving.
The aim is to evaluate which goals will be satisfied, and how much.
Their goal models are AND/OR graphs, in which nodes are goals, and
a number of relations is provided to indicate if the interaction is
positive or negative (how the satisfaction of a goal influences the
satisfaction of the other goal related to it), as well as to specify the
strength of the interaction. Techne uses preferences to indicate in
the relative degrees of satisfaction, while quantitative estimates of
satisfaction levels are not used.

Techne’s handling of inconsistency is similar in aim to Anthony
Hunter and Bashar Nuseibeh’s in LQCL. They are interested in rea-
soning on an inconsistent models and “keeping track of deductions
made during reasoning, and deciding what actions to perform in the
presence of inconsistencies” [76, pp.363–364], while avoiding draw-
ing trivial conclusions from inconsistent models. A Techne model
keeps track of all the deductions made, and inconsistencies (con-
flicts) are clearly shown. A significant difference is that their work is
based on clausal resolution, which may lead to concluding inconsis-
tency, but this is prevented from leading to irrelevant formulas being
inferred. In contrast, Techne addresses directly the identification of
maximally consistent sub-models, from which inconsistency cannot
be concluded.

Techne by its very design avoids asking stakeholders for quantita-
tive estimates of preference, in contrast to, for example, the language
from Sotirios Liaskos et al. [100]. Preferences are binary relations,
and two preferences cannot be compared in a Techne model itself,
but only after the comparison table is constructed. Techne thereby
recognizes that there are different approaches to decision-making in
the presence of multiple criteria and no ideal decision rules, leaving
it to the designer who makes a new Requirements Modelling Lan-
guage from Techne to choose herself the decision rules to apply on
the comparison table.

This Section inevitably leads to the conclusion that Requirements
Modelling Languages come in different shapes and forms. In a sum-
mary, RMF is a custom formal language with built-in abstraction
mechanisms, including aggregation, classification, and generalisa-

47

Chapter 4. On Requirements Modelling Languages

tion. KAOS uses the language of linear temporal logic, and cate-
gorises ground formulae as instances of concepts, such as goals,
requirements, constraints, while categorising proof patterns as goal
refinement, conflict, or other relations of interest when doing Re-
quirements Engineering. i-star has a custom visual notation, which
comes together with axioms which instruct how to make and read
i-star models. LQCL uses the language of classical propositional logic
to represent requirements, imposes no classification to requirements,
and uses a set of inference rules that are paraconsistent, so that it
allows automated reasoning over inconsistent sets of requirements.
Techne has its own formal language, where expressions are a subset
of propositional Horn clauses, with a mechanism to assign types of
requirements to facts and clauses.

Despite the important position that formal languages play in Re-
quirements Engineering, there are no widely-accepted and precise
standards that a formal language must satisfy in order to be called Re-
quirements Modelling Language. The evolution of formal languages
in Requirements Engineering is one of testing of and converging on
similar ideas, rather than making languages according to strict rules
of what makes a Requirements Modelling Language.

4.4 i-star

This Section outlines the Requirements Modelling Language called
i-star. A simple example is used to illustrate the language.

This Section gives a brief overview of i-star. The aim is not to
give a detailed definition, but only give an idea of what the language
looks like, the kinds of models that can be made with it, and of what
makes its syntax, semantic mapping, and semantic domain. If you
are interested in a detailed definition, I suggest looking up Eric Yu’s
PhD thesis [152].

i-star remains influential since it was proposed in the 1990s. It is
the Requirements Modelling Language in the information systems
engineering methodology Tropos [23, 51]. There are many exten-
sions of i-star, discussions of its merits and limitations, and 2015 will
witness the eight annual i-star research workshop. The state of the
art on i-star is discussed in Yu’s “Social Modelling for Requirements
Engineering” [46].

Unless I indicate otherwise, all citations in this Section are from

48

Chapter 4. On Requirements Modelling Languages

Eric Yu’s “Modeling organizations for information systems require-
ments engineering” [153].

4.4.1 Motivation

The aim with i-star was to be able to represent information about
how individuals and systems in an organisatonal environment inter-
act, and depend on one another, in their tasks, in using resources,
and achieving individual or joint goals. It is a language focused on
“organizational environments – an important class of environments
within which many computer-based information systems operate”
[153].

The emphasis in i-star is on representing how individuals, soft-
ware, and other resources coordinate to realise personal and joint
goals. Every situation one represents with i-star conveys the organisa-
tion of agents, and every agent “depends on others for accomplishing
some parts of what it wants, and are in turn depended on by others.
Agents have wants that are met by others’ abilities, run tasks that
are performed by others, and deploy resources that are furnished by
others. These dependencies form a complex and intricate network
of intentional relationships among agents that might be called the
intentional structure of the organizational environment”.

Using the terms from earlier Chapters in this book, i-star is a
formal language which can be used to make Problem Models and
Solution Models. There will usually be one i-star model, or set of
sentences in the language, to represent the Problem. There will be
another to represent the Solution. The first is often called the as-is
model, and the second the to-be model.

For illustration, consider a system for scheduling meetings. The
person scheduling the meeting, the meeting scheduler, should try
to select a convenient date and location, such that most potential
participants can participate. Each meeting participant should pro-
vide acceptable and unacceptable meeting dates based on a personal
agenda. The scheduler will suggest a meeting date that falls in as
many sets of acceptable dates as possible, and is not in unacceptable
date sets. The potential participants will agree on a meeting date
once an acceptable date is suggested by the scheduler.

A model for such a System can be represented as an instance
of the i-star Strategic Rationale model or a Strategic Dependency
model. The latter kind of models are made with a subset of i-star,

49

Chapter 4. On Requirements Modelling Languages

and are used when it is not relevant to represent all information that
a Strategic Rationale model would include.

An example Strategic Rationale diagram for the scheduler is reprinted
in Figure 4.1 [154]. It shows actors such as Meeting Scheduler and
Meeting Participant, their interdependencies in the achievement
of goals, the execution of tasks, and the use of resources, and their
internal rationale when participating in the given System. For exam-
ple, the Meeting Be Scheduled goal of the Meeting Initiator can be
achieved (represented via a so-called means-ends link) by schedul-
ing meetings in a certain way, consisting of (represented via task-
decomposition links): obtaining availability dates from participants,
finding a suitable date (and time) slot, proposing a meeting date, and
obtaining agreement from the participants. Cloud-shaped elements
designate so-called softgoals, which differ from goals in that there are
no clearly defined and agreed criteria for their satisfaction. Softgoals
are commonly used to represent nonfunctional requirements in a
goal diagram.

4.4.2 Syntax

The legend in Figure 4.1 gives the symbols that can be used in i-star
models. There are shapes labeled “goal”, “softgoal”, “resource”, “task”,
“actor”, and those labeled “task-decomposition link”, “means-ends
link”, “contribution to softgoal”, and “dependency link”. In any given
model, each shape has its own label, and the label is in a natural
language, such as English in the Figure.

Rules missing from the legend are those of grammar. They are as
follows, for the Strategic Rationale diagram:

• Inside the dashed area of “actor boundary” symbol, there can
be any number of i-star symbols, as long as they satisfy all i-star
grammar rules.

• “Task-decomposition link” symbol has its source side and its
target side, drawn with at short line across the long line. Its
source side must be drawn connected only to one “goal”, “task”,
or “resource” symbol. Its target side must be drawn connected
to one “task” symbol.

• “Means-ends link” symbol has a source and a target side, drawn
with an arrow. Its source side must be drawn connected to one

50

Chapter 4. On Requirements Modelling Languages

M
ee

tin
g

Sc
he

du
le

r

O
rg

an
iz

e
m

ee
tin

g

Q
ui

ck
M

ee
tin

g
B

e
Sc

he
du

le
d

Lo
w

 e
ffo

rt

M
ee

tin
g

In
iti

at
or

Sc
he

du
le

m

ee
tin

g

-

Le
t

Sc
he

du
le

r
sc

he
du

le

m
ee

tin
g

+
-

+

D
M

ee
tin

g
B

e
Sc

he
du

le
d

D

D D

O
bt

ai
n

av
ai

la
bl

e
da

te
s

O
bt

ai
n

ag
re

em
en

t

Sc
he

du
le

m

ee
tin

g

En
te

r d
at

e
ra

ng
e

M
er

ge

av
ai

la
bl

e
da

te
s

Fi
nd

ag

re
ea

bl
e

sl
ot

s

M
ee

tin
g

pa
rt

ic
ip

an
t

En
te

r
av

ai
la

bl
e

da
te

s

Fi
nd

ag

re
ea

bl
e

da
te

 u
si

ng

Sc
he

du
le

r

D

D

D
D

A
gr

ee
m

en
t

D

D

Fi
nd

ag

re
ea

bl
e

da
te

 b
y

ta
lk

in
g

to

in
iti

at
or

R
ic

he
r

m
ed

iu
m

-
+

+

-

A
rr

an
ge

m

ee
tin

g
Q

ua
lit

y
(p

ro
po

se
d

da
te

)
+

Pr
op

os
ed

da

te

A
gr

ee
 to

da

te

A
gr

ee
ab

le

(M
ee

tin
g

da
te

)

U
se

r
fr

ie
nd

ly

C
on

ve
ni

en
t

(m
ee

tin
g

da
te

)

+

Pa
rt

ic
ip

at
e

in
 m

ee
tin

g

A
tte

nd

m
ee

tin
g

A
tte

nd
s

m
ee

tin
g

D
D

Lo
w

ef

fo
rt

+

ac
to

r b
ou

nd
ar

y

G
oa

l
So

ftg
oa

l

R
es

ou
rc

e

A
ct

or

Ta
sk

Le
ge

nd

Ta
sk

-d
ec

om
po

si
tio

n
lin

k

M
ea

ns
-e

nd
s

lin
k

C
on

tr
ib

ut
io

n
to

 s
of

tg
oa

l
+

D
ep

en
de

nc
y

lin
k

D

F
ig

u
re

4.
1:

A
n

i-
st

ar
St

ra
te

gi
c

R
at

io
n

al
e

d
ia

gr
am

fr
o

m
Yu

et
al

.[
15

4]
.

51

Chapter 4. On Requirements Modelling Languages

“goal”, “task”, or “resource” symbol. Its target side must be
drawn connected to one “goal” symbol.

• “Contribution to softgoal” symbol has a source and a target
side, drawn with an arrow and a label symbol. The label symbol
can be exactly one of “+”, “++”, “-”, or “- -”. Its source side
must be drawn connected to one “goal”, “task”, “resource”, or
“softgoal” symbol. Its target side must be drawn connected to
one “softgoal” symbol.

• “Dependency link” symbol has a source and a target side, the
former on the left-hand side of the symbol “D” and the other on
its right-hand side. Its source side must be drawn connected to
one “goal”, “task”, or “resource” symbol. Its target side must be
drawn connected to one “goal”, “task”, or “resource” symbol.

You can draw i-star Strategic Rationale diagrams by applying the
grammar rules above to the allowed symbols. There may be other
grammar rules, and there are other ways to define them. You can
refer to Eric Yu’s original work on i-star [153, 152] for the original
grammar of i-star.

4.4.3 Semantic Domain and Mapping

The semantic domain of i-star are propositions about goals of agents,
how agents depend on one another to achieve goals, tasks that agents
do to achieve goals, and resources used when executing tasks and
achieving goals. Identifying goals, tasks, resources, dependencies,
and so on, is a task for the modeller. She identifies these through
observation of the environment and existing systems, during require-
ments elicitation, among others. To do so, she relies on definitions
of notions of goal, task, resource, dependency and others, which are
given in the definition of the i-star language, which at the same time
define its semantic domain. For illustration, here is how dependen-
cies are defined, or explained:

• Goal Dependency is a relation in which “one agent, the depen-
der, depends on another, the dependee, for the fulfillment of
a goal. The dependee is free to choose how to accomplish the
goal. The depender is only interested in the outcome”.

52

Chapter 4. On Requirements Modelling Languages

• In a Task Dependency “a depender agent depends on some
dependee agent for the performance of a task. The task spec-
ification constrains the choices that the dependee can make
regarding how the task is to be carried out.”

• Resource Dependency is a relation in which “a depender agent
presupposes the availability of a resource, which is made avail-
able by a dependee agent”.

The semantic mapping is a function which takes such a proposi-
tion, and produces a combination of symbols and labels on symbols,
which are all drawn in a Strategic Rationale diagram.

For example, this sentence is a representation of a proposition
in written English: “In order to organise a meeting, the meeting ini-
tiator depends on meeting participants to attend the meeting”. The
semantic mapping function would take the proposition and produce
an “actor” symbol with label “meeting initiator”, a “task” symbol with
label “organise meeting”, have that “task” symbol inside the “actor
boundary” dashed line of “actor” symbol labelled “meeting initiator”,
there would be a “dependency link” symbol with the “organise meet-
ing” symbol at its source and “attend meeting” goal, and so on. The
result are symbols on top of Figure 4.1. Clearly, it is hard to automate
the application of the semantic mapping function. It is the modeller
who does the work of matching symbols and their combinations to
the propositions, based on her understanding of the definition of the
semantic domain of i-star.

4.4.4 Comments

I will close this Section with my own opinion of i-star, and in relation
to the topics of this book. I see it as a language which has an innova-
tive design that makes it perhaps more accessible (relative to other
Requirements Modelling Languages).

Its innovation is not so much in its mathematical aspects, that
is, in the axioms which define its concepts and relations via such
concepts as “belief” and “intention” taken from knowledge represen-
tation and reasoning research in AI. A major innovation is in the idea
that an organisational environment, in which a future system should
run, can be looked at not in terms of concrete tasks and processes
only, but in terms of less precise notion of dependency, which do

53

Chapter 4. On Requirements Modelling Languages

hint at who needs to do what, and perhaps who needs to do it be-
fore someone else, but highlight how collaboration and delegation
generate vulnerabilities of the actors involved.

With as-is i-star models, you can show goals, tasks, resources that
actors collaborate on and use, and how, because of that collaboration,
they are vulnerable to each other (if one fails, perhaps others, who
depend on her, will fail in their goals and tasks as well). With to-be
i-star models, you can show how the future system would change
existing patterns of dependencies, that is, current collaboration and
vulnerabilities.

The emphasis on visual syntax, that is, on having models be
diagrams (rather than, for example, formulas), and the small set of
concepts and relations (relative to, say, KAOS), makes i-star accessible
to novices. It is not odd that research on i-star is an active domain.

4.5 Techne

This Section outlines the Requirements Modelling Language called
Techne. The Section uses a simple example to illustrate the language.

4.5.1 Motivation

Alexander Borgida, Neil Ernst, John Mylopoulos and I made Techne
in response to a new so-called Core Ontology for Requirements Engi-
neering, or CORE [88]. In general, an ontology is a specification of a
conceptualisation of a domain, that is, it is a precise definition of the
categories of things or ideas in a domain and of relations between
these things or ideas.

What I mean by “in response” is that Techne was made so that
CORE defines its semantic domain. This was interesting, because
John Mylopoulos, Stéphane Faulkner and I presented CORE as a revi-
sion of the ontology that Pamela Zave and Micheal Jackson defined,
when they proposed the rules for when Requirements Engineering is
done in a systems engineering project. I cited these rules in Section
3.5, and used them to define the Default Problem.

When you propose a new ontology such as CORE, which is de-
signed to be a core ontology, meaning, a basis for other ontologies in
Requirements Engineering, and if it is different than the existing core
ontology used to define the Default Problem and Default Solution,

54

Chapter 4. On Requirements Modelling Languages

you have also to give the Problem and Solution concepts which use
the concepts and relations of that new core ontology. CORE comes
with its own definition of the Problem which reflects what triggers
Requirements Problem Solving, and what problem solving needs to
produce.

The Problem and Solution in CORE are called the CORE Problem
and CORE Solution below.

Definition 4.5.1. CORE ProblemCORE Problem: there are

1. a set Gp of goal propositions, which are propositions believed
to be true of what stakeholders expect and whose truth can be
verified without a doubt, and

2. a set Qp of quality constraints propositions, which are propo-
sitions believed to be true of the quality stakeholders expect
from the System, and whose truth can be verified without a
doubt,d

3. a set U p of softgoal propositions, which are vague propositions
believed to be true of the quality stakeholders expect from the
System, but whose truth (because they are vague) cannot be
verified without a doubt,

4. a set K p of environment propositions, which are propositions
believed to be true about the environment in which the system
will be used,

5. a set M p of mandatory propositions, which are propositions
which are required to be true, and can be goals, quality con-
straints, or softgoals, that is M p ⊆Gp ∪Qp ∪U p , and

6. a set P p of preference propositions, which are true of stake-
holders’ preference for some goals, quality constraints, and
softgoals over others,

and it is not sufficient for the environment propositions alone to be
true, in order for all mandatory goal and quality constraint proposi-
tions to be true.

I will clarify later what is meant by goals, quality constraints,
softgoals, and preferences. The CORE Solution is defined as follows.

Definition 4.5.2. CORE SolutionCORE Solution: there are

55

Chapter 4. On Requirements Modelling Languages

1. a Goal Model G, which stakeholders agreed on, and which may
represent propositions from Gp in the CORE Problem,

2. a Softgoal Model S, which stakeholders agreed on, and which
may represent propositions from U p in the CORE Problem,

3. a Quality Constraints Model Q, which stakeholders agreed on,
which may represent propositions from Qp in the CORE Prob-
lem, and which are said to approximate the mandatory propo-
sitions in the Softgoal Model U ,

4. an Environment Model K, which stakeholders agreed on, and
which may represent propositions from K p in the CORE Prob-
lem,

5. a Preference Model P, which stakeholders agreed on, and
which may represent propositions from P p ,

6. a Task Model T, which describes propositions true of what
System and other agents in the environment will do,

and the Task Model T and the Environment Model K are such that

1. if the propositions represented in K are true, that is, the en-
vironment is as described, and the propositions in T are true,
that is, tasks are done as described, then all mandatory propo-
sitions represented in G and Q will also be true,

2. because of approximation, all mandatory propositions repre-
sented in S will also be true,

3. tasks in T are feasible, meaning that executing them does not
make false the propositions represented in K, and

4. none or some of non-mandatory (optional) propositions rep-
resented in G, Q, or S are also true.

The last condition in the CORE Solution is due to there being
preferences over propositions which are can be false. It follows that
you could find different Solutions, and preferences could tell you
which of them is “the best”. I will return to preferences and the issue
of identifying the best Solution in Chapter 14.

CORE and its Problem recognised that in addition to goals (which
correspond to requirements in the Default Problem) and tasks (which

56

Chapter 4. On Requirements Modelling Languages

correspond to the System Model there), different stakeholders have
different preferences over goals or tasks, that they are interested in
choosing among alternative Solution s to the Problem, that poten-
tially many such Solutions can be identified, and that requirements
are not fixed, but change with new information from the stakehold-
ers or the environment. In absence of preferences, as in RMF, KAOS,
and i-star to some extent, it is (i) not clear how Solution Models can
be compared, (ii) what criteria (should) serve for comparison, and
(iii) how these criteria are represented.

Techne takes CORE as the definition of its semantic domain. This
also influences what Problems and Solutions amount to in Techne,
and they are strongly inspired, though not exactly the same as the
CORE Problem and CORE Solution above. The differences come from
the fact that Techne wants to give a formal, mathematical definition
of the Problem and Solution, which requires making decisions about
how to have mathematics which convey the ideas represented in the
various English words and phrases in the definitions above.

As there could be more than one Solution, Techne talks of Candi-
date Solutions, which are compared on the basis of which preferred
and, or optional goals, quality constraints, and softgoals the corre-
sponding Solution Models satisfy (make true).

Another distinguishing characteristic of Techne, is that it was
designed as a language core on which to build new Requirements
Modelling Languages. By core language, it is meant a minimal set of
components which are argued as necessary to a Requirements Mod-
elling Language, if it is to model goals, softgoals, quality constraints,
domain assumptions, and tasks used to define Problem Models, to
define Solution Models, to model preferences and optional require-
ments, and use them as criteria for the comparison of candidate
Solutions represented in Solution Models.

The simplest way to make a Requirements Modelling Language
from Techne is to add a visual syntax. For example, add a diagram-
matic notation, and map its syntactic elements to those of Techne’s
syntax.

4.5.2 Semantic Domain and Mapping

I will follow our original presentation of Techne [83] and explain
its semantic domain via categories it uses for the classification of
problem solving information, and relations it is interested in, over

57

Chapter 4. On Requirements Modelling Languages

pieces of this information.

Classification

Elicited information is classified according to the rules in CORE. The
overall idea is to distinguish in a statement, which a stakeholder com-
municates, the psychological mode from the proposition that the
statement represents. Then, you establish which CORE concept the
statement instantiates, and this based on the psychological mode
(belief, desire, and so on) and on some properties of the statement
itself. Stakeholder desires become instances of the goal concept, if
they refer to conditions, the satisfaction of which is desired, binary
and verifiable (for example, “Deliver music to clients via an online
audio player”). If desires constrain desired values of non-binary
measurable properties of the system-to-be, then they are instances
of the quality constraint concept (“The bitrate of music delivered via
the online audio player should be at least 128kb/s”). When desired
values are vaguely constrained and on not necessarily directly mea-
surable properties, they instantiate the softgoal concept (“Buffering
before music starts in the audio player should be short”). Stake-
holder intentions to act in specific ways become instances of tasks
to be accomplished either by the system-to-be, or in cooperation
with it, or by stakeholders themselves. Beliefs are instances of domain
assumption, stating conditions within which the system-to-be will be
performing tasks in order to achieve the goals, quality constraints,
and satisfy as best as feasible the softgoals. Stakeholder evaluations
of requirements — their preferences for some goal (or otherwise) to
be satisfied (true) rather than another, or that some must be satisfied,
while others are optional — result in relations over requirements
subsequently used to compare candidate Solutions.

To solve the Problem, it is necessary that the categorized state-
ments are recorded, refined, expanded by iteratively acquiring new
ones. To record requirements, Techne maps statements to labels,
thereby sorting them. Let p, q , r (indexed or primed as needed)
represent propositions, and g(), q(), s(), t(), and k() be labels for, re-
spectively, goals, quality constraints, softgoals, tasks, and domain
assumptions. A labelling function simply follows the rules of CORE
recalled above: if p is an instance of goal, then we write g(p), if q
is an instance of quality constraint, we write q(q), and so on. Here-
after, requirement is synonym for any labeled representation of a

58

Chapter 4. On Requirements Modelling Languages

proposition.

Relations

There are five relations on requirements in Techne: (i) inference,
(ii) conflict, (iii) preference, (iv) is-mandatory, and (v) is-optional
relations. The first two are used to describe and distinguish between
candidate Solutions, the last three to compare candidate Solutions.

Inference When a requirement (a goal, quality constraint, softgoal,
task, or domain assumption) is the immediate consequence of an-
other set of requirements, the former is called the conclusion, the
latter the premises, and they stand related through the inference
relation.

Say there are two goals, g(r1) and g(r2), with r1 for “Music plays
in a player integrated in the web page” and r2 for “Player has all
standard functionalities for listening music”. If there is also a domain
assumption k(γ1), with γ1 for “If r1 and r3 then music is delivered
to clients via an online audio player”, then we can conclude the
goal g(r3), with r3 for “Deliver music to clients via an online audio
player”. From two goals and an assumption stating a conditional, the
conclusion is another goal.

Reading this backwards, from g(r3) to the three premises, resem-
blance to refinement becomes clear: the inference relation can be
used to connect the refined requirement to the requirements that
refine it. The refinement of a goal by other goals has been a salient
feature of KAOS, while other Requirements Modelling Languages had
their own proxies (for example, task decomposition in i-star) of the
refinement relation. The intuitive meaning of these relations is that if
the set of more precise requirements is satisfied, then the less precise
requirements are assumed satisfied.

Techne considers that, say, goal refinement and task decompo-
sition ask basically the same question: What more precise require-
ments should be satisfied in order to assume that the less precise —
refined, decomposed — requirement is satisfied as well? Instead of
relating less precise to more precise requirements by a refinement or
decomposition relation, Techne generalizes these via the inference
relation. Note that in both these cases the form of the rules k(φ) is a
definite Horn clause [115].

59

Chapter 4. On Requirements Modelling Languages

Conflict Contradictory/inconsistent requirements cannot be in the
same candidate Solution, or equivalently, are in conflict. The conflict
relation stands between all members (two or more) of a minimally
inconsistent set of requirements. That a candidate Solution should
be conflict-free means that conflict relations play a crucial role in
distinguishing between consistent sets of requirements, and if these
sets satisfy some additional properties, in distinguishing between
candidate Solutions. To say that n requirements are in direct conflict,
another piece of information is needed, namely an implication which
explicitly states that if these requirements together hold, then they
imply an inconsistency: for example, to say that g(r1) and k(r4) are in
conflict, where r4 is for “The user cannot download the audio files”,
it is necessary to say that the two are contradictory, which is done via
an assumption: for example, k(γ2), with γ2 for “g(r1) and k(r4) are
contradictory”.

Preference Stakeholder evaluations of requirements convey that
not all requirements are equally desirable. For example, perhaps
“The bitrate of music delivered via the online audio player should
be at least 256kb/s” is strictly preferred to “The bitrate of music
delivered via the online audio player should be at least 128kb/s”. If a
requirement is strictly more desirable than another one, then there
is a preference relation between them and by strictly, we mean that
they cannot be equally desirable.

Is-mandatory Evaluation is not only comparative, as in the case
of preference: individual requirements can be qualified in terms
of desirability regardless of other requirements. The is-mandatory
relation on a requirement indicates that the requirement must be
satisfied, or equivalently, that a conflict-free set of requirements
which does not include that requirement cannot be a candidate
Solution. If k(r4) is mandatory, then every candidate Solution will
include it, and exclude all requirements contradicting k(r4) (because
a candidate Solution cannot include conflicts).

Is-optional In contrast to the is-mandatory relation, the is-optional
relation on a requirement indicates that it would be desirable for a
conflict-free set of requirements to include that requirement, but that
set can still be a candidate Solution if it fails to include the optional
requirement; for example, if k(r4) is optional, then a conflict-free set

60

Chapter 4. On Requirements Modelling Languages

of requirements which does not contain k(r4) can still be a candidate
Solution. Stated otherwise, if there are two candidate Solutions which
differ only in that one has an optional requirement and the other not,
then the former is strictly more desirable than the latter.

4.5.3 Syntax and More Semantic Mapping

Requirements and relations between them are recorded in graphs
called r-nets. Each requirement and each relation obtains its own
node in an r-net, while edges are unlabeled and directed, having con-
textual informal interpretation: how one reads/calls an edge depends
on which requirements and relations it connects (see below). Note
already that, as an r-net contains all requirements and all relations
for a system-to-be: the r-net thus defines the requirements problem
for a given system-to-be, and includes all (if any) candidate Solutions
to the problem, so that it is by the analysis of the r-net that candidate
Solutions are sought (see §4.5.4).

Modelling Inference

To show an inference relation, put in the r-net a node (inf) for the
inference relation, then a line from every premise requirement node
to inf, and a line from inf to the conclusion requirement node.

Figure 4.2: Inference as refinement in Example 4.5.3.

Example 4.5.3. Assume the aim is to build a system that would deliver
music on-demand: a user visits a website, chooses songs from a
database, and can play them in the audio player on the website. Let
g(p), with p for “Generate revenue from the audio player”. We can
refine it with two goals and a quality constraint: g(p1), g(p2) and
q(p3), where p1 is for “Display text ads in the audio player”, p2 for

61

Chapter 4. On Requirements Modelling Languages

“Target text ads according to users’ profiles” and p3 for “Maintain the
player free to all users”. To conclude g(p) from g(p1), g(p2) and q(p3),
we need to assume that k(φ1), with φ1 for “if g(p) from g(p1), g(p2)
and q(p3), then g(p)”. Figure 4.2 shows the r-net with this refinement.

Figure 4.2 shows an r-net in a trivial visual syntax, vaguely in-
spired by the furniture collection “Un piccolo omaggio a Mondrian”
by Ettore Sottsass. The mapping to the symbolic syntax of Techne is
obvious from this and other Figures in this Section. My aim was to
brighten up the discussion, as it already has its share of dry formulas.

Figure 4.3: Conflict in Example 4.5.4.

Modelling Conflict

To show a conflict between requirements, put a node for each one
of the conflicting requirements in the r-net, a conflict node (con),
and a line from every requirement node in the conflicting set to the
conflict node.

Example 4.5.4. (Contd. Example 4.5.3) We start with g(q) with q
for “Charge subscription to users”, and add k(φ2), with φ2 for “if g(q)
then g(p)”. We then refine g(q) onto g(q1), g(q2), and g(q3), with q1

for “Music database is restricted to subscribers”, q2 for “Users can

62

Chapter 4. On Requirements Modelling Languages

subscribe” and q3 for “Music player is available to subscribers only”.
This requires the assumption k(φ3), φ3 for “If g(q1), g(q2), and g(q3),
then g(q)”. It appears that “we cannot both maintain the player free
to all users (q(p3)) and make music available to subscribers only
(g(q3))” which ψ1 abbreviates, so we add k(ψ1). We thereby have the
conflict between q(p3) and g(q3), highlighted in Figure 4.3.

Figure 4.4: Preference in Example 4.5.5.

Modelling Preferences

Preference is a binary relation: if a requirement x is preferred to
requirement y , add a preference node (prf), and draw a line from the
preferred requirement (x) to the preference node (prf), and from the
preference node (prf) to the less preferred requirement (y).

Example 4.5.5. (Contd. Example 4.5.4) The r-net in Figure 4.3 in-
cludes two refinements of g(p). The conflict con indicates that these
are two alternative refinements, as they cannot appear together in
a candidate Solution. The preference highlighted in Figure 4.4 says
that g(q3) is strictly preferred to q(p3). This preference becomes one
(of potentially many) criteria for the comparison of candidate so-
lutions: if this were the only criterion, then we would choose the

63

Chapter 4. On Requirements Modelling Languages

candidate Solution which includes g(q3) instead of another which
includes q(p3).

Figure 4.5: Mandatory and optional in Example 4.5.6.

Modelling Mandatory and Optional Relations

Both the is-mandatory and is-optional relations are unary. To say in
an r-net that a requirement is mandatory, add a node (man) for the
is-mandatory relation, and a line from the requirement node to the
is-mandatory node. To state instead that a requirement is optional,
add a node (opt) for the is-optional relation, and a line from the
requirement node to the is-optional node.

Example 4.5.6. (Contd. Example 4.5.5) If every Solution must include
g(p), then we add the node man to the r-net in Figure 4.4 and a line
from g(p) to man, as shown in Figure 4.5.

To illustrate the use of the is-optional relation, suppose that main-
taining the player free to all users (q(p3)) will allow new users to listen
to music in an average of no more than three clicks through the au-
dio service (as they do not need to register or provide their billing

64

Chapter 4. On Requirements Modelling Languages

details); we denote q(p4) the latter quality constraint. We add q(p4)
as a node to the r-net, along with the assumption k(φ4), with φ4 for
“if q(p3), then q(p4)”, and thus an inference relation. Let q(p4) be
optional: to make it so in the r-net, we connect it to the node opt. If
we consider the r-net in Figure 4.5, it is no longer obvious which of
the two refinements is more desirable than the other: if a candidate
Solution includes g(q3), then it will not contain q(p4), but will have
the preferred g(q3); if a candidate Solution includes q(p3), then it will
have q(p4), but not the preferred g(q3).

Figure 4.6: Softgoal approximation in Example 4.5.7.

Softgoal Approximation

As softgoals vaguely constrain values of properties that are not neces-
sarily directly measurable, every softgoal ought to be approximated
in an r-net. A set of requirements can be an approximation of a soft-
goal if it is assumed that, once its members are satisfied, the softgoal
will be satisfied to some extent. As different approximations may

65

Chapter 4. On Requirements Modelling Languages

satisfy the same softgoal to different extents, preference relations can
be added between the members of different approximations. These
preferences let us compare approximations in terms of how well one
satisfies the softgoal relative to others.

Example 4.5.7. (Contd. Example 4.5.6) We introduce the optional
softgoal s(p5), with p5 for “It is easy for new users to access audio
content” into the r-net from Figure 4.5. There are no universal criteria
that tell us what “easy” precisely means in the context of this system-
to-be. There are thus different ways to approximate s(p5). One of
them is to say that the smaller the average number of clicks needed
to a new user to access audio content (computed over some number
of sessions and for a given focus group), the easier it is to access that
content. We can introduce at least two quality constraints, one being
q(p4) and another q(p6), with p6 for “An average of ten clicks are
needed to a new user to get to audio content”, with corresponding
assumptions k(φ5) and k(φ6), withφ5 for “if q(p4), then s(p5)” andφ6

for “if q(p6), then s(p5)”. A preference is added, to indicate that the
approximation by q(p4) is preferred to the approximation by q(q6).
Finally, we abbreviate “q(p4) cannot be satisfied together with q(p6)”
by ψ2, and add a conflict between q(p4) and q(p6), along with the
assumption k(ψ2).

Modelling with Another Visual Syntax

Concrete Requirements Modelling Languages (for example, KAOS, i*)
have a visual syntax as a diagrammatic notation that aims to simplify
the making and reading of requirements models created with these
languages. Techne is an abstract Requirements Modelling Language
as it has no visual syntax. To make a concrete Requirements Mod-
elling Language out of Techne, it would be necessary to add a visual
syntax, as I did in the Figures in this Section.

4.5.4 Analysis

Analysis in Techne should answer two questions: given an r-net, (i)
What are the candidate Solutions to the Problem in it? and (ii) What
are the preferred and optional requirements that each candidate
Solution contains? Example 4.5.8 informally presents how these
answers are sought; we then look into the formalization of the r-nets
towards the automation of analysis.

66

Chapter 4. On Requirements Modelling Languages

Example 4.5.8. (Contd. Example 4.5.7) A candidate Solution must be
conflict-free, so that we are interested in conflict-free subnets of the
r-net in Figure 4.6. There are many conflict-free subnets in Figure
4.6: for example, g(p) taken alone is a conflict-free subnet, as is the
refinement shown in Figure 4.2. Since g(p) is itself a subnet of the
said refinement, we are more interested in the entire refinement than
in any one of its subnets alone. Stated otherwise, conflict-free (con-
sistent) subnets can be ordered by the subset relation ⊆, and instead
of looking for all consistent subnets, those maximal with regards to
⊆ are the most interesting ones. Figures 4.7 and 4.8 highlight two
maximal consistent subnets in the r-net from Figure 4.6. These are,
however, not also candidate Solutions to the requirements problem,
as each has goals and quality constraints as source nodes (nodes
without incoming lines). Recall that we are interested in finding tasks
and domain assumptions which satisfy goals, quality constraints,
and softgoals. We can add hypothetical tasks to the r-net in Figure
4.6 so that no source nodes are goals, quality constraints, or softgoals.
Figures 4.9 and 4.10 highlight two maximal consistent subnets of
the resulting r-net. Each of these is a candidate solution, because (i)
neither has goals, quality constraints, or softgoals as source nodes,
and (ii) each includes the only mandatory requirement g(p).

Once we have found the candidate solutions, the question is how
do they compare? We can establish that the two candidate solutions,
denoted SA (the subnet highlighted in Figure 4.9) and SB (the subnet
highlighted in Figure 4.10), have the following mandatory, optional,
and preferred nodes:

• SA (i) has q(p4), is both an optional and a preferred require-
ment; (ii) has s(p5) which is an optional requirement; and (iii)
has g(p) which is a mandatory requirement.

• SB (i) has g(q3) which is a preferred node; (ii) has s(p5), an
optional requirement; and (iii) has g(p), a mandatory require-
ment.

The following comparison table gives the summary:

prf : g(q3) prf : q(p4) opt : q(p4) opt : s(p5)

SA no yes yes yes
SB yes no no yes

Each column in the comparison table is a criterion for the compari-

67

Chapter 4. On Requirements Modelling Languages

Figure 4.7: A consistent (sub)net is highlighted.

son of candidate solutions. Techne does not suggest how to make a
total order over candidates in a comparison table.

4.5.5 Formalisation

Automating the search for candidate Solutions requires that the el-
ements of Techne introduced so far obtain mathematically formal
definitions. To sketch the formalisation, recall that a modelling lan-
guage has four parts: (i) an alphabet of symbols, (ii) rules of grammar
to combine symbols into sentences, (iii) a semantic domain with the
objects of interest to the purpose of the language, and (iv) mappings
from the symbols and sentences to the objects in the semantic do-
main. As I mentioned earlier, the first and second components are
usually called syntax, the last two semantics.

68

Chapter 4. On Requirements Modelling Languages

Figure 4.8: Another consistent (sub)net is highlighted.

R-net Alphabet

To draw r-nets, we used symbols for (i) atomic statements (indexed/primed
p, q , r), (ii) complex statements (Greek letters) (iii) labels (k(), g(), q(),
s(), t()), (iv) relations (inf, con, prf, man, opt), and (v) arrow-headed
lines.

R-Net Grammar

Grammar is dictated by the CORE ontology for the use of labels, and
the arity of relations for the use of relation symbols and lines. All
allowed sentences are shown in Figure 4.11, and every r-net is exactly
the finite set of elements shown in that figure.

In Figure 4.11, every p, q is an arbitrary atomic statement, every
φ an arbitrary complex statement, and every x an arbitrary label. For
inf, φ abbreviates “if x1(p1) and . . . and xm(pn), then xm+1(q)”; for
con, φ is for “if x1(p1) and . . . and xm(pn), then contradiction”. As

69

Chapter 4. On Requirements Modelling Languages

Figure 4.9: Candidate Solution r-net A is highlighted.

every complex statement refers to an assumption, it must have the
label k().

Semantic Domain and Mapping

The elementary objects in the semantic domain of r-nets are propo-
sitions stating the properties of the system-to-be and its operational
environment and the inference, conflict, preference, is-mandatory,
and is-optional relations between them. Atomic and complex state-
ments in the alphabet refer/map to these pieces of information, rela-
tion symbols map to relations, while sentences refer to combinations
of the two. Following the statement of the requirements problem and
as we want to avoid contradictory solutions, a candidate Solution is
information which is (i) not contradictory and (ii) from which we can
conclude that mandatory goals and quality constraints are satisfied.

70

Chapter 4. On Requirements Modelling Languages

Figure 4.10: Candidate Solution r-net B is highlighted.

Figure 4.11: Allowed sentences in an r-net.

Proof-Theoretic Characterization of Candidate Solutions

To find candidate solutions, we need to find their counterparts in
syntax, that is, those parts of r-nets which map exactly to candidate
solutions in the semantic domain. As we will be comparing solutions
after we find them, we leave out the information for the comparison

71

Chapter 4. On Requirements Modelling Languages

of candidate solutions (the preference, is-mandatory, and is-optional
relations).

In syntax, this means that we focus not on a given r-net, but on
its attitude-free variant: given an r-net R, to make its attitude-free
variant R̄, delete all prf, man, and opt nodes and all lines entering
and leaving from these nodes from R. R̄ contains only the atomic
and complex statements, and the inference and conflict relations.

An R̄ can be seen as a set of proofs. To do so, we observe that
our complex statements are sentences in the conditional if-then
form in which the fragment after the if references requirements,
while the one after then references either a single requirement, or
contradiction (see Examples 4.5.3–4.5.7). We rewrite every complex
statement φ in k(φ) as a formula with conjunction and implication:
every φ is such that either

φ≡
n∧

i=1
pli → pl,

or

φ≡
n∧

i=1
pli →⊥,

where every pl is some requirement (for example, pl ≡ g(q)) and ⊥
refers to logical inconsistency.

Figure 4.12 shows the sentences obtained by applying the said
rules on the R̄ in Figure 4.3.

g(p1) g(p2) q(p3) g(p1) ∧ g(p2) ∧ q(p3) → g(p)

g(p)

g(q1) g(q2) g(q3) g(q1) ∧ g(q2) ∧ g(q3) → g(q)

g(q)

g(q) g(q) → g(p)

g(p)

q(p3)

⊥

g(q3) q(p3) ∧ g(q3) → ⊥

Figure 4.12: The R̄ from Figure 4.3 rewritten as four proofs.

Attitude-free r-nets are sets of proofs of the formal system in
which the atoms pl of the alphabet are symbols for requirements
(for example, g(p)), the only allowed sentences are

∧n
i=1 pli → pl and

72

Chapter 4. On Requirements Modelling Languages

∧n
i=1 pli →⊥, and the only rule of inference is modus ponens. Given

a set of such requirements and sentences denoted S̄ and x ∈ {pl,⊥}:

1. S̄ |vτ pl if pl ∈ S̄, or

2. S̄ |vτ x if ∀1 ≤ i ≤ n, S̄ |vτ pli and k(
∧n

i=1 pli → x) ∈ S̄.

The consequence relation |vτ is sound w.r.t. standard entailment in
propositional logic, but is incomplete in two ways: it only considers
deducing positive atoms, and no ordinary proofs based on arguing
by contradiction go through, thus being paraconsistent.

The consequence relation leads us to the following conception of
the candidate solution concept: Given an R with all of its domain as-
sumptions in the set K, tasks in T, goals in G, quality constraints in Q,
and softgoals in S, a set of tasks T∗ and a set of domain assumptions
K∗ are a candidate solution to the requirements problem of R if and
only if (i) K∗ and T∗ are not inconsistent, (ii) K∗,T∗ |vτ G∗,Q∗, where
G∗ ⊆ G and Q∗ ⊆ Q, (iii) G∗ and Q∗ include, respectively, all manda-
tory goals and quality constraints, and (iv) all mandatory softgoals are
approximated by the consequences of K∗∪T∗, so that K∗,T∗ |vτ Sman,
where Sman is the set of mandatory softgoals.

The candidate Solution concept leads us in turn to a more precise
formulation of the requirements problem: Given an r-net R, find its
candidate solutions. Once candidates are found, the comparison ta-
ble can be constructed in the straightforward way so that they can be
compared. It is beyond the scope of this paper to give guidelines on
how to rank candidates on the basis of the comparison table. Figure
4.13 highlights the members of these two sets and thus a candidate
Solution for the r-net from Example 4.5.8. Note that Figures 4.9 and
4.10 highlight candidate Solutions and all of their consequences.

A note on expressiveness: observe that if we treat the pls as atomic
propositions, then an r-net is a Horn theory (every formula has at
most one positive atom), which is known to be less expressive than
full propositional logic, let alone predicate logic. Among others, there
is no provision for world knowledge that is disjunctive (for example,
composite pl like p ∨ q), but we can express exclusive disjunction
(for example, in Figure 4.3, g(p) is refined by either g(q) or by the
conjunction of g(p1), g(p2), and g(p3)). There is also no provision for
inference nodes that might use lemmas as k(φ), which might lead
to case-based reasoning. On the other hand, if we consider only
attitude-free r-nets, the problem of finding candidate Solutions can

73

Chapter 4. On Requirements Modelling Languages

Figure 4.13: Members of T∗ and K∗ are highlighted.

be reduced to variants of solving non-standard reasoning problems
in logic, such as abduction (“What tasks are needed to ensure the
mandatory goals?”). Interestingly, it is known that Horn abduction is
one level lower in the polynomial complexity hierarchy than abduc-
tion with full propositional logic, so our version of Techne has lower
expected computational cost — a typical expressiveness/complexity
trade-off. Only extensive practical experience in modelling will show
whether more expressive power is needed.

4.5.6 Comments

My involvement in making Techne inevitably colours what I think
of it. My own motives for making Techne were to make the lan-
guage which has the fewest possible concepts and relations, and still
achieves two aims. Firstly, that it has concepts which fit the CORE
ontology and can produce models which represent CORE Problems
and CORE Solutions. Secondly, that it can represent common rela-
tions in Requirements Modelling Languages which preceded it, such
as goal refinement and conflict from KAOS, task decomposition from

74

Chapter 4. On Requirements Modelling Languages

i-star, and so on. It was also interesting to make a language which
does not come with a predefined visual syntax.

In contrast to i-star, which introduced the modelling of depen-
dencies in coordinated work, Techne introduced no new relation-
ships. Concepts in CORE, and thus in Techne, as well as the rela-
tionships in Techne can all be seen as a synthesis of various ideas
discussed previously in Requirements Engineering research. For ex-
ample, quality constraints and softgoals are very much related, and
draw on research on non-functional requirements [108, 29]. KAOS
introduced the concept of “goal” to Requirements Engineering, and
it remains unchanged in Techne. There is novelty in the treatment
of conflicts, and in having a paraconsistent syntactic consequence
relation in Techne, which lets it tolerate logical inconsistency when
drawing conclusions from models.

Techne 2 [84] was made after trying to apply Techne to the prob-
lem of representing Problems and Solutions in cases when require-
ments change over time. The challenge is that change of require-
ments means change of the Problem to solve, and thus necessarily
the design of, or search for a new Solution. This leads to the need
for additional tools in a language, such as the ability to represent
uncertainty in the degree to which a requirement, say a goal, will be
satisfied during some period of time. It also requires being able to
show what will happen, in case a goal fails to be satisfied, or some
conditions in the environment fail to hold. Overall, it leads to a lan-
guage which can be used to say more than a Techne model can, but
at the cost of having to learn a more complicated language and use
more complicated models.

75

Chapter 5

Requirements Problem
Solving Cases

This Chapter presents several genuine Problem Situations. For some,
it outlines the outcomes of only the very first steps of Requirements
Problem Solving. One case is used to illustrate the languages defined
in this book, and the others are given as exercises. In later Chapters,
there is typically a definition of a Requirements Modelling Language,
and models in that language will represent information from the cases
in this Chapter. Confidentiality was important in most cases. The
names of stakeholders and companies are removed and replaced by
generic ones. Name of each case is made of the name of a city which
was somehow related to the case, and of the domain of expertise of
the case. Cases are called Brussels Law, Copenhagen Sports, Dubai
Telecom, London Lights, and London Ambulance. London Ambulance
is a classical case from Requirements Engineering research, and it is
often used to illustrate Requirements Modelling Languages. The other
cases are inspired by my experience in Requirements Problem Solving.

76

Chapter 5. Requirements Problem Solving Cases

5.1 Brussels Law

This problem occured at a notary business in Brussels. The initial
information about it came from a legal professional, shortly after she
passed all the necessary examinations to become a civil law notary
in Belgium. Following the country’s laws and conventions, and in
order to become a practicing notary, she invested in purchasing the
license and the business of a retiring notary in Brussels.

For all practical purposes, you can see the notary business as a
small company, even though it is subject to special regulation (such
as limitations on marketing), but which are not relevant for this
discussion. At the time, the business had 10 employees. These em-
ployees assist the notary in performing her principal task, summar-
ily described as follows by the Belgian federation of royal notaries
(Fédération Royale du Notariat Belge):

“A civil law notary’s task is to advise persons who wish to
conclude agreements in areas as diverse as real estate,
family or business matters. A civil law notary informs his
or her clients about their rights and duties, and about
the consequences – legal, financial and tax-related – of
their commitment. The civil law notary listens to his
clients’ needs and advises them on all these areas.”

The transition from the retiring notary to the new owner was a
challenge. The notary observed that employees were making many
decisions on their own when interacting with clients. While some
degree of autonomy is encouraged, the aim for the notary is to give
the best possible advice, and this requires notary’s own expertise and
involvement.

This overall issue motivated a round of interviews with a sample
of the employees, to see if and how they perceive this issue, if they see
any related ones, as all this would help understand which problem
to solve first, and how best to approach its resolution.

The interviews were organised around topics, which included
explaining the work the individual does at the office, and her impres-
sion of problems that there may exist in her own work, and in work
with colleagues. Six employees were interviewed. Each interview
lasted approximately 30 minutes.

The information collected at the interviews was used to produce
a summary of the interviews and a terminology, which defines the

77

Chapter 5. Requirements Problem Solving Cases

terms which have a specific meaning within the notary profession,
or within the office itself.

5.1.1 Terminology

The following terms have a specific definition within the Brussels
Law problem. They were identified after, and from the information
elicited in the interviews.

• Notary Business: Notary office lead by the Notary.

• Product: Legal document produced and signed by the Notary
for a Client, in exchange for a fee.

• Pre-Product: Document prepared by a Notary Assistant or No-
tary, and which has not yet been signed by the Notary.

• Client: Legal entity purchasing Products from the Notary Busi-
ness.

• Notary: The individual holding the license to perform notary
duties, who signs legal acts, is legally responsible for the con-
tent of the legal acts, owns and leads the Notary Business, com-
municates with Clients, prepares legal acts.

• Prior Notary: Notary who preceded the current Notary. Com-
municates with Clients, to ease Clients’ transition to the new
Notary.

• Notary Assistant: Prepares Products for review, validation, and
signing by the Notary.

• Secretary: Manages the expedition of Products, handles admin-
istration, incoming phone calls, incoming and outgoing mail,
finds archived legal acts, etc.

• Accounting Assistant: Maintains accounting information through
accounting software.

5.1.2 Interviews Summary

Interviews were conducted with the Notary Business employees, in-
cluding three Notary Assistants, two Secretaries, and one Accounting
Assistant.

78

Chapter 5. Requirements Problem Solving Cases

The summary below is organised by topic that arose during one or
more interviews. Topics are neither ordered by priority, nor another
criterion.

1. Advising Clients:

(a) All three Notary Assistants highlighted that they appreci-
ate giving advice to Clients.

(b) By advice, Notary Assistants seem to mean information
related to, but not necessarily included in the Product
made for the Client.

(c) When asked to point to sources of advice, Notary Assis-
tants indicate their own individual experience.

(d) When asked if they validate the advice with the Notary,
Notary Assistants avoid the question, leaving the impres-
sion that there is little to no validation of the advice.

2. Methods for delivering advice:

(a) Notary Assistants deliver advice to Clients in the following
ways, from the most frequent to the least frequent: email,
phone, live meetings, mail.

(b) All Notary Assistants indicated that email is the most
important form of communication, in order to keep a
trace of the exchange of information with the Client.

3. Supervision of Notary Assistants in Client interaction: When
asked when the Notary intervenes in the Notary Assistant’s
work with a Client, the Notary Assistants indicated that the
Notary intervenes predominantly at the end of the work with
the Client, for the transformation of Pre-Product into Product.

4. Client redirection to Notary Assistants: Client who calls Notary
Business by phone, and asks to speak to a particular Notary
Assistant, is redirected by a Secretary to that Notary Assistant.

5. Affirmation of position:

(a) In all six interviews, every interviewee asserted their rele-
vance and importance for Notary Business. Every inter-
viewee asserted their importance on their own initiative,
as no question was asked which would suggest future
changes in positions and responsibilities.

79

Chapter 5. Requirements Problem Solving Cases

(b) One Notary Assistant and one Secretary suggested that
they are the only ones able to discharge the responsibili-
ties they currently hold.

6. Understanding of own position and responsibilities:

(a) One Notary Assistant stated that, for her Clients, she is
the Notary.

(b) All Notary Assistants see Clients as their own, not as those
of the Notary Business.

(c) The newly hired Secretary suggested by herself that - com-
pared to her prior work as secretary of top management -
the positions, responsibilities, and hierarchy are not clear
at Notary Business.

7. Transition from Past Notary. Notary Assistant, the spouse of
the Past Notary, highlighted the following:

(a) There is more work compared to period when Prior No-
tary lead the office.

(b) Coordination of work is worse now than when Prior No-
tary lead the office.

(c) Flow of information between employees at Notary Busi-
ness is less efficient now than the fully paper-based sys-
tem was when Prior Notary lead the office.

(d) This Notary Assistant had the impression that Notary
is trying to do too much at the same time, and specif-
ically that Notary is trying to do both a Notary’s work
and the work of one Notary Assistant (i.e., the making of
Pre-Products).

8. Expedition of Products:

(a) There are rules defined in law, for whom to distribute a
Product (i.e., whom to send a legal act once it is signed
by the Notary).

(b) One Secretary suggested that she is the only person at the
moment who knows and applies these rules.

(c) When this Secretary was absent, no one could perform
her work.

80

Chapter 5. Requirements Problem Solving Cases

9. Documentation of knowledge: When asked where she is learn-
ing the processes and rules of work from, the newly hired Sec-
retary suggested that there is no documentation and that she
makes her own notes on rules and processes.

5.1.3 Problems

In a summary, interview topics suggest the presence of the following
problems:

• Unclear position responsibilities and hierarchy relations;

• Absence of processes and rules to govern the interaction with
Clients, the making of Products, and the expedition of Prod-
ucts;

• Absence of processes and rules for documenting knowledge
and training of employees;

• No uniqueness and innovation in Products and interaction
with Clients.

and these problems can have the following interrelated consequences:

• Damage to the Notary Business brand;

• Inconsistent quality of Products;

• Unusual dependence on individual employees, and thereby
risk of inefficiency in their absence;

• Difficulties in management, in absence of means to preserve
and transfer knowledge between employees.

Below are more details on which problem is related to which
consequences:

1. No explicit definition of authority relations and position re-
sponsibilities. Possible consequences include:

• Employees do not update the Notary of their tasks and
deadlines;

• Employees position themselves as the main point of con-
tact for Clients at Notary Business;

81

Chapter 5. Requirements Problem Solving Cases

• Employees give Clients advice which has not been vali-
dated by the Notary.

2. No processes and rules to govern the interaction between
Clients and Notary Business. Possible consequences include:

• Notary Assistants interact autonomously with Clients, so
quality of interaction cannot be monitored, influenced,
and standardised;

• Notary is not informed of communication between Client
and Notary Assistant and cannot influence and evaluate
the quality of that interaction, when that communication
happens via:

– Email, as Notary is not included in CC of emails sent
by Notary Assistants to Clients;

– Phone, as Secretaries transfer Clients directly to a
Notary Assistant;

– Meeting outside the Notary Business office.

3. No processes and rules for monitoring and reporting on deliv-
ery of Products to Clients. Possible consequences include:

• Task lists of Notary Assistants are obscure to the Notary;

• Notary Assistants fully manage their task lists, and do not
report on them.

4. No processes and rules for the preservation of knowledge and
no transfer of knowledge between employees. Possible conse-
quences include:

• Knowledge stays with individuals, who thereby make No-
tary Business dependent on them;

• It seems that rules or procedures in work are not doc-
umented, and have not been documented while Prior
Notary was leading the office;

• There are no rules to govern training between employees.
It is up to the employee being trained, to document or
otherwise formalize and learn the knowledge obtained
from another employee.

82

Chapter 5. Requirements Problem Solving Cases

5. No processes and rules for communicating new and changed
rules and processes to employees. Possible consequences in-
clude having no clear communication to employees on what
rules and processes should be followed.

6. No uniqueness in interaction with Clients and no Product in-
novation. Possible consequences include:

• Notary Assistants act autonomously in interaction with
Clients;

• Notary is not visible to Clients.

5.2 Copenhagen Sports

This case involves a small sports company in Copenhagen. The com-
pany makes and sells online coaching software which enables sports
coaches to train recreational, amateur, and professional athletes at a
distance.

For the coach, the software is a tool to create training plans and
training instructions, assign them to individual athletes, and receive
their feedback. For the athlete, the software is the place to find train-
ing instructions and her training plan, to record training progress, as
well as to keep a diary of sports and related activities which can be
relevant for the coach, when she designs the training for the athlete
(such as which foods the athlete ate, if they travelled on some partic-
ular day, etc.). For both coaches and athletes, the software provides
data visualisation tools, as well as other means designed to facilitate
their communication and interaction.

The majority owner, himself a coach, was interested in how the
software could help coaches with two activities that take considerable
time, namely, invoicing and payments. Up to that point, all invoicing
and payment between a coach and an athlete was the responsibility
of the coach. In case the coach worked for, say, a gym or a sports club,
then that legal entity was invoicing and receiving payments from
the athletes. Someone at the gym or sports club still had to manage
invoicing and payments, and the coaching software offered no help.

This initial idea led to an interview with the owner, in his role
as a coach who uses the software with his athletes. The rest of this
section gives the terminology required to understand the interview
summary, and then the problem description.

83

Chapter 5. Requirements Problem Solving Cases

5.2.1 Terminology

The following terms have a specific definition within the Copenhagen
Sports case. They were identified after, and from the information
elicited in the interview with the coach.

• Coaching Company: Company which makes and sells the on-
line coaching software.

• Customer Invoice: Invoice to an individual who should pay to
Coaching Company.

• Custom Customer Invoice: Customer Invoice which should be
made using a non-standard template, defined by the customer,
and, or include information which other Customer Invoices
do not include.

• Company Invoice: Invoice to a company who should pay to
Coaching Company. It includes specific company informa-
tion (for example, company registration number) which is not
included in Customer Invoice.

5.2.2 Interview Summary

The aim of the interview was to understand what invoicing and pay-
ments tasks a coach usually has to do. Without this information, any
proposed solution may entirely ignore constraints which these tasks
are currently subject to.

The summary of the interview is given below. It lists first the
invoicing tasks, and then the payments tasks that a coach typically
does.

Invoicing tasks include the following:

1. Subscription invoicing focuses on having customers pay for
their monthly subscriptions to Coaching Company services.
Subscription Invoicing involves the following tasks:

(a) Update spreadsheet with names of all customers who
should receive Customer Invoice for current month; a
coach does this;

(b) Make all Customer Invoices for the current calendar month.
Make Custom Customer Invoices for all customers who
requested them; coach’s accountant does this;

84

Chapter 5. Requirements Problem Solving Cases

(c) Send all Customer Invoices and Custom Customer In-
voices to all customers at end of current calendar month;
the coach’s accountant does this;

(d) Check, every Monday, if every sent Customer Invoice has
been paid, by checking Coaching Company bank account
and matching incoming payments with Customer Invoice
numbers; the coach does this;

(e) For each Customer Invoice which has not been paid, in-
form relevant OOB Coach to remind the customer to pay;
the coach does this;

(f) Send reminders to Customers who have not paid, that
they have a Customer Invoice to pay.

2. Event invoicing focuses on having companies pay for Coaching
Company services, which are not paid by subscription. Event
invoicing typically involves these tasks:

(a) Elicit instructions from client for Company Invoice;

(b) Make Company Invoice;

(c) Send Company Invoice;

(d) Check if Company Invoice is paid;

(e) If Company Invoice is not paid, then remind client to pay
Company Invoice.

The coach does all the tasks above.

Accounting tasks include the following:

1. Keep a record of all Invoices sent.

2. Keep a record of all invoices paid.

3. Record every expense of Coaching Company, and store proofs
of expenses.

4. Keep a record of all invoices received and to be paid by Coach-
ing Company.

5. Pay all invoices received and to be paid by Coaching Company.

6. Keep a record of all payments of invoices received and paid by
Coaching Company.

85

Chapter 5. Requirements Problem Solving Cases

7. Provide records of all Coaching Company expenses and proofs
of expenses to danish accountants of Coaching Company.

The coach does all the accounting tasks above.

5.2.3 Problem

The owner of the Coaching Company asked that the coaching soft-
ware should be changed to support coaches with the invoicing and
payment tasks described in the interview. In one or several next
releases, the software should do at least some of the tasks in place of
a coach, or in some other way facilitate these tasks to a coach.

5.3 Dubai Telecom

This case involves a company which specialises in making business-
to-consumer software products for Telecommunications Service
Providers (TSPs), such as companies offering prepaid and contract
mobile telephony and data services. The products are used by TSPs to
run their consumer websites, where they promote products and ser-
vices, to run their online services, such as online technical support,
to sell their services and products, and so on.

The company made a new product, called TSPAppDev in this
book. The product is software which allows TSP’s customers to make
apps for mobile devices through an intuitive interface, to minimise
the time to make an app and appeal to customers who need to make
simple apps quickly. The overall idea is that the TSP buys the software,
lets its customers use it through a free trial period, and then charges
a monthly subscription for customers who wish to continue to use it.

The Chief Executive Officer of the company wanted to have a
clear plan of action, for how to deliver TSPAppDev to a TSP which
buys it. This motivated interviews with him, and subsequently with
the product director. The rest of the section gives the information
elicited after these interviews.

5.3.1 Interviews Summary

CEO Interview

The interview with the CEO resulted in the information about the
main lifecycle phases of the TSPAppDev product. This information is

86

Chapter 5. Requirements Problem Solving Cases

below.
TSPAppDev is directed at telecommunications companies, TSPs,

interested in introducing new revenue streams and strengthening
loyalty of corporate and residential customers.

TSPAppDev is delivered in three phases:

• Phase 1 - TSPAppDev Competition: TSPAppDev is delivered to
enable a 3 months or longer Competition, the goals of which
are to:

– Increase brand awareness in local market;

– Promote local Mobile App development Community;

– Collect market information on Business and Residential
Users interest in Mobile App Development.

• Phase 2 - Campaign Evaluation: Analysis of data acquired dur-
ing Competition.

– If significant market potential is recognised in the Com-
petition, the project is transferred into Service Setup;

– Alternatively 3-month Competition is repeated or Client
exits the process;

– Data collected and analysed includes: number of regis-
tered users, number of created and submitted Mobile
Apps; number of Mobile Apps ready for distribution in
mobile app stores, number of downloaded Mobile Apps,
number of social network fans, number of Competition
website visitors.

• Phase 3 - TSPAppDev Service: TSPAppDev is delivered under
a software as a service model to TSP, in order to enable TSP’s
residential and business customers to make Mobile Apps.

In addition to making free Mobile Apps, residential and busi-
ness customers can create premium Mobile Apps. Premium Mobile
Apps create new revenue streams for TSP, through per-Mobile App
setup and monthly subscription fees paid by residential and business
customers.

87

Chapter 5. Requirements Problem Solving Cases

Product Director Interview

The product director highlighted that it is important to understand
what the product does for the TSP and its customers. This should
suggest what needs to be done, in order to deliver it to the TSP, and
set it up so that it can be used by TSP’s customers.

TSPAppDev Competition works as follows:

• Competition is a competition in making Mobile Apps using
TSPAppDev;

• Any user in TSP country can participate;

• To participate, users register to Competition website, create,
and submit Apps;

• Users can create free Apps only. Free Apps are limited in three
ways:

– Include advertising managed by TSP;

– Publisher is TSP, not the author of the App;

– Apps are created using limited set of TSPAppDev features;

• TSP reviews submitted Apps, publishes selected Apps to TSP?s
and global Apps stores;

• Jury and users rate submitted Apps, and select winners;

• Winners receive awards at an award ceremony.

TSPAppDev Service works as follows:

• TSP uses TSPAppDev Service to enable its Residential and Busi-
ness Customers to make and distribute Free and Premium
Mobile Apps;

• For the countries where TSP purchased TSPAppDev Service, no
other telecommunications company can purchase TSPAppDev
Service;

• TSPAppDev is distributed under a software as a service model;

• All Customers can make Free Mobile Apps;

88

Chapter 5. Requirements Problem Solving Cases

• Every residential customer pays for each Premium Mobile App
a monthly subscription fee. When purchasing each premium
App, the residential customer pays the equivalent of 6 months’
subscription, which pays for her first 6 months. After the first 6
months, the residential customer pays the subscription fee per
month;

• Every business customer of the TSP pays for each premium
Mobile App a monthly subscription fee. When purchasing each
premium App, the residential customer pays the equivalent
of 6 months’ subscription, which pays for her first 6 months.
After the first 6 months, the residential customer pays the sub-
scription fee per month.

5.3.2 Problem

Given the information from the interviews, the problem is to define
how TSPAppDev should be delivered to a TSP which purchased it.
Who should do it at the company? How? Are TSP’s employees in-
volved? If yes, which expertise do they need to have? When are they
involved? What for? All such questions had to be answered.

5.4 London Lights

A small company designs products in the UK, manufactures them
overseas, and sells them internationally via its own website and via
physical distributors. The company’s Managing Director was inter-
ested in having software, custom or otherwise, which would help
keep track of the various steps and tasks in the development of each
new product.

This lead to interviews with the Managing Director and the Cre-
ative Director, to understand the new product development process,
and then think about the requirements for the software.

5.4.1 Terminology

• New Product: Product that London Lights plans to, but has not
yet started selling.

• First Sample: A first and preliminary model of the New Product.

89

Chapter 5. Requirements Problem Solving Cases

• Final Sample: A final model of the New Product, accepted by
London Lights.

• Provisional Launch Date: Preliminary date when the New Prod-
uct will become available for sale to consumers.

• Definite Launch Date: Date when the New Product will become
available for sale to consumers.

• Product Manufacturer: Individual representing the company
capable of manufacturing the New Product for London Lights.

• New Product Brief: Document specifying the requirements that
the New Product should satisfy.

• Manufacturer Estimate: Document by which the Product Man-
ufacturer responds to New Product Specifications.

• New Product Pricing: Document defining the prices for the
New Product, for all Sales Channels.

5.4.2 Interviews Summary

The interviews led to the following description of the new product
development process.

1. Creative Director and Managing Director discuss New Product
ideas;

2. Managing Director and Product Developer perform research
on the New Product;

3. Creative Director and Managing Director:

• Create New Product concepts;

• Request Product Developer to evaluate New Product con-
cept feasibility;

4. Product Developer:

• Evaluates New Product concept feasibility;

• Delivers feasibility evaluation to Managing Director and
Creative Director;

90

Chapter 5. Requirements Problem Solving Cases

5. Creative Director, Managing Director, and Product Developer
narrow down the requirements to include in the New Product
Brief;

6. Managing Director:

• Produces the New Product Brief;

• Obtains from the Creative Director the approval of the
New Product Brief;

• Sends the New Product Brief to Product Developer;

7. Managing Director and Creative Director name a Product De-
signer;

8. Product Designer:

• Produces New Product design concepts;

• Presents design concepts to Creative Director and Man-
aging Director;

• Adapts design concepts until Creative Director and Man-
aging Director approve a concept;

9. Product Designer:

• Produces prototype of New Product design concepts;

• Presents design concept prototype to Creative Director
and Managing Director;

• Adapts design concept prototype until Creative Director
and Managing Director approve the prototype;

10. Managing Director updates and sends New Product Brief to
Product Manufacturer;

11. Product Manufacturer responds to Managing Director on New
Product Brief;

12. Creative Director, Managing Director, and Product Developer
revise, if needed the New Product Brief;

13. Managing Director sends revised New Product Brief to Product
Manufacturer;

Note: Steps 10 to 13 are repeated until the Product Manufac-
turer can provide the Manufacturer Estimate to the Managing
Director;

91

Chapter 5. Requirements Problem Solving Cases

14. Product Manufacturer delivers Manufacturer Estimate to the
Managing Director.

Manufacturer Estimate includes estimates of:

• Product development cost;

• Product development timeline;

• Minimal order size;

• Estimated unit cost.

15. Creative Director and Managing Director decide if to accept
the Manufacturer Estimate;

• If no, contact another Product Manufacturer and go back
to Step 6;

• If yes, go to next Step;

16. Managing Director:

• Receives component samples from Product Manufac-
turer;

• With Creative Director, reviews component samples;

• Asks Product Manufacturer to produce First Sample;

17. Product Manufacturer:

• Produces First Sample;

• Delivers First Sample to Managing Director;

18. Creative Director, Managing Director, and Product Developer
give feedback on the sample to the Product Manufacturer;

19. Product Manufacturer delivers the revised Manufacturer Esti-
mate to the Managing Director;

20. Managing Director requests a new sample from the Product
Manufacturer;

21. Product Manufacturer delivers a new sample to Managing Di-
rector.

Note: Steps 19 to 21 are repeated until Managing Director
approves a sample and that sample becomes the Final Sample;

92

Chapter 5. Requirements Problem Solving Cases

22. Managing Director approves the Final Sample by sending email
to Product Manufacturer and Creative Director;

23. Product Manufacturer delivers final Manufacturer Estimate to
Managing Director;

24. Managing Director:

• Receives 30 units of the Final Sample form Product Man-
ufacturer;

• Sends units of Final Sample for photography;

• Sends units of Final Sample to key Clients;

25. Managing Director submits the Final Sample to certification:

• For CE (Conformité Européenne) mark, required for sales
to European Economic Area;

• For UL (Underwriters Laboratories) mark, required for
sale to USA;

• For JIS (Japanese Industrial Standards) mark, required for
sale to Japan.

26. Managing Director presents packaging to Product Manufac-
turer. Cases:

• Case 1: Product Manufacturer approves packaging. Go to
next step;

• Case 2: Product Manufacturer requests changes to pack-
aging.

– Managing Director organizes that packaging be changed;

– Go to Step 26;

27. Finance and Operations Director:

• Sets the Provisional Launch Date;

• Communicates Provisional Launch Date to Managing
Director;

28. Managing Director:

• Approves the Provisional Launch Date;

93

Chapter 5. Requirements Problem Solving Cases

• Sends the Provisional Launch Date to:

• Board;

• Sales Manager;

• Product Developer;

• Creative Director;

• Finance and Operations Director;

• Accounting and Finance;

• Defines New Product Pricing;

• Obtains approval of New Product Pricing from the Board;

• Sends final New Product Pricing to Board, Finance and
Accounting.

5.4.3 Problem

Given the current new product development process, how could
software help track various steps and tasks in that process? How
would that software influence the process itself? Would the process
have to change, and in what ways, to accommodate the software?

5.5 London Ambulance

This case draws on the London Ambulance Service’s Computer-Aided
Dispatch (LASCAD) system [3], which has often been used in Require-
ments Engineering to illustrate Requirements Modelling Languages
[76, 145, 146, 99]. The information in this case borrows borrows
Beynon-Davies’ presentation of LASCAD [12].

LASCAD was intended to replace manual dispatching of ambu-
lances to incident locations. A manual dispatching system consists
of the following [12]:

“Call taking. Emergency calls are received by ambulance
control. Control assistants write down details of incidents
on pre-printed forms. The location of each incident is
identified and the reference co-ordinates recorded on the
forms. The forms are then placed on a conveyor belt sys-
tem that transports all the forms to a central collection
point.

94

Chapter 5. Requirements Problem Solving Cases

Resource identification. Other members of ambulance
control collect forms, review details on forms, and on the
basis of the information provided decide which resource
allocator should deal with each incident. The resource
allocator examines forms for his/ her sector and compares
the details with information recorded for each vehicle
and decides which resource should be mobilised. The
status information on these forms is updated regularly
from information received via the radio operator. The
resource is recorded on the original form that is passed on
to a dispatcher.

Resource mobilisation. The dispatcher either telephones
the nearest ambulance station or passes mobilisation in-
structions to the radio operator if an ambulance is already
mobile.”

The rationale for replacing manual dispatching is that the manual
identification of the precise incident location, production of paper-
based records, and tracking of ambulance locations were seen as
time-consuming and error-prone. Replacing the manual system with
a computer-aided one was considered as a way to improve service to
patients.

A computer-aided dispatch system would be designed to support
the following [12]:

1. “Call taking: acceptance of calls and verification of
incident details including location.

2. Resource identification: identifying resources, par-
ticularly which ambulance to send to an incident.

3. Resource mobilisation: communicating details of
an incident to the appropriate ambulance.

4. Resource management: primarily the positioning of
suitably equipped and staffed vehicles to minimise
response times.

5. Management information: collation of informa-
tion used to assess performance and help in resource
management and planning.”

The problem in the case is to design the computer-aided dispatch
system in an environment where dispatching is done manually.

95

Chapter 5. Requirements Problem Solving Cases

Although there is relatively little information above, it is rich. It
mentions various activities that dispatching involves (for example,
call taking and resource identification), the normal sequence of these
activities (call taking precedes resource identification), the organ-
isational positions involved in these activities (control assistants,
resource allocators, dispatchers), the responsibilities of the positions
(resource allocator decides which ambulance to mobilise), and so
on.

96

Chapter 6

Checklists, Templates,
and Services for
Requirements Modelling
Language Design

This Chapter presents three simple tools, called Language Checklists,
Templates, and Services, and explains why and how they are used in
this book. They helped make it manageable to define many languages,
compare them, and carry their features from one to another. Language
Checklists give items to include in a definition of an Requirements
Modelling Language and its parts. Each Checklist suggests a Template,
so that when it is relevant to define a Requirements Modelling Lan-
guage or its part according to a Checklist, then there is a corresponding
Template to fill out. Services describe specific problem solving tasks
that a language and relevant algorithms automate for a human prob-
lem solver. I use Services to describe the purpose a language and its
parts in problem solving, Checklists to avoid missing important parts
of definitions, and Templates to standardise the presentation of defi-
nitions.

97

Chapter 6. Checklists, Templates, and Services

6.1 Problem Solving Services

Let Q denote a question, such as, for example, “Which requirements
are satisfied in the given Model?”. To answer this question, you need
to have elicited requirements, found ways to satisfy them, repre-
sented all this in a model, and then analyse the model to see if it
answers the question.

But the question itself has nothing to do with how you made the
model, that is, the elicitation and any treatment of information that
was needed to make the model. The question is not influenced by
how the model was made. Moreover, the question is not specific to
one particular Requirements Modelling Language. The same ques-
tion can be asked for various models, made in various languages, as
long as these languages have a notion of “requirement” and “satis-
faction”. The question would otherwise be meaningless, but again,
only for those languages which fail to distinguish requirements in a
model from other information in the model, and to distinguish when
something in the model can be called “satisfied” and when it cannot.

Answering the question Q may be an ill-structured problem, even
when you do have a model. This is the case precisely if, for example,
the language of the model does not give the exact conditions that
have to hold, in order to say that, without a doubt some requirement
in that model, and according to that model, is satisfied. In other
words, “being satisfied” is not precisely defined in the language.

In some languages, however, answering question Q will be a well-
structured problem. In other words, you will know the steps to take
and the tools to use in order to answer Q when given any model in
that language. And if someone else applies the same steps and tools
according to instructions, then they will reach the same answer for the
same model.

In some cases, these languages may even be such that you or any-
one else can apply algorithms to models, and automatically obtain
the answer.

The interesting conclusion of the above is that you can describe
a language and algorithms for Requirements Problem Solving by the
questions they can answer for a human problem solver.

In the rest of the book, I will say that a language, and if needed
algorithms, that is, Artificial Intelligence for Requirements Problem
Solving, have Services, and each Service is a question that the AI can
answer.

98

Chapter 6. Checklists, Templates, and Services

Definition 6.1.1. Problem Solving ServiceProblem Solving Service: A Requirements Modelling
Language has the Problem Solving Service X , or simply the Service
X , if answering the question X for any reasonably-sized model in
that language is a well structured problem.

The definition is loose. Services cannot be used to fully describe
all that a language can do for a human problem solver. Some people
will be more inventive than others, and perhaps manage to use a
language to answer more questions than others would think of. For
example, when does a model have a reasonable size? I do not have a
definite answer to this, and if I did, I would have proposed a better
definition.

But despite its obvious limitations, Services are interesting when
used to guide the design of a Requirements Modelling Language. This
is what I use them for in this book. It is an important role. Services
can be used to justify features a language has, the concepts and
relations in its ontology, its formalisation, etc.

The introduction and use of Services is motivated by the assump-
tion mentioned in Section 4.2, that an Requirements Modelling Lan-
guage should influence how one thinks about and solves Problems.
More specifically, I will assume that an Requirements Modelling Lan-
guage will effectively do so, if it can do something for its user, the
human problem solver, that is, if its user can delegate part of the
problem-solving effort to the Requirements Modelling Language.

You can think of it this way: there is a language user, a person
who needs to solve an Problem, and suppose that there is software,
which she uses to make Requirements Models. To find the solution
to the Problem, as well as to properly formulate the Problem to solve,
she invests some effort. Problem-solving is the name for what she
does.

Part of that effort goes into making and changing the model itself,
the modelling, and part of it goes into asking questions and finding
answers to them, by inspecting the model, the reasoning. Such ques-
tions can be, for example, “Which requirements in the model cannot
be satisfied together?”, or “Does the model describe how to satisfy
some requirement X in it?”, and so on. Now, she can probably find
answers to many such questions by having natural-language be her
modelling language, and ordinary text her models; she brings the
text up on a screen, or prints it out, then searches through it and
reads it to find the answer.

But there are two problems with this, if not more. If another

99

Chapter 6. Checklists, Templates, and Services

person tries to find the answer to the same question, from the same
model, what guarantees that the answer will be the same? Yet it
should, unless you want models to cause confusion.1 And if the
model gets big – the text is long – will it not become, at some point,
too difficult to find answers, and will there not be questions to which
you want answers, yet cannot find them within some reasonable
time?

To make problem solving easier, I can add rules on how to make
diagrams that represent things, actions, and so on, in the text, and
can change the software to enable it to answer questions by doing
some processing on the models. The software will then process a
model, and return an answer. To abstract from implementation
specifics, I will say that the engineer delegates part of the effort to the
Requirements Modelling Language, and the language has to say what
its models are, and how to process them to answer questions.

Services are used to describe parts of the problem solving effort,
which the engineer can delegate to an Requirements Modelling Lan-
guage. If an Requirements Modelling Language can answer some
specific question, then I can define this as an Service, and I will say
that that Requirements Modelling Language has that Service. Lan-
guages can be compared in terms of Services that each delivers.

Services are not defined as some specific concepts, relations,
rules, or algorithms that are part of a language. It follows that two
languages may be said to have the same Service, even if they have
very different components and work in different ways to answer the
corresponding question.

How I define and use Services will become clearer in and after
Chapter 7, when I start defining the first Requirements Modelling
Languages specific to this book.

6.2 Checklists and Templates

A Checklist will list questions that you need to answer, in order to
define, for example, a relation or a category that is used in a formal

1Any model probably can be read in different ways by different people, but it is
feasible, when making models that have to answer very specific questions, to make
sure that they do not give confusing answers to those questions. If one writes x +5 = 7,
and says to another that these are numbers of apples, the other might debate if they
are of the Granny Smith or Golden Spire variety, but both would answer 2 if asked for
the value of x.

100

Chapter 6. Checklists, Templates, and Services

language. For example, to define a relation, it is necessary to say what
its domain is, what rules every instance of that relation has to satisfy
(such as those due to the relation being transitive, for example), its
arity, and so on. Template

There will be various Checklists in this book, and each is related
to recurring components of a Requirements Modelling Language.
For example, Requirements Modelling Languages typically provide
categories for different kinds of elicited information, and there is
a Checklist that suggests what a definition of a category has to say.
Checklists are not exhaustive, but are instead used to ensure that
basics are covered.

When there is a Checklist that recommends what goes in a defini-
tion, the natural next step is to define a corresponding Template to
use when writing the definition. The Template includes slots, which
if adequately filled out make sure that the definition answers the
questions in the Checklist. Checklist

There is a Template for every Checklist in this book. There are
two primary uses of the Templates, one being to standardise the pre-
sentation of languages and their modules in the book, and the other
to make it easier to present the information that the corresponding
Checklist asks for.

6.3 Language and Module Names

Every language defined in this book has two names. One is its so-
called module name and the other is its common name.

The module name lists the abbreviations of all modules in that
language. Section 7.3 explains what a language module is. For now, it
is enough to know that a module is a self-contained part of a language,
which can appear in more than one language. That is, it can be reused
when making different languages. Language Module

For example, a module name for one of the language in Section
7.4 is L.(r.inf.pos, r.inf.neg, f.map.abrel.g). This says that the language
is made of three modules, denoted by r.inf.pos, r.inf.neg, and f.brel2g.

Each language module in the book has a unique abbreviation,
and those abbreviations are used to form the module names of lan-
guages. The point is to know what modules a language includes,
simply by looking at its module name.

The common name has nothing to do with the module name of

101

Chapter 6. Checklists, Templates, and Services

a language, in that neither is inspired by the other. The common
name is chosen simply to make it easier to refer to a language, when
the module name is unnecessary. Common names are the common
names of navigational stars in celestial navigation, taken from the
Nautical Almanac [77].

102

Chapter 7

Relations

This Chapter is on how to define relations over bits and pieces of in-
formation used in problem solving. The discussion revolves around
how to define individual relations, issues in defining languages that
have many relations, and on two Requirements Engineering con-
cerns, called influence and rationale below, which have usually been
addressed via specialised relations in Requirements Modelling Lan-
guages. More specifically, the Chapter is on:

1. How to represent in Requirements Models that we start design
with less detailed information, and incrementally add details
to it? (in Section 7.2)

2. How to define oft-needed relations in such a way, that they
can be reused when defining new Requirements Modelling Lan-
guages? (Section 7.3)

3. How to represent that satisfying some requirements influences
the satisfaction of others? (Section 7.4)

4. How to represent the rationale for design decisions? (Section
7.5)

5. If a Requirements Modelling Language includes several rela-
tions, then how to avoid errors in using these relations together?
(Section 7.6)

103

Chapter 7. Relations

7.1 Motivation

Problem-solving in Requirements Engineering involves working with
information, obtained through interviews, observation, simulation,
role-playing, from documentation, through reflection, creativity, and
so on. You need to organise this information in order to understand
the concrete problem to solve, to design its one or alternative solu-
tions, compare them, and do all else that might be necessary, in order
to produce a solution.

You can organise this information by making representations of
it, splitting representations into pieces, and stating relations over the
pieces. The first part of the tutorial focuses on how you can define
relations in Requirements Modelling Languages, so that their models
can represent instances of these relations over pieces of information.
In turn, relations let you reconstruct, from the pieces, your initial
understanding of the initial whole, and also, to identify interactions
between these pieces, which was not feasible when they were not
split up.

There are two practical reasons to start by focusing on relations
only, and so have only one category of information. Firstly, I can
postpone the discussion of such issues as, when a piece of informa-
tion should be called a requirement, a goal, a task, a specification,
or otherwise, that is, the issue of categorisation, to which I return in
Chapter 9.

Secondly, committing already now to some specific categories
would bias the discussion to a specific class of Problems. This is
because Problem classes come with their own information categories:
in DRP, for example, they are “requirement”, “domain knowledge”,
and “specification”. There is no need to privilege one Problem class
over others this early in the tutorial.

Note that, while I am discussing relations before categories, I
do not suggest, for example, that in general, relations should be the
primitives in Requirements Modelling Languages. I already intro-
duced the notion of Fragment as a primitive, and Fragments are not
relations. Also, when I start introducing more categories later, I do
not define categories only in terms of relations. So I am not saying,
for example, that pieces of information are in relations because they
satisfy some monadic properties first and foremost, and that them
having these properties influences the relations in a language. For
example, this amounts to saying that it is is because there are things

104

Chapter 7. Relations

called requirements and others called specifications, that I am inter-
ested in relations that indicate how doing according to specifications
influences if we satisfy requirements. The opposite approach, where
relations are primitives, would be to say that I have to distinguish cat-
egories of information that describe what to satisfy (requirements),
from those on what to do (specifications), because I am interested in
relations that reflect correlation of satisfaction.

7.2 Single Relation Language

As usual, a relation R over some sets X1, . . . , Xn of things, be they
requirements, laws, (or representations of) people, cars, buildings,
or clouds, of same or of different kinds, is a subset of the Cartesian
product of these sets, that is, R ⊆ X1 × . . .×Xn .

A relation is used to say that the things it relates share the prop-
erty which the relation stands for. For example, if in love with denotes
a binary relation over people, and people are identified by first names,
then Pierre in love with Marie is an instance of the in love with rela-
tion, and is intended to convey that they share the property that we
conventionally understand as Pierre being in love with Marie, and
that that Marie is the person whom Pierre is in love with.

Suppose that you need to define the simplest Requirements Mod-
elling Language which lets you show that information about require-
ments increases incrementally as system design progresses. By sim-
plest, I mean something that is easy for others to understand. It can
help to consider the following questions.

• What is, or are the Language Services that this language should
deliver? Why? Define them.

• How would you represent that information increases? Try with
a relation.

• What is the domain of that relation, what is the relation over?

• How should relation instances read informally? What is it that
they should be saying to other people who are using models in
that language?

• What are the formal properties of that relation? Is it, for exam-
ple, transitive?

105

Chapter 7. Relations

7.2.1 Choose a Language Service

I will start by choosing the Language Service which I want the new
language to deliver. To do this, recall that the default view in Require-
ments Engineering is that Problems are solved incrementally, moving
from incomplete or otherwise deficient information, towards less
deficient information that describes the problem and its solution.

At each iteration, I want to add information to the model. This
new information may be adding details to the information already
there. The additional detail may come from explaining how to satisfy
some requirement, that satisfying a requirement involves satisfying
several more specific requirements, making a requirement less am-
biguous, and so on. The same applies to any information in the
model, be it requirements or otherwise (such as domain knowledge
and specifications in the Default Problem).

It is relevant have models which show how information was
added during design. Discovery and indecision in problem solving
are two reasons for this, among others.

• Discovery refers to starting with relatively little, and progres-
sively increasing knowledge of, for example, the relevant re-
quirements and domain knowledge, their relative importance,
their completeness, about ways to satisfy requirements, and
so on. At a given time during problem solving for the London
Ambulance, you may not know the various possible ways to
identify the incident location; as you learn more about them,
you would be adding more details about them to the model.

• Indecision refers to the unwillingness, at some time in problem
solving, to commit to, for example, resolve some conflict be-
tween requirements in one way and reject all alternative ways
to do so, to give a particular interpretation to an ambiguous re-
quirement, or to some specific way of satisfying a requirement.
For example, you may decide not to describe in the model a
process for choosing the ambulance to dispatch, until you have
interviewed the control assistants who have experience in that
task.

As I proceed with discovery and postpone commitments, I am
adding more detailed information to the model. Instead of deleting
the less detailed information when this happens, it is relevant to
keep both in the model. More specifically, it is useful to indicate in

106

Chapter 7. Relations

the model which information adds details to which other. Doing
so results in a record of what I am adding details to and why I am
adding the more detailed information in the first place.

Modelling the increase in information in a model raises a number
of design challenges and is related to many Language Services that
various well-known Requirements Modelling Languages deliver. For
example, in KAOS, the ability to answer “Which requirements are
more detailed than (that is, refine) the given requirement?”; in i-star,
to answer “Which tasks are more detailed than (decompose) the
given task?”. This leads me to the following Language Service for the
new Requirements Modelling Language. Let x and y be parts of a
model M in that language.

Language Service: AddsDetails

Does x add information to y in M? s.AddsDetails

The Language Service does not define exactly what the model
or its parts are, and thereby remains independent of a particular
language.

7.2.2 Models over Fragments

Natural language text is an accessible and neutral way to represent
information about Problems and their solutions. There is no need
to learn something new to use it. It comes with no rules on how to
represent, categorise, or work with that information.

If natural language is a casual means of requirements represen-
tation, then does ordinary text as a means of representation deliver
s.AddsDetails? Consider the following pieces of information, called
Fragments, about the London Ambulance.

• AddRepEm: Emergency calls are responded to.
• RecEmCal: Receive emergency calls.
• SwtchCal: Switch emergency calls to dispatch centre.
• NoDropCal: No calls are dropped because of timeout.
• IdIncLoc: Identify the incident location.
• ChkDblLoc: Check if double location.

107

Chapter 7. Relations

• FillIncRep: Fill out the incident report.
• FillSwIncRep: Fill out incident report form via software.

Above, Fragments are ordinary sentences, with an abbreviation
for easier referencing. I impose no rules about, for example, how to
decompose and combine Fragments. Later, I will in some languages.
Moreover, while Fragments can be representations of propositions1,
not all of them are: questions arise during problem solving, and while
they cannot be propositions [139, 53, 143] (What do you answer to
“Is that question Q true or false?”?), it is relevant to have a record of
them, and inevitably, then, have them in models.

But Fragments need not only be parts of natural language text.
Datasets, diagrams, photographs, videos, can all be representations
of requirements, or of other information which is relevant when
defining requirements, solving conflicts between them, getting stake-
holders to approve requirements, and so on [35, 120].

Consequently, a Fragment is any available representation of infor-
mation, as long as the model user judges it to be relevant for problem
solving in Requirements Engineering. FragmentsThis is important to keep in
mind, as all languages in the rest of this book create models over
Fragments. While the present format makes Fragments in natural
language text the easiest to use, there is nothing in the languages
defined here, which restricts Fragments to text only.

Example 7.2.1. The London Ambulance example suggests that ad-
dressing each emergency involves (at least) taking the emergency
call, identifying the incident location, and so on.

It follows that RecEmCal, SwtchCal, NoDropCal, IdIncLoc, ChkD-
blLoc, FillIncRep, FillSwIncRep describe one way of satisfying Ad-
dRepEm.

AddRepEm thus looks to be less detailed than every one of the
former statements. Equivalently, AddRepEm is more abstract than
each of these statements. Also, each of the latter statements is more
concrete, or more detailed than, and adds details to AddRepEm. Fill-
SwIncRep is one of some alternative ways of doing FillIncRep, which
makes FillSwIncRep more detailed than, and adding detail to Fill-
IncRep.

1I take McGrath’s view on propositions [104], so that they are “sharable objects of
the attitudes and the primary bearers of truth and falsity. This stipulation rules out
certain candidates for propositions, including thought- and utterance-tokens, which
presumably are not sharable, and concrete events or facts, which presumably cannot
be false.”

108

Chapter 7. Relations

The following paragraph summarises this.

RecEmCal, SwtchCal, NoDropCal, IdIncLoc, ChkDblLoc,
and FillIncRep describe what to do, in order to satisfy
AddRepEm. Each informs AddRepEm. FillSwIncRep
adds details to FillIncRep, because it describes one way
of satisfying FillIncRep.

If you replace each abbreviation above with the corresponding
Fragment, you get an ordinary paragraph of text. •

Taken as a representation of information about ambulance dis-
patching, the paragraph in Example 7.2.1 is subject to no particular
rules which would influence how you and I represent and communi-
cate about differences in detail. For example, the paragraph can be
seen as a single Fragment, or multiple Fragments, neither of which
can be unambiguously established by looking at it alone.

To be able to find the same answer to s.AddsDetails, you and I
need to agree on at least two rules, on (i) how to distinguish between
Fragments, and (ii) how to record that one adds details to another.
Once we do, the result is that we will be no longer documenting our
communication about the adding of details using unconstrained text,
but text that has to satisfy the new rules. Since these rules are specific
to s.AddsDetails, I will call the resulting representations models.

7.2.3 Trivial Modelling Language

One way to distinguish Fragments is to visually separate them. You
can write each in a different paragraph. For referencing, you could
have a unique identifier for each paragraph.

To record which Fragments add information to others, you and I
can agree to write sentences in this format “x informs y”, where we
replace x and y with relevant Fragment identifiers.

“x informs y” reflects the conclusion of comparing two Frag-
ments x and y , and concluding that x adds information about y . In
other words, saying “x informs y” equates to stating a relation be-
tween x and y , and begs the question of what properties this relation
has.

It makes no sense to say that “x informs x”, so the relation is
irreflexive. It is also not the same to say that “x informs y” or that “y
informs x”; it is one or the other, so that the relation is antisymmetric.

109

Chapter 7. Relations

It is also transitive, as the following seems reasonable: if you say that
x informs y , and that y informs z, then you are also saying that x in-
forms z. Finally, I will not be saying which Fragment informs another,
for every pair of Fragments. I might do it for some Fragments only.
In conclusion, the “informs” relation on a given set of Fragments is a
strict partial order relation.

This gives a language which delivers s.AddsDetails. The language
is called L.D1, and is defined only by the rules which you and I agreed
on so far:

Every model M in L.D1 is a graph (X , r.ifm), where:

1. every Fragment in X is a node,

2. every edge is an instance of r.ifm over X ,

3. r.ifm is a strict partial order on members of X , and

4. (x, y) ∈ r.ifm reads “Fragment x adds details to Frag-
ment y”.

L.D1 delivers the following Language Services:

• s.AddsDetails: Yes, iff there is a path from x to y in
the transitive closure of M , no otherwise.

Using L.D1 takes me from natural language to a controlled lan-
guage, and in the process restricts considerably what I can say about
why some Fragments add detail to others, for example. This is appar-
ent by comparing models in Example 7.2.1 and Example 7.2.2; the
latter was made using L.D1 on Fragments in the former example.

Example 7.2.2. The graph G = (X , r.ifm) is a model in L.D1, where:

• X = { RecEmCal, SwtchCal, NoDropCal, IdIncLoc, ChkDblLoc,
FillIncRep, AddRepEm, FillSwIncRep} is the set of all Frag-
ments,

• The set of edges is this set of r.ifm instances:

r.ifm= {

(RecEmCal,AddRepEm), (SwtchCal,AddRepEm),

(NoDropCal,AddRepEm), (IdIncLoc,AddRepEm),

(ChkDblLoc,AddRepEm), (FillIncRep,AddRepEm),

(FillSwIncRep,FillIncRep) }

110

Chapter 7. Relations

Figure 7.1: A visualisation of a model in L.D1.

Figure 7.1 gives a visualisation of this model. The visualisation shows
a graph, where nodes are Fragments, and edges labeled “D” are r.ifm
instances. •

The example illustrates why Language Services are interesting.
Namely, if I made the model in Example 7.2.2, and gave it to you, and
you know L.D1, then you would not need to ask me for my answer to
s.AddsDetails, since you can get to the same answer as I. Hence, L.D1
delivers s.AddsDetails.

As an aside, note that L.D1 cannot be used to solve the Default
Problem. Delivering s.AddsDetails is not enough, as other Language
Services are needed. If you consider that a language is not an Require-
ments Modelling Language if it cannot be used to solve the Default

111

Chapter 7. Relations

Problem, then L.D1 is not one.2 L.D1 models cannot be used to an-
swer seemingly simple questions, such as which of all the Fragments
are the most detailed (that is, no other Fragments add detail to them).
L.D1 does have important limitations, but the book should start from
something simple.

7.3 Modular Definitions

I defined a simple language in response to Exercise ex:one-category-
one-relation. What if I wanted to define new languages, perhaps many
of them, all of which would reuse the relation r.ifm in the same way
as L.D1? The challenge is summarised in the following exercise.

Go back to L.D1 and r.ifm, and consider what had to be decided
and put into the definition of that relation. I defined r.Inform by
answering the following questions:

• What is the name of the relation?

• How a person should read its instances?

• What is its domain?

• What is its dimension (arity)? Is it unary, binary, ternary, n-ary?

• What are its formal properties? More generally, what properties
does it have to satisfy?

• Which Language Services do I want it to deliver?

I will answer the same questions for all relations in this book.
Hence the Language Module template for relations. Slots in it reflect
the questions. Below, it is filled out for r.Inform.

Relation: ifm

r.ifmInform

Domain & Dimension
2i-star, for example, also fails this criterion, but is considered an Requirements

Modelling Language. There is, to the best of my knowledge, no widely-accepted set of
criteria for when a modelling language is also an Requirements Modelling Language,
despite some suggestions [155, 64, 88, 83].

112

Chapter 7. Relations

r.ifm⊆ F×F, where F is a set of Fragments.

Properties

Irreflexive, antisymmetric, and transitive.

Reading

(x, y) ∈ r.ifm reads “x adds information to y”.

Language Services

• s.AddsDetails: Yes, if (x, y) ∈ r.ifm is in M .

There is a slot for the domain and dimension. Properties are
the rules that all relation instances have to satisfy. If some relation
r.rel is irreflexive, then you have an error in the model, if it includes
(x, x) ∈ r.rel. The properties slot will include all sorts of rules about
relation instances, not only common formal properties (as above).
Hence the slot’s generic name. The “reading” slot says how to read
an instance of the relation.

The template includes the abbreviated relation name, r.ifm above.
I usually use that abbreviation to refer to the relation, or in general,
to Language Module names in the book.

The template shown with r.ifm focuses on the relation alone. It
tries, as much as feasible, to avoid other concerns. For example,
it is silent about how sets of relation instances should or could be
represented, as sets of symbols denoting relation instances, as graphs
where edges denote relation instances, or in some other way. The
template avoids issues related to the syntax of the language. When I
want to use a relation in a language, I will simply use the name of the
relation, and leave its definition in its own module, rather than repeat
it in the language definition. Below is the definition of a language
which does the same as L.D1.

Language: Alpheratz

113

Chapter 7. Relations

L.AlpheratzLanguage Modules
r.ifm

Domain

Set F of Fragments and r.ifm⊆ F×F.

Syntax

A model M in the language is a set of symbols M = {Z1, . . . , Zn},
where everyφ is generated according to the following BNF rules:

A ::= x | y | z | . . .

B ::= A informs A

Z ::= A | B

Mapping

D(A) ∈ F and D(B) ∈ r.ifm, that is, every A symbol refers to a
Fragment in F and every B symbol to an instance of r.ifm.

Language Services

Same as r.ifm.

The template has the common name L.Alpheratz and the module
name (r.ifm). This follows the conventions set earlier. The module
name is in parentheses and says that the language has one module,
r.ifm. There is the symbolic syntax, defined using BNF notation. You
can define it otherwise if you prefer.

I follow Harel & Rumpe [68] on syntax and semantics, and there
are consequently slots for syntax, semantic domain, and a function
which maps elements of the former to those of the latter. The func-
tion is denoted D in all languages in this book, but its definition
is always local to a language. The example below gives a model in
L.Alpheratz.

114

Chapter 7. Relations

Example 7.3.1. The following is a model in L.Alpheratz:

M = { RecEmCal,SwtchCal,NoDropCal, IdIncLoc,

ChkDblLoc,FillIncRep,AddRepEm,FillSwIncRep,

RecEmCal informs AddRepEm,

SwtchCal informs AddRepEm,

NoDropCal informs AddRepEm,

IdIncLoc informs AddRepEm,

ChkDblLoc informs AddRepEm,

FillIncRep informs AddRepEm,

FillSwIncRep informs FillIncRep }

M includes individual Fragments, which I gave first above, and then
instances of r.ifm. •

For every model of L.Alpheratz, you can make a corresponding
graph. The graph can be a visualisation of the model, but more
importantly, it can be used to compute answers to new Language
Services, such as the following.

• s.MostDetailss.MostDetails: Which Fragments in M are the most detailed?

• s.LeastDetailss.LeastDetails: Which Fragments in M are the least detailed?

Suppose that G(M) is the graph where every A symbol from M is
a node and every B symbol B = x informs y is an edge directed from
x to y . Let C l (G(M)) be the transitive closure of that graph. You can
then deliver s.MostDetails and s.LeastDetails as follows:

• s.MostDetails: All nodes in C l (G(M)) which have no incoming
edges.

• s.LeastDetails: All nodes in C l (G(M)) which have no outgoing
edges.

There are well-known algorithms for finding transitive closures
of directed acyclic graphs, and for finding paths in them [2, 7]. They
can be used to compute answers to the Language Services above.

In the rest of the book, I define the translations from one syntax to
another, or other transformations of models, via Language Modules.
These Language Modules are functions, taking (parts of) models as
input, making changes, and producing new models or otherwise.

115

Chapter 7. Relations

When I suggested above that you can make a graph from r.ifm and do
computations on those graphs, the more general point is that you
may want a language to deliver the following Language Service.

Language Service: RelGraph

Given the relation r.R over Fragments in F, which graph is in-
duced by that relation? s.RelGraph

Below is the definition of a function which takes a binary relation
and returns a labelled directed graph. It delivers s.RelGraph.

Function: map.abrel.g

f.map.abrel.gMap a binary relation to a graph

Input

Set X ⊆ F of Fragments and a binary antisymmetric relation
r.R⊆ X ×X .

Do

Let G(X, r.R)= (N ,E , lN , lE) be an empty labelled directed graph:

• For every Fragment fi ∈ X , add a node ni to N and let the
Fragment label the node, lN (ni) = fi .

• For every relation instance (fi , f j) ∈ r.R, add an edge
(ni ,n j) ∈ E to the graph, and label the edge r.R.

Output

G(X, r.R).

116

Chapter 7. Relations

Language Services

• s.RelGraph: G(X, r.R).

A language which would deliver s.MostDetails and s.LeastDetails
would also need additional functions which traverse the graph, and
return the sink and source nodes.

The more general point is that templates such as the above pro-
mote a modular definition of languages. The template for functions
is self-explanatory, giving the inputs, the actions to take on these
inputs, the result of those actions, and the Language Services of
interest.

You can also have templates for families of languages. You can
define analogous languages to L.Alpheratz for many other antisym-
metric binary relations in this book. The template for all these lan-
guages is as follows, where R is the name of the relation. I added
the function f.map.abrel.g, which enables these languages to deliver
more Language Services than L.Alpheratz could. I will not spend
much time with such languages, as you can define them with the
template below.

Language: Alpheratz(R)

L.Alpheratz(R)Language Modules
r.R, f.map.abrel.g

Domain

Set F of Fragments and r.R⊆ F×F.

Syntax

A model M in the language is a set of symbols M = {Z1, . . . , Zn},

117

Chapter 7. Relations

where everyφ is generated according to the following BNF rules:

A ::= x | y | z | . . .

B ::= A symbol_for_R A

Z ::= A | B

Mapping

D(A) ∈ F and D(B) ∈ r.R.

Language Services

s.AddsDetails, s.RelGraph, s.MostDetails, s.LeastDetails.

I illustrated above how to define a relation as a Language Mod-
ule, and then use this module in a language. Sections 7.4 and 7.5
define several other relations. They are all inspired by well-known
ideas such as, say, refinement in programming and correlation in
statistics, which are not specific to Requirements Engineering, as
well as relations that are central in well-known Requirements Mod-
elling Languages. The aim is to give more examples of the modular
definition of relations, and then combine these sample relations into
new languages in Section 7.6.

7.4 Some Influence Relations

A recurrent concern in Requirements Engineering is to represent
that satisfying some x has consequences on satisfying some other y .
(x and y may be one or more requirements, domain knowledge,
specifications, or otherwise; their categorisation does not matter
at the moment.) Satisfying abbreviates “successfully doing what x
describes”, or if you prefer making it clear that these are models of
hypothetical actions, conditions, and such (precisely because they
are representations), then it abbreviates “as-if what x describes is
successfully done”.

This capability is critical for solving the Default Problem, for
example, since both conditions in that problem are about how the
satisfaction of domain knowledge and specifications influences the

118

Chapter 7. Relations

satisfaction of requirements.
Satisfying some x in a Requirements Model can be independent

from the ability to satisfy some other y in the same model. If it is
not, then the idea is to have an influence relation between x and y .
This relation can indicate positive or negative influence, and various
relations have been proposed to do so [122].

You can think of satisfaction as being a value assigned to a Frag-
ment. Let SatVal denote the satisfaction value of a Fragment, and
suppose that V is the set of all allowed satisfaction values, so that
SatVal : X −→ V , where X is a set of Fragments. There should be an
influence relation from x to y iff SatVal(x) = f (. . . ,SatVal(y)), that is,
if the satisfaction value assigned to x is function of, among others,
the value assigned to y .

Due to discovery and indecision in problem-solving, I may in-
crementally be finding out, or making decisions about the exact
function SatVal(x) = f (. . . ,SatVal(y)). To be able to represent partial
information about influence, I will define several types of influence
relations. Some of them will require that I know very little about
how SatVal(x) is sensitive to changes of SatVal(y), while others may
require that I know more, such as the direction and perhaps strength
of that influence.

7.4.1 Presence of Influence

If you want models to show only that influence does or should exist,
then you need to deliver the following Language Service, and solve
the exercise that follows.

Language Service: DoesInfluence

Does the satisfaction of a model part x influence the satisfaction
of another model part y in the model M? s.DoesInfluence

The Language Service can be delivered with a new relation which
indicates influence.

119

Chapter 7. Relations

Relation: inf

r.infInfluence

Domain & Dimension

r.inf⊆ F×F, where F is a set of Fragments.

Properties

Irreflexive and transitive.

Reading

(x, y) ∈ r.inf reads “the satisfaction of x influences the satisfac-
tion of y”, or equivalently, “there is a function according to
which the satisfaction value assigned to y depends on the satis-
faction value assigned to x”.

Language Services

• s.DoesInfluence: Yes, if (x, y) ∈ r.inf is in M .

Example 7.4.1. In Example 7.2.1, the Fragments RecEmCal, Swtch-
Cal, NoDropCal, IdIncLoc, ChkDblLoc, and FillIncRep described parts
of what needs to be done in order to satisfy AddRepEm. This suggests
the following r.Influence instances:

(RecEmCal,AddRepEm), (SwtchCal,AddRepEm),

(NoDropCal,AddRepEm), (IdIncLoc,AddRepEm),

(ChkDblLoc,AddRepEm), (FillIncRep,AddRepEm).

Let L.Alpheratz_Influence be a language made using the template
L.Alpheratz(r.inf) from Section 7.3, and r.inf. Let M be a model in that
language, which includes all influence relation instances above and
all the Fragments that these instances relate. The corresponding
graph is shown in Figure 7.2. For brevity, edges are labeled “I”, rather
than “r.inf”. •

120

Chapter 7. Relations

Figure 7.2: Visualisation of a model in L.Alpheratz(r.inf).

121

Chapter 7. Relations

The example illustrates that it is only necessary to assume that
there exists a function f such that SatVal(y) = f (. . . ,SatVal(x)). When
this is done, it is not necessary to also know how exactly the satisfac-
tion of y depends on that of x. It is also not necessary to define the
set V of allowed satisfaction values. This is useful when that set is
still unknown or undecided in problem-solving.

7.4.2 Direction of Influence

You may not know exactly how the satisfaction of y depends on that
of x, but you may know, or wish to hint that the correlation of their
satisfaction values is positive or negative. That is, you want to deliver
the following Language Services:

• s.PosInfluences.PosInfluence: Does satisfying x influence positively the sat-
isfaction of y in M?

• s.NegInfluences.NegInfluence: Does satisfying x influence negatively the
satisfaction of y in M?

To deliver s.PosInfluence and s.NegInfluence, I define a new rela-
tion which can indicate positive or negative influence. I define it as
an influence relation that has a parameter. The parameter gives the
direction of influence.

Relation: inf.d

r.inf.dInfluence.d

Domain & Dimension

r.inf.d⊆ F×F, where F is a set of Fragments.

Properties

Irreflexive and transitive.

Reading

d is either “pos” for positive or “neg” for negative, and therefore

122

Chapter 7. Relations

• (x, y) ∈ r.inf.pos reads “the satisfaction of x positively in-
fluences that of y”,

• (x, y) ∈ r.inf.neg reads “the satisfaction of x negatevely
influences that of y”.

Language Services

• s.PosInfluence: Yes, if (x, y) ∈ r.inf.pos is in M .

• s.NegInfluence: Yes, if (x, y) ∈ r.inf.neg is in M .

Example 7.4.2. How would you define a language that can represent
both positive and negative influence relations over Fragments? How
would you define it by making minimal changes to the definition of
L.Alpheratz? The language L.Ankaa below does this.

Language: Ankaa

L.AnkaaLanguage Modules
r.inf.pos, r.inf.neg, f.map.abrel.g

Domain

Set F of Fragments. r.inf.pos and r.inf.neg are both over Frag-
ments, so that r.inf.pos⊆ F×F and r.inf.neg⊆ F×F.

Syntax

A model M in the language is a set of symbols M = {Z1, . . . , Zn},
where everyφ is generated according to the following BNF rules:

A ::= x | y | z | . . .

B ::= A influences+ A

C ::= A influences- A

Z ::= A | B |C

123

Chapter 7. Relations

Mapping

A symbols denote Fragments, D(A) ∈ F, B symbols denote
r.inf.pos, and C symbols r.inf.neg instances, D(B) ∈ r.inf.pos and
DC ∈ r.inf.neg.

Language Services

s.PosInfluence, s.NegInfluence.

Figure 7.3 shows a graph made by merging the graphs G(F, r.inf.pos)
and G(F, r.inf.neg), both made from the same model M in L.Ankaa.
The graph shows positive and negative influence relation instances.
Positive influences are labeled with “+” and negative with “-”. Note
that the merge of G(F, r.inf.pos) and G(F, r.inf.neg) could be a hyper-
graph, since L.Ankaa lets me have positive and negative influence
relation instances between same Fragments. •

The difference between (x, y) ∈ r.inf and (x, y) ∈ r.inf.d (whichever
d is) reflects a difference in the information available about the satis-
faction of x and of y . While (x, y) ∈ r.inf says simply that I believe that
satisfying x somehow influences satisfying y , (x, y) ∈ r.inf.d says that
I have decided the direction of influence.

7.4.3 Relative Strength of Influence

If you have information about how strongly the satisfaction of a Frag-
ment influences that of another Fragment, this information cannot
be represented in models which can show that there is influence,
and, or, the direction of influence.

I will consider the case when the strength of influence of a Frag-
ment on some Fragment x, is relative to the strength of influence of
all other Fragments which also influence x.

Suppose that the satisfaction of y is influenced by the satisfac-
tion of several other Fragments x1, . . . , xn . How would you indicate
that some of them have stronger influence on the satisfaction of y
than others? That is, how would you deliver the following Language
Service?

124

Chapter 7. Relations

Figure 7.3: A visualisation of a model in L.Ankaa.

125

Chapter 7. Relations

Language Service: InfStrength

If the satisfaction of each of x1, . . . , xn influences the satisfaction
of y in M , then is the satisfaction of y more sensitive to the
satisfaction of xi than to the satisfaction of x j , where xi , x j ∈
{x1, . . . , xn}? s.InfStrength

s.InfStrength is about the relative strength of influence. To deliver
it, it is necessary to compare the strength of influence of satisfying
each x1, . . . , xn on the satisfaction of y . If you knew the exact func-
tion SatVal(y) = f (SatVal(x1), . . . ,SatVal(xn)), then this would not be
difficult to do. You could compare the covariance of each xi to y .

I need a new relation to say that xi has stronger influence on the
satisfaction of y than some x j . The new relation cannot be over Frag-
ments, because it does not compare Fragments, but the strength of
their influence on y . So the new relation, call it r.Stronger_Influence,
is over instances of r.inf or those of r.inf.d.

Relation: str.inf

r.str.infStronger influence

Domain & Dimension

r.str.inf⊆ R ×R, where R is one of r.inf, r.inf.pos, r.inf.neg.

Properties

Irreflexive, antisymmetric, and transitive.

Reading

((xi , y), (x j , y)) ∈ r.str.inf reads “the satisfaction value assigned
to y is more sensitive to the satisfaction value assigned to xi

than to the satisfaction value assigned to x j ”.

126

Chapter 7. Relations

Language Services

• s.InfStrength: Yes, if ((xi , y), (x j , y)) ∈ r.str.inf is in M .

Example 7.4.3. Let L.Schedar be a language made by adding f.str.inf
to L.Ankaa. The language is defined as follows.

Language: Schedar

L.SchedarLanguage Modules
r.inf.pos, r.inf.neg, f.map.abrel.g, r.str.inf

Domain

Set F of Fragments, r.inf.pos⊆ F×F, r.inf.neg⊆ F×F, and

r.str.inf⊆ (r.inf.pos× r.inf.pos)∪ (r.inf.neg× r.inf.neg).

Syntax

A model M in the language is a set of symbols M = {Z1, . . . , Zn},
where every Z is generated according to the following BNF
rules:

A ::= x | y | z | . . .

B ::= A influences+ A

C ::= A influences- A

D ::= B infstronger B |C infstronger C

Z ::= A | B |C | D

Mapping

D(A) ∈ F , D(B) ∈ r.inf.pos, D(C) ∈ r.inf.neg, and D(D) ∈ r.str.inf.

127

Chapter 7. Relations

Figure 7.4: A visualisation of a model in L.Schedar.

Language Services

s.PosInfluence, s.NegInfluence, s.InfStrength.

Figure 7.4 is a visualisation of a model in L.Schedar. The fig-
ure shows that the satisfaction of AddRepEm is more sensitive to
the satisfaction of IdIncLoc than it is to all other Fragments, whose
satisfaction influences that of AddRepEm. •

The relation r.str.inf gives no indication about how to evaluate the
relative strength of influence. Strength can be a function of covari-

128

Chapter 7. Relations

ance, for example. You then need to guess covariance values (in case
you have no say about how exactly the satisfaction of xi influences
that of y) or to decide these values (when you can choose exactly
how the satisfaction of xi influences that of y). Both discussions are
specific to the concrete Problem instance that you are solving. For
the former case, multivariate statistics [109, 138] provides general
guidelines for estimating covariance. For the latter case, another
discipline may provide relevant suggestions, and the discipline in
question depends on what the Fragments are about. For example, if
x1, . . . , xn reflect decisions on the architecture of an information sys-
tem and y is a requirement about the scalability of that information
system, then research on software architecture [125] is relevant.

You can see the absence of precise instructions in r.str.inf as a
deficiency. However, this simply reflects the fact that it is in many
cases required to call upon experts, among stakeholders or elsewhere,
in order to produce relevant models. A language which uses that
relation, rough as it is, is only pointing in the direction of relevant
areas of expertise, rather than attempting to include some of the
knowledge from them.

7.4.4 Summary on Influence Relations

The purpose of influence relations defined above is to represent that
the satisfaction of some Fragments depends on the satisfaction of
others. I defined several influence relations and a function which
illustrated how to assign relative strength of influence to instances of
positive and negative influence relations.

None of the influence relations came with with predefined levels
of satisfaction. I said how to read the satisfied and not satisfied values,
when there are only two levels of satisfaction, but I said nothing about
cases when there are many levels of satisfaction.

This was acceptable precisely because influence relations are
used when we have partial knowledge, due to discovery or indecision
about how exactly to compute the satisfaction value SatVal(y) of a
Fragment y .

The story was that, as my knowledge about SatVal(y) increases,
I will want to stop using r.inf, and want to use r.inf.pos and r.inf.neg
instances. As it further increases, I will want to use f.inf.str to indicate
the relative strength of influence. If I knew even more, I could for-
mulate a concrete function SatVal(y) = f (SatVal(x1), . . . ,SatVal(xn)),

129

Chapter 7. Relations

which I might revise at later iterations in problem-solving.
When you can formulate

SatVal(y) = f (SatVal(x1), . . . ,SatVal(xn)),

you have reached a point in problem-solving when influence re-
lations alone represent less than you know about the influence of
x1, . . . , xn on the satisfaction of y . At that point, you need a language
with more complicated satisfaction scales, and functions assigning
those values. I will return to this in Chapter 10.

7.5 Arguments in Models

A recurring concern in Requirements Engineering is to make justi-
fied models. A model is justified if the rationale for its content is
acceptable to everyone involved in making and using that model (or
at least to those having the authority to complain about the content
of a model).

The rationale explains why something is in the model. If the
content of a model is contested, and nothing is given to settle the
debate, then the model is not justified. If it is not justified, it is unclear
whether the problem and solution it may represent are relevant at
all.

Checking if a model is justified can be done once it is completed.
Another approach is to check every change of the model, to make
sure that the change itself is justified. In both cases, the idea is that
there are some properties that the model should have, and which
must be satisfied in order to say that the model is justified. These
ideas about justification are inspired by a central notion in program
refinement.

Program refinement [151, 41, 73, 40] consists of replacing a piece
of abstract program with a piece of more concrete program, the
benefit being to delay lower-level detail to later steps of program
development. This is related to the idea of incrementally adding
detail discussed earlier, but I want to focus on another important
idea in program refinement.

A central notion in program refinement are proof obligations.
They are properties for which it is necessary to produce a formal
proof, in order to claim that a particular program refinement is cor-
rect. The more concrete program a refines a more abstract program

130

Chapter 7. Relations

b if and only if all the specific proof obligations for that refinement
relation are satisfied. In other words, you can say that there is a pro-
gram refinement relation from a more concrete program a to a less
concrete b if and only if all proof obligations are satisfied.

All relations defined so far in this book come with conditions that
must be satisfied by model elements, in order to have a relation in-
stance between them. These appear in the slots of the corresponding
Language Modules. For example, the “Reading” slot for r.ifm says
that (x, y) ∈ r.ifm reads that x adds details to y , and thus, that this
relation instance should be in a model if the given informal condition
is satisfied, namely, that x does add details to y .

The issue is that these conditions are not equally precise and
unambiguous for all relations, and from there, not equally convincing
to all those making and using models. Proof obligations would ideally
remove, or more realistically reduce the need to debate whether a
program a refines a program b: if proof obligations are satisfied, then
it does, and anyone using the model can check for themselves if they
are satisfied.

However, if I write (x, y) ∈ r.ifm in a model, then my justification
for the existence of that relation instance is, just as the definition
of r.ifm says, my own judgment that x adds details to y . This might
be fine if I am the only person using that model. But you cannot
know from that model and its language why I concluded that x adds
details to y . And this is a practical problem, because if you wanted to
know, you would need to ask me, and that would take time and other
resources away from more relevant uses.

As should be clear by now, problem-solving in Requirements
Engineering involves working with partial information. So it is often
simply not feasible to provide conditions as clearly verifiable as proof
obligations.3

3There are at least two reasons for this. One is that I may not know a clear enough
and complete set of conditions to satisfy, for a relation instance to be present. This
makes it less relevant to use a formal language, such as a formal logic, to define proof
obligations. The issue is not that I cannot formalise something because the formalism
is limited in some way, but that I do not know what exactly to formalise. So just as I
have partial information about the problem to solve, I also have partial information
about the problem-solving method that I am applying. Another reason is that partial
information may change quickly. For example, stakeholders may say something at
a meeting one day, and change their mind at the next. In such cases, formalisation
may be left for later phases of problem-solving, and be restricted only to problem and
solution information which is considered as more stable. For example, it may involve
formalising some aspects of a system design which the stakeholders approved (more

131

Chapter 7. Relations

7.5.1 Support and Defeat

The obligation to have a justified model can perform a similar role to
proof obligations when information is partial or otherwise deficient.
Justification consists of recording reasons for and against the inclu-
sion of Fragments and relations in a model, and checking which of
these are “accepted”. I will consider “accepted” and “justified” to be
synonyms. Reasons may come from model users, other stakeholders,
or from anyone else who gives them. Justification comes with rules
which define when something is “accepted”.

To do justification, I will use a pair of relations called support and
defeat. With them, I will be able to record arguments for and against
parts of models. They will be used to deliver the following Language
Services:

• s.DoesSupports.DoesSupport: Does accepting x support accepting y as well
in M?

• s.DoesDefeats.DoesDefeat: Does accepting x support rejecting (not accept-
ing) y in M?

Support and defeat also make it possible to define languages that
can deliver such Language Services as, for example, “Why is it that
x adds details to y?”, “Why is it that x influences y positively?”, “Do
stakeholders agree that x influences y positively?”, and similar. The
relations are defined as follows.

Relation: sup

r.supSupport

Domain & Dimension

r.sup ⊆ X ×X , where X is either a set of Fragments or relation
instances.

Properties

Irreflexive, antisymmetric, and transitive.

on this in Chapter 10).

132

Chapter 7. Relations

Reading

(x, y) ∈ r.sup reads “if x is accepted, then y should be”.

Language Services

• s.DoesSupport: Yes, if there is (x, y) ∈ r.sup in M .

In contrast to r.sup, r.def is intransitive. This is an important
property, and reflects the idea that if x defeats y and y defeats z, then
it cannot be that x defeats z. By defeating y , x removes the argument
against z, and thereby is not defeating z.

Relation: def

r.defDefeat

Domain & Dimension

r.def ⊆ X × X , where X is either a set of Fragments or relation
instances.

Properties

Irreflexive, antisymmetric, and intransitive.

Reading

(x, y) ∈ r.def reads “if x is accepted, then y should not be”.

Language Services

• s.DoesDefeat: Yes, if there is (x, y) ∈ r.def in M .

The following example illustrates how to use r.sup and r.def to

133

Chapter 7. Relations

give reasons for and against instances of the r.ifm in a model.

Example 7.5.1. How would you define a language which should
represent the incremental adding of detail to models, and reasons
for and against the additional details that are added?

Let L.Diphda be a new language that can represent r.ifm instances,
and Fragments as reasons for and against these instances. Moreover,
it can be used to say that one Fragment is an argument for, or against
another Fragment.

Language: Diphda

L.DiphdaLanguage Modules
r.ifm, r.sup, r.def, f.map.abrel.g

Domain

F is a set of Fragments. r.ifm is over Fragments, so r.ifm⊆ F×F. A
Fragment can act as a reason, or argument in favour or against
a r.ifm instance or another Fragment, so that

r.sup ⊆ (F× r.ifm)∪ (F×F),

r.def ⊆ (F× r.ifm)∪ (F×F).

Syntax

A model M in the language is a set of symbols M = {Z1, . . . , Zn},
where every Z is generated according to the following BNF
rules:

A ::= x | y | z | . . .

B ::= A informs A

C ::= A supports A | A supports B

D ::= A defeats A | A defeats B

Z ::= A | B |C | D

134

Chapter 7. Relations

Mapping

A symbols denote Fragments, so D(A) ∈ F. B symbols denote
r.ifm instances, D(B) ∈ r.ifm. C symbols and D symbols denote,
respectively, instances of r.sup and r.def.

Language Services

s.DoesSupport, s.DoesDefeat.

A way to see L.Diphda, is that I take a model of L.Alpheratz as a
basic model in L.Diphda, and then add arguments in favour or against
r.ifm relation instances in the L.Alpheratz model.

In Example 7.2.1, Fragments RecEmCal, SwtchCal, NoDropCal,
IdIncLoc, ChkDblLoc, and FillIncRep described parts of what needs
to be done, in order to satisfy AddRepEm. In Example 7.2.2, I added
instances of r.ifm over these Fragments. A reason why I added these
relation instances is that each of RecEmCal, SwtchCal, NoDropCal,
IdIncLoc, ChkDblLoc, and FillIncRep said how to satisfy AddRepEm.
Moreover, SwtchCal says that the telecom switches the call, so that it
says who is involved in satisfying AddRepEm. Similarly, RecEmCal
and IdIncLoc also identified other positions, respectively, the dis-
patch centre and dispatcher, who have responsibilities in satisfying
AddRepEm.

This leads to the following new Fragments that justify the said
r.ifm instances:
• HowSwtchCal: SwtchCal says how to satisfy AddRepEm.
• WhoSwtchCal: SwtchCal says who is involved in satisfying Ad-
dRepEm.
• WhenSwtchCal: SwtchCal says when some events happen when
satisfying AddRepEm.
• HowNoDropCal: NoDropCal says how to satisfy AddRepEm.
• HowRecEmCal: RecEmCal says how to satisfy AddRepEm.
• WhoRecEmCal: RecEmCal says who is involved in satisfying Ad-
dRepEm.
• HowIdIncLoc: IdIncLoc says how to satisfy AddRepEm.
• WhoIdIncLoc: IdIncLoc says who is involved in satisfying AddRepEm.
• HowChkDblLoc: ChkDblLoc says how to satisfy AddRepEm.

135

Chapter 7. Relations

• HowFillIncRep: FillIncRep says how to satisfy AddRepEm.
All of the above give reasons in favour of the various r.ifm in-

stances. The following are these instances of r.sup:

(HowSwtchCal, (SwtchCal,AddRepEm)),

(WhoSwtchCal, (SwtchCal,AddRepEm)),

(WhenSwtchCal, (SwtchCal,AddRepEm)),

(HowNoDropCal, (NoDropCal,AddRepEm)),

(HowRecEmCal, (RecEmCal,AddRepEm)),

(WhoRecEmCal, (RecEmCal,AddRepEm)),

(HowIdIncLoc, (IdIncLoc,AddRepEm)),

(WhoIdIncLoc, (IdIncLoc,AddRepEm)),

(HowChkDblLoc, (ChkDblLoc,AddRepEm)),

(HowFillIncRep, (FillIncRep,AddRepEm)).

Figure 7.5 shows a visualisation of the resulting L.Diphda model.
r.sup relation instances give arguments in favour or r.ifm relation
instances. r.sup instances are shown as white circles labeled “A+”,
connected to the Fragment that is the argument, and to the relation
instance which the argument supports. •

Example 7.5.1 illustrated how to give one or more arguments
in favour of individual r.ifm instances. I did not, for example, give
arguments for or against other arguments, yet this can be done. It
follows that I can represent that x is an argument in favour of y ,
and that z is an argument in favour of x, and then, that w is reason
against z. In general terms, it allows me to represent the outcome of
argumentation, the adding of arguments, as chains of r.sup and r.def
instances. The following example illustrates this.

Example 7.5.2. James and Jill are modelling requirements for Lon-
don Ambulance. James made the model discussed in Example 7.5.1,
visualised in Figure 7.5. Jill disagrees that FillIncRep adds details to
AddRepEm by answering how AddRepEm should be satisfied. The
reason why Jill disagrees, is that FillIncRep is not in the scope of
AddRepEm, and is an administrative matter, to be discussed sepa-
rately from how to satisfy AddRepEm, that is, of how to respond to
emergency calls. This can be recorded in the model by adding the
Fragment RepFillOutScp.
• RepFillOutScp: To respond to an emergency call, it is not necessary
to fill out an incident report.

136

Chapter 7. Relations

Figure 7.5: A visualisation of a model in L.Diphda.

137

Chapter 7. Relations

And then, by adding the r.def instance

(RepFillOutScp,HowFillIncRep)

I would update Figure 7.5 by adding a Fragment node for RepFill-
OutScp and an r.def instance from it to HowFillIncRep. •

r.sup and r.def are similar in purpose to relations in existing lan-
guages in Requirements Engineering and elsewhere, which are used
to represent the design rationale [94, 32, 96, 97, 117, 127, 126, 102, 90,
87, 82], that is, reasons for and against the content of models, or if
we look at it from the perspective of the modelling process, then a
record of why different model elements were added or removed.

The idea of representing design rationale with arguments for and
against model elements is related to two important observations
[121]. Firstly, many design and engineering problems are ill-defined,
so-called wicked problems, lacking a clear scope and formulation,
known optimal solutions, or known systematic processes for produc-
ing solutions. Secondly, solving such problems, therefore, cannot
involve a known systematic process, but involves finding pieces of
the problem and pieces of potential solutions, and collaboratively de-
bating their pros and cons by giving arguments for and against these
pieces, or their combinations. Such problem-solving ends rarely be-
cause one finds the best solution, but because of practical time and
resource constraints. This makes it interesting to record the design
rationale as arguments that led to modelling decisions, whereby the
resulting models represent the problem and its solutions, together
with explanations of why you were solving that problem instance
and not another, and why you produced that or those solutions, and
not others.

7.5.2 Accepted or Rejected

Having chains of r.sup and r.def instances raises the issue of accept-
ability. Acceptability is interesting, because something being accept-
able is synonymous to it being justified. In Example 7.5.2, there was
a chain made from (RepFillOutScp,HowFillIncRep) ∈ r.def and

(HowFillIncRep, (FillIncRep,AddRepEm)) ∈ r.sup

that is, HowFillIncRep was in favour of saying that FillIncRep adds
details to AddRepEm, and then an argument against HowFillIncRep.

138

Chapter 7. Relations

Asking about acceptability in this case equates to asking this: Should
(FillIncRep,AddRepEm) ∈ r.ifm be used in problem-solving, given the
said r.sup and r.def instances, or should it be ignored (do as-if it were
not in the model at all)? So we need rules to compute acceptability.

I will see acceptability as a value assigned to relata of r.sup and
r.def instances.

There is a nuance to how to use that value in problem-solving.
Instead of saying that acceptable elements should stay in a model,
and unacceptable ones be removed, I will remove nothing from a
model. (You can have different visualisations of the same model,
some showing all, some only parts, so there really is no need to
remove model parts.) Instead I will say that only acceptable elements
should be used in problem-solving. The reason for this is that new
elements and r.sup and r.def instances may change the acceptability
of existing elements. This is because argumentation, in the form
outlined above with a relation for supporting arguments and another
for counterarguments, is a form of non-monotonic reasoning, a point
made in philosophy, in relation to, for example, informal logic [147,
10, 72], and in artificial intelligence, in relation to argumentation
systems [45, 27, 9] and defeasible logics [114, 129, 116].

While acceptability and satisfaction are values assigned to model
elements, they are different kinds of values, because they are used dif-
ferently in problem-solving. I said earlier that satisfying x amounted
to doing successfully what x describes. If you think in terms of satis-
faction, then the acceptability value of x tells you if you should worry
about the satisfaction of x at all. If x is not acceptable, then it is irrel-
evant to problem-solving, and it does not matter, for example, how
it influences other model elements. This makes it unnecessary to
evaluate the satisfaction of x. If x is acceptable, then it makes sense
to evaluate the consequences of satisfying or not satisfying it.

The following gives a rough idea about how to compute accept-
ability. Suppose that y supports x, and z defeats y , and that nothing
else relates via argues relations to any of x, y , and z. What is the ac-
ceptability of x, y , and z? A common rule in argumentation systems
in artificial intelligence [27] is that z is acceptable, since there is no
argument against it. So because z is acceptable, and is an argument
against y , then y is not acceptable (rejected). Finally, as y was in
favour of x, and y is now not acceptable, then the convention is that
x is rejected also, as the only argument in its favour is rejected. This
is usually a bit more complicated, as there can be more than one

139

Chapter 7. Relations

arguments in favour and against any one element.

Example 7.5.3. To illustrate the computation of acceptability, I start
with the simpler case, when a model has only one so-called “exten-
sion”. An extension includes all acceptable model parts. Depending
on the language in which the model is made, and on the content of
the model, it is possible to have models with more than one exten-
sion.

Figure 7.6(a) shows a visualisation of a L.Diphda model which
takes the Fragments AddRepEm, FillIncRep, HowFillIncRep, and Rep-
FillOutScp from earlier examples, and adds six new Fragments x1 to
x6. The rationale relations matter for this example, not the specifics
of actions or conditions these new Fragments describe.

Which Fragments in Figure 7.6(a) are acceptable? Consider first
the leaves, and observe that there are no arguments against Ad-
dRepEm, FillIncRep, x2, x3, x5 and x6, so that they are acceptable.
x6 supports x5. Since x5 is acceptable and is against x4, x4 is not
acceptable. Consequently, it does not matter for the acceptability of
x1 that x4 is against x1.

However, x3 is acceptable and attacks x1. I therefore need to
choose if arguments against or arguments for are stronger, since this
determines whether x1 is acceptable (as x5 is an acceptable argument
in its favour). I take the cautious approach, and decide that negative
arguments cancel positive ones, and therefore, x1 is not acceptable.
It follows that RepFillOutScp is acceptable, and HowFillIncRep is not.
So HowFillIncRep is no longer an acceptable argument in favour
of the r.ifm relation from FillIncRep to AddRepEm. This leads me
to a second decision, which is whether the absence of a positive
argument in favour of a model part, also means that that model part
is not acceptable. I will assume that it is acceptable, as I did the same
for, for example, x6 which also lacks positive arguments in its favour.

The resulting acceptability values are shown as additional mark-
ers on model elements in Figure 7.6(b). The model there has exactly
one extension, and it includes all model parts which are marked with
the acceptability value 1.

Figure 7.7(a) shows what happens when there is an additional
r.def instance, which leads to two extensions. For a designer of the
language, the possibility for alternative extensions means that the
language could suggest which of the extensions to choose. •

I use Dung’s definition of acceptability [45]. This is convenient
because it is simple and generalises many others in artificial intel-

140

Chapter 7. Relations

(a) A visualisation of a model discussed in Example 7.5.3.

(b) Acceptability values for the model in Figure 7.6(a).

Figure 7.6: Illustration of acceptability values, part one.

141

Chapter 7. Relations

(a) There are now two extensions.

(b) Dung argumentation framework from f.acc on Figure
7.7(a).

Figure 7.7: Illustration of acceptability values, part two.

142

Chapter 7. Relations

ligence. The rough idea is similar (but not the same, as explained
in Example 7.5.4) to that explained above with x, y , and z and in
Example 7.5.3. The main difference is that in his graphs, all edges are
instances of the so-called “attack” relation. Attack corresponds to my
r.def, but there are no relations in to capture supporting arguments.
This is not a major issue, but will influence how I convert my models
into his. I will call his models “argumentation frameworks”.

I need a function that delivers the following Language Service.

Language Service: IsAcceptable

Is w acceptable in W , given relations r.sup and r.def over W ? s.IsAcceptable

The function f.acc below takes instances of r.sup and r.def over
some set W , and determines if some w ∈W is acceptable or not.

Function: acc

f.accAccepted

Input

A Fragment or relation instance w , a set W such that w ∈ W ,
A+ ⊆ r.sup, and A− ⊆ r.def, where r.sup ⊆ W ×W and r.def ⊆
W ×W .

Do

1. Let G(W, r.sup) and G(W, r.neg) be graphs made with f.map.abrel.g.

2. Let G(w, W, r.sup) be the subgraph of G(W, r.sup), which
includes only the paths of G(W, r.sup) which end in w .

3. Let G(w, W, r.neg) be the subgraph of G(W, r.neg), which
includes only the paths of G(W, r.neg) which end in w .

4. Let C include all connected components of G(w, W, r.sup).

143

Chapter 7. Relations

5. Let K include every node from G(w, W, r.sup), which is
not in a connected component in C .

6. Make an empty set, call it Arg, and let lArg be a function
which will return the label of each element in Arg.

7. For each c ∈C , add a to Arg and let lArg(a) = c.

8. For each element k ∈ K , add a to Arg and let lArg(a) = k.

9. Make the graph AF = (Arg,Att), with Att ⊆ Arg×Arg and
let Att be empty.

10. For each (wi , w j) ∈ r.def in G(w, W, r.def), add an edge
(ai , a j) ∈ Att to AF, so that ai is such that, either

• lArg(ai) = wi , if wi ∈ K , or

• lArg(ai) = ci , if ci ∈C if wi is a node in the connected
component ci ,

and a j is such that, either

• lArg(a j) = w j , if w j ∈ K , or

• lArg(a j) = c j , if c j ∈ C if w j is a node in the con-
nected component c j .

11. The graph AF = (Arg,Att) is a Dung argumentation frame-
work.

12. Use an existing algorithm [105] to compute the accept-
ability of arguments in AF.

13. If an argument a in AF is acceptable, lArg(a) = k and k ∈ K ,
then that element in W is acceptable.

14. If an argument a in AF is acceptable, lArg(a) = c and c ∈C ,
then all elements of W which are in c are acceptable.

15. Let Acc(W) include all acceptable elements of W .

Output

The set Acc(W).

144

Chapter 7. Relations

Language Services

• s.IsAcceptable: Yes, if w is in the set Acc(W).

Example 7.5.4. To clarify how f.acc works, recall that a Dung argu-
mentation framework AF = (Arg,Att) is a graph where nodes repre-
sent arguments and edges the attack relations. If an argument attacks
another, then believing in the former tells us that we should not be-
lieve in the latter, or that the former is evidence against the latter.
So the attack relation equates in use to r.def. But there is no rela-
tion in an argumentation framework which corresponds to r.sup. I
therefore have to decide what we do with r.sup when making a Dung
argumentation framework. f.acc shows one way to do this.

Applying f.acc to the model in Figure 7.7(a) gives the argumen-
tation framework visualised in Figure 7.7(b). Tha figure also shows
the acceptability values in two extensions of the framework. Note
the differences between the extensions in the Dung argumentation
framework and the extensions in Figure 7.7(a). They are due to the
choice, in f.acc, to equate a Dung argument to a connected compo-
nent over r.sup instances. •

There are algorithms to find connected components of a graph
[74] and to compute extensions of Dung argumentation frameworks
[105]. All nodes in a Dung argumentation framework (called argu-
ments there) are considered as acceptable if they are in an extension
of the given argumentation framework.4

Asking that a relation instance x in a model is acceptable accord-
ing to f.acc can be seen as an analogue to a single proof obligation,
in the sense that it is a single condition that the relation instance
needs to satisfy in order to be relevant for problem-solving.5 In con-

4I leave it to the reader to look up the types of extensions, how they differ, and what
consequences using one or another type of extension in f.acc would have [45, 128].

5It is an analogue, because it is a justification and not a deductive proof, as in a
formal logic with a monotonic syntactic consequence relation. Namely, if you have a
deductive proof of some x in a monotonic logic, then you can still prove x regardless
of any new formulas that you are adding, while having a justification for x is sensitive
to new formulas, in that new formulas can block proofs which we previously had. As
Pollock observes, justification is defeasible reasoning [114]: “[...] inductive reasoning
is not deductive, and in perception, when one judges the colour of something on

145

Chapter 7. Relations

trast to proof obligations, which can depend on the properties of
x and so be specific to the type of x, acceptability is independent
from the properties of x and therefore, it can apply to any x, in any
model, in any modelling language. For example, if x is a relation
instance, proof obligations may be sensitive to x being reflexive or
not, symmetric or not, and so on, while acceptability of x depends
solely on those concrete reasons for and against x that we have in a
particular model (not a modelling language, and so not any model,
but exactly that model). The benefit is that we can build acceptability
into a language when we lack a clear idea for proof obligations. The
limitation is precisely that it is independent from the properties of
x and so involves collecting and confronting anew reasons for and
against.

7.6 Combinations of Relations

Suppose you have a language that can represent r.ifm and r.inf in-
stances over Fragments, and that it lets you have two relation in-
stances between same Fragments. For example, you could have a
model with (x, y) ∈ r.ifm and (x, y) ∈ r.inf. First of all, would you want
the language to allow this in models? And if you do, then, does know-
ing that x both influences and informs y tell you something more
than what these two relation instances tell you each on its own?
When it does tell you more, then I will say that the relations interact.

When a language has more than a single relation, the challenge
is to decide if these relations interact or not, and if the they do, then
how to use their interactions.

If relations interact, then it matters for instances of a relation r.A
that there exist instances in the model of another relation r.B. Section
7.6.1 focuses on the simpler case of independence, and Section 7.6.2
on interaction.

the basis of how it looks to him, he is not reasoning deductively. Such reasoning
is defeasible, in the sense that the premises taken by themselves may justify us in
accepting the conclusion, but when additional information is added, that conclusion
may no longer be justified. For example, something’s looking red to me may justify
me in believing that it is red, but if I subsequently learn that the object is illuminated
by red lights and I know that that can make things look red when they are not, then I
cease to be justified in believing that the object is red.”

146

Chapter 7. Relations

7.6.1 Independent Relations

L.Diphda included three relations and they were not interacting. It is
a permissive language, as it imposes no constraints at all on how the
presence of some relation between two Fragments x and y influences
the presence or direction of other relation instances between the
same pair of nodes. In other words, the definition of the language is
silent on how, if in any way, the relations in it are interacting.

This is unlikely to cause problems if its models are such that there
is only one relation instance over any two Fragments. When there are
two or more edges between two nodes, then it may be unclear how
to read this combination of relation instances. If there are two nodes,
x and y , such that (x, y) ∈ r.ifm and (x, y) ∈ r.def, then what can you
conclude about these two nodes? The language itself does not say if
this is a modelling error, or is somehow useful in a model.

7.6.2 Interacting Relations

The problem with fitting different relations together in a language,
and especially if the relations are only informally defined, is that it
may allow models that convey unintended information to their users.
There is no guarantee that all unintended information will be benign
in problem-solving, so we are obliged to worry about how relations
interact and to sanction problematic interactions.

I will use L.Achernar below to illustrate this discussion. It has the
inform relation and the positive and negative influence relations.

Language: Achernar

L.AchernarLanguage Modules
F, r.ifm, r.inf.pos, r.inf.neg, f.map.abrel.g

Domain

Set F of Fragments, r.ifm⊆ F×F, r.inf.pos⊆ F×F, and r.inf.neg⊆
F×F.

Syntax

147

Chapter 7. Relations

A model M in the language is a set of symbols M = {Z1, . . . , Zn},
where everyφ is generated according to the following BNF rules:

A ::= x | y | z | . . .

B ::= A informs A

C ::= A influences+ A

D ::= A influences- A

Z ::= A | B |C | D

Mapping

D(A) ∈ F, D(B) ∈ r.ifm, D(C) ∈ r.inf.pos, and D(D) ∈ r.inf.neg.

Language Services

Same as r.ifm, r.inf.pos, and r.inf.neg.

L.Achernar simply puts together several relations, while still mak-
ing sure that the language deliver all the Language Services that the
relations separately could. But, it will be clear below that the mod-
eller has to invest significant effort with this language in order to
make unambiguous models. One reason for this is that the language
definition does not say how relations interact.

For example, suppose that a L.Achernar model includes, among
others, the Fragments x and y and the following two relation in-
stances.

(x, y) ∈ r.inf.pos

(x, y) ∈ r.inf.neg

Does, then, x influence positively or negatively y? The answer is
not in the definitions of L.Achernar and of the influence relations, as
they say nothing about such cases. It is also irrelevant to look outside
these definitions, since I they are neither equivalent, nor subtypes
of others that are defined outside this tutorial. The only remaining
option is that the influence relations, and therefore the L.Achernar
language, leave it up to the model user to decide for herself if x
positively or negatively influences y .

148

Chapter 7. Relations

If the language definition does not explain what to do with re-
lation interactions, then the language does not provide support to
its users, on how to deal with these combinations. The language
can include Language Services focused on interactions, such as the
following.

Language Service: NegWins

If (x, y) ∈ r.inf.pos and (x, y) ∈ r.inf.neg, then does x influence
positively or negatively y? s.NegWins

Suppose that the answer is: x influences y negatively, and remove
(x, y) ∈ r.inf.pos. This answer can be added to a language as a func-
tion, for example, to L.Achernar. The new language would deliver
s.NegWins.

The more general point is that once there is more than one re-
lation in a language, it is useful to explain how to use each possible
interaction between these relations. This may simply result in explic-
itly stating in the language definition that it is up to the modellers to
decide what to do with interactions.

Consider now all possible interactions of relations in L.Achernar.
For each interaction, I give a rule which could be applied.

1. (x, y) ∈ r.ifm and (x, y) ∈ r.inf.pos is allowed, and indicates that
x informs y , and in such a way that satisfying it positively
influences the satisfaction of y .

2. (y, x) ∈ r.ifm and (x, y) ∈ r.inf.pos can be handled in different
ways, of which two are below:

• One option is to decide that is not allowed, and one of
the two should be removed from the model. This can be
motivated as follows: if y is adding details to x, this is
because it is clearer how to satisfy y and less clear how to
satisfy x, so that I will not be looking to satisfy y by satis-
fying x. (If the language had the relations for justification,
then it would not be necessary to remove one of the two
relation instances from the model. It would be enough to
make one of the two unacceptable.)

149

Chapter 7. Relations

• Another option is to allow this if y adds such details to x
by explaining the consequences which will occur if x is
not satisfied, so that if x is satisfied, these consequences
will occur, which is captured by the positive influence
relation.

3. (x, y) ∈ r.ifm and (y, x) ∈ r.inf.pos should be handled in the same
way as the case (y, x) ∈ r.ifm and (x, y) ∈ r.inf.pos.

4. (x, y) ∈ r.ifm and (x, y) ∈ r.inf.neg can be handled via analogous
options to those for (y, x) ∈ r.ifm and (x, y) ∈ r.inf.pos, except
that there is negative influence.

5. (y, x) ∈ r.ifm and (x, y) ∈ r.inf.neg should be handled in the same
way as the case (x, y) ∈ r.ifm and (x, y) ∈ r.inf.neg.

6. (x, y) ∈ r.inf.pos and (x, y) ∈ r.inf.neg is not allowed, and one of
the two should be removed.

7. (y, x) ∈ r.inf.pos] and (x, y) ∈ r.inf.neg can be handled in differ-
ent ways, and two are below for illustration:

• Remove one of the two influence relations.

• Consider that these two influence relations represent a
feedback mechanism, and leave them in the model.

The discussion above leads to three important remarks. The first
is about incompleteness in language definition, the second on how
completing a language definition suggests new Language Services,
and the third on how to define new relations from combinations of
existing ones.

• The discussion of relation interactions shows that the defini-
tion of L.Achernar was incomplete. It is necessary to consider
each of the possible interactions, check if the language defini-
tion says something about them, and if not, then decide what
to do with the interaction, that is, make new language design
decisions. So I decided that when x both positively and nega-
tively influences y , one of these two influence relations should
be removed.

• The second important remark is that looking at all possible
interactions suggests new Language Services. For example,

150

Chapter 7. Relations

adding these new rules for interactions to the language can
answer, for example, “Is a model M in L.Achernar correct?”. A
model in L.Achernar was correct as long as the model did not
violate the actual definitions of the individual relations (for
example, it could violate them if it had two positive influence
relations between same two nodes). If the rules on interactions
are added to the language, then model correctness gets a new
definition in it.

• A particular case of interaction, or more of them, can be used
to define new relations in a language. For example, I can define
a new relation called r.Feedback[mixed] as a binary relation
that exists between Fragments x and y if and only if there
are (x, y) ∈ r.Influence[positive] and (y, x) ∈ r.Influence[negative].
This new relation is not a primitive of the language, as it is
equivalent to a particular pattern of instances of other relations
in the language.

7.7 Summary on Relations

The following are the main ideas from the preceding sections on
relations:

• When defining a relation, it is useful to say, at least, what it re-
lates, what to do to add its instances to models, and its formal
properties (which are necessary if you want to do computa-
tions over graphs induced by the relation instances.

• The influence relations illustrated how you can have relations
that reflect differences in how much you know when making a
model. For example, if you think there is influence of satisfying
x on satisfying y , and you do not if that influence is positive
or negative, or how strong it may be relative to others that
influence the satisfaction of y , then you can use r.inf. If you
then decide or discover that the influence is positive, then you
can represent this with an instance of r.inf.pos.

• Rules for the use of a relation are central to its definition, as
they give the conditions to satisfy, in order to add a relation
instance to a model. Ideally, use rules should be such that
any model user can check if a relation instance is correct with

151

Chapter 7. Relations

regards to its use rules, that is, if it satisfies the required con-
ditions. When you have use rules that are difficult to verify,
you can augment them with a justification process, which was
illustrated with f.Accepted.

• When a language has two or more relations, and when in-
stances of different relations can be between the same model
elements, then it is necessary to consider all possible relation
interactions, decide how to read and use them, and how to
capture these instructions in the language definition.

There are many other topics on defining relations in Require-
ments Modelling Languages, and some of them will be discussed in
the next sections. Chapter 8 focuses on how guidelines for modelling
can be added to language definitions, but shows also how guidelines
can suggest new relations and appear in the definitions of these rela-
tions. Chapter 9 introduces categories, and illustrates how relations
can be restricted to specific Fragment categories, which can reduce
the number of relation interactions. Chapter 15 looks at how to pro-
duce proofs of satisfaction from models, which is required to solve
DRP instances, and shows one way of mapping relation instances to
formulae in a formal logic. Chapter 12 uses n-ary relations in order
to represent alternatives in models.

152

Chapter 8

Guidelines

This Chapter is on how to define guidelines for problem solving in
Requirements Modelling Languages. Guidelines recommend how to
do something in problem solving, so as to move closer to a solution.
The Chapter focuses on the following questions.

1. How to find guidelines for problem-solving, and embed them in
Requirements Modelling Languages? (Section 8.2)

2. How to combine guidelines into new, more complicated ones?
(Section 8.3)

3. How to strengthen or weaken guidelines, and why? (Section 8.4)

153

Chapter 8. Guidelines

8.1 Motivation

Guidelines suggest how to do problem solving in Requirements En-
gineering. They may recommend how to elicit requirements, how
to make them more precise, how to prioritise them, how to validate
them with stakeholders, and so on.

Guidelines have a narrow scope when they focus on a specific
task in problem solving. An example is f.acc. Guidelines that have
broader scope address complicated problem solving tasks. Suppose,
for example, that you know the following rough recommendation:

Add details to the model until all stakeholders have agreed
that the most detailed elements are detailed enough.

To help you apply this recommendation, a language clearly needs
r.ifm (or a relation which delivers the same Language Services as
r.ifm), so that you can represent the adding of detail and identify the
most detailed model elements. The language also needs to enable
stakeholders to express agreement and disagreement, to represent
reasons for agreeing or disagreeing, and to help you identify what
the stakeholders agree and disagree on. You can do the first two with
r.sup and r.def, and if you say that any acceptable model element
is also agreed upon, then the language can use f.acc to find what is
agreed and disagreed on.

Requirements Modelling Languages and guidelines are inter-
twined, in that it is difficult to design one while ignoring the other. If
a language should help us address an issue during problem solving,
then it will be designed to fit ideas and experience of how such issues
should be addressed. An Language Service summarises the issue to
address, guidelines tell you what to do to address the issue, and the
language should deliver the Language Service.

For example, the inclusion of a relation in a language reflects
decisions about what the language should help its users with, that is,
which Language Services it should deliver. A guideline may suggest
that you should first add details to model elements, and then look for,
for example, how the satisfaction of some influences that of others.
To apply the guideline, you need a language that can represent the
increase in details in model elements, and how the satisfaction of
some influences that of others.

Sections 8.2 and 8.3 illustrate how to go from identifying an is-
sue, to guidelines for addressing it, and to new Language Services

154

Chapter 8. Guidelines

and Language Modules which help apply these guidelines and em-
bed them in language definitions. Section 8.4 illustrates the ideas
of strengthening and weakening guidelines and why that may be
relevant.

8.2 Guidelines from Arguments

L.Alpheratz can be used to represent that some Fragments add details
to others. But it did not suggest how to find new Fragments which
inform existing ones. It could not deliver the following Language
Services:

• s.HowInformss.HowInforms: Given a Fragment x, how to find a new Frag-
ment y which adds details to x, that is, such that (y, x) ∈ r.ifm?

• s.WhyInformss.WhyInforms: Given two Fragments x and y such that (y, x) ∈
r.ifm, why does y add details to x?

More detailed Fragments can be found, for example, through
further elicitation, analysis of comparable Problem instances, by
drawing on experience with comparable systems and in related do-
mains, and so on.

If I want guidelines that are independent from the specific do-
main or Problem class, I can look at various existing models that
represent the increase in details of Fragments. The aim is to find
regularities in the differences between Fragments that are related by
r.ifm instances.

Take Example 7.5.1. There are patterns in the arguments given for
r.ifm instances. The arguments are similar in HowSwtchCal, HowN-
oDropCal, HowRecEmCal, HowIdIncLoc, HowChkDblLoc, and HowFill-
IncRep, in that they argue for the presence of r.ifm instances by saying
each time, that a Fragment x adds details to Fragment y by indicating
how actions or conditions that y describes are, respectively, executed
and satisfied. There are also similarities in the rationale WhoSwtch-
Cal, WhoRecEmCal, and WhoIdIncLoc, where the additional details
always say something about who is involved in satisfying the condi-
tions that the informing Fragment describes.

While looking for rationale patterns may not lead to universally
applicable guidelines that are good for all languages, it can still help
deliver additional Language Services relative to L.Alpheratz.

155

Chapter 8. Guidelines

If I find recurring reasons for adding new Fragments, and you and
I agree that they are sufficiently relevant and generic to build them
into a language, then I can document parts of how you and I use
the language into that language. The language embeds more of our
conventions on its use. While this may result from our joint work on
models, it also means that we will be recommending those ways for
use to anyone interested in making models with that language. For
example, if you use L.Alpheratz, then you also accept that the inform
relation is irreflexive, antisymmetric, and transitive; otherwise, you
are using another language, not L.Alpheratz.

Given some Fragments about the London Ambulance in Example
7.5.1, I can ask several questions for any given Fragment x, including
who does the action or satisfies the condition that x describes, how,
when, where, and for whose benefit. If another fragment y answers
at least one of these questions for the action or condition in x, then
y is adding details to x. If you and I agree that asking such questions
is relevant, we can define the following Language Module.

Function: add.ifm

f.add.ifmAdd details

Input

x ∈ F.

Do

1. Ask the following questions about x:

• Who: Who does (satisfies) x?

• How: How is x done (satisfied)?

• When: When is x done (satisfied)?

• Where: Where is x done (satisfied)?

• WhoFor: Who needs x to be done (satisfied)?

Above, “does” is used if x describes actions; “satisfies” if
it describes conditions.

156

Chapter 8. Guidelines

2. Define sets Fq and Rq , for

q ∈ {Who,How,When,Where,WhoFor},

such that:

(a) each y ∈ Fq answers the question q for x,

(b) if y answers the question q for x, then there is (y, x) ∈
r.ifm in Rq .

Output

Sets Fq and Rq , for q ∈ {Who,How,When,Where,WhoFor}.

Language Services

• s.HowInforms: Apply f.add.ifm to Fragments in a given
model M , and add the resulting sets back to M .

• s.WhyInforms: If Rq is output by applying f.AddsDetails,
and (y, x) ∈ Rq , then y adds details to x because it answers
the question q for x.

The function f.add.ifm suggest finding more detailed Fragments
via five questions. All new Fragments go in the sets Fq . When a
Fragment y ∈ Fq answers a question q for x, then I also add a relation
instance (y, x) ∈ r.ifm and it goes in Rq .

In order to keep the information in models, about which Frag-
ment answers which questions, I define five new unary relations on
instances of r.ifm. The idea is that, if (y, x) ∈ r.ifm and y answers the
question q for x, then there will be an instance of a unary relation r.q
on (y, x) ∈ r.ifm. The relations are defined with the following template,
where q ∈ {Who,How,When,Where,WhoFor}.

Relation: q

r.qAnswers question q

157

Chapter 8. Guidelines

Domain & Dimension

r.q⊆ R, where R is a set of r.ifm instances.

Properties

None.

Reading

r ∈ r.q, where r = (y, x), reads “y adds details to x by answering
question q for x”.

Language Services

• s.WhyInforms: If (y, x) ∈ r.q, then y adds details to x be-
cause it answers the question q for x.

Example 8.2.1. How would you define a language that has r.ifm and
all five r.q relations? The language L.Hamal below has these relations.

Language: Hamal

L.HamalLanguage Modules
r.ifm, r.Who, r.How, r.When, r.Where, r.WhoFor, f.add.ifm

Domain

F is a set of Fragments. r.ifm⊆ F×F, r.q ∈ r.ifm, for every

q ∈ {Who,How,When,Where,WhoFor}

Syntax

A model M in the language is a set of symbols M = {Z1, . . . , Zn},
where every Z is generated according to the following BNF

158

Chapter 8. Guidelines

rules:

A ::= x | y | z | . . .

B ::= A informs A

C ::= Who | How | When | Where | WhoFor

D ::= B answers C

Z ::= A | B | D

Mapping

A symbols denote Fragments, D(A) ∈ F. B are for r.ifm instances,
that is, D(B) ∈ r.ifm. D symbols denote r.q instances,

D(B answers Who) ∈ r.Who, . . . ,

D(B answers WhoFor) ∈ r.WhoFor.

Language Services

• s.WhyInforms: If q.(y, x) ∈ r.q, then y adds details to x
because it answers the question q for x.

Figure 8.1 is a visualisation of a model in L.Hamal. It shows r.ifm
instances and questions associated to each of these instances. The
model was made by applying f.add.ifm to the Fragments in Example
7.2.1. •

8.3 Composite Guidelines

The function f.add.ifm gave guidelines on how to add instances of
one relation, r.ifm, with the side-effect that you added new relations,
r.q over instances of r.ifm. The aim now is to define guidelines which
rely on several relations and functions. As with f.add.ifm, the result
will be a function.

Adding details to model elements, and then evaluating how the
satisfaction of some influences that of others, are closely related to

159

Chapter 8. Guidelines

Figure 8.1: A visualisation of a model in L.Hamal.

160

Chapter 8. Guidelines

the issue of operationalisation in Requirements Engineering. The
basic guideline in operationalisation can be stated as the rule Op
below, and is inspired by analogous notions in KAOS, Tropos, and
Techne.

Op: Add details to model elements until the most de-
tailed ones are judged as detailed enough that it is known
how to satisfy them, and satisfying them results in satis-
fying all the least detailed model elements.

The guideline assumes that I start with Fragments that say what
needs to be satisfied and, or executed, but that it is not clear how or
who will do it. Operationalisation is the process by which I need to
find and decide who and how make sure that these initial Fragments
are satisfied.

To make a function inspired by the operationalisation guideline,
you need r.ifm and r.inf.pos to represent, respectively, the increase in
detail and the influence on satisfaction. You also need f.add.ifm to
find new more detailed Fragments. Finally, you want this function to
deliver the following Language Service.

Language Service: AreOpr

Are all Fragments in W operationalised? s.AreOpr

The function is f.opr.all and is defined as follows.

Function: opr.all

f.opr.allOperationalise all Fragments in a set

Input

Set W of Fragments.

Do

161

Chapter 8. Guidelines

1. Let X be an empty set, add all members of W to X .

2. Apply f.add.ifm to every Fragment w ∈ X , and add to X all
new Fragments which you thereby find. If a Fragment y ∈
X is detailed enough that it is known how to satisfy and,
or execute what it describes, and it is known who takes
the responsibility to do so, then do not apply f.add.ifm to
y .

3. For every (a,b) ∈ r.ifm, where a,b ∈ X , check if there
should be (a,b) ∈ r.inf.pos or (a,b) ∈ r.inf.neg and if yes,
then add it. Stop when it is known how the satisfaction of
each more detailed Fragment influences the satisfaction
of the Fragment to which adds details.

4. If there is a set Z ⊆ X such that satisfying all Fragments in
Z positively influences the satisfaction of all Fragments
in W , and there are no Fragments in W \ Z which inform
those in Z , then stop. Otherwise, go back to step 1 above.

Output

Set Z of Fragments which are said to operationalise all Frag-
ments in W .

Language Services

• s.AreOpr: Yes, if there is a set Z made by applying f.opr.all
to W .

Example 8.3.1. f.opr.all can work with models of languages which
have r.ifm, r.inf.pos, and r.inf.neg. L.Acamar below has these relations,
and so can include f.opr.all.

Language: Acamar

L.AcamarLanguage Modules

162

Chapter 8. Guidelines

r.ifm, r.inf.pos, r.inf.neg, f.add.ifm, f.opr.all

Domain

F is a set of Fragments, r.ifm⊆ F×F, r.inf.pos⊆ F×F, and r.inf.neg⊆
F×F.

Syntax

A model M in the language is a set of symbols M = {Z1, . . . , Zn},
where every Z is generated according to the following BNF
rules:

A ::= x | y | z | . . .

B ::= A informs A

C ::= A influences+ A

D ::= A influences- A

Z ::= A | B |C | D

Mapping

D(A) ∈ F, D(B) ∈ r.ifm, D(C) ∈ r.inf.pos, and D(D) ∈ r.inf.neg.

Language Services

Those of r.ifm, r.inf.pos, and r.inf.neg.

Figure 8.2 is a visualisation of a model in L.Acamar, made by
applying f.opr.all to the Fragment AddRepEm. •

8.4 Stronger and Weaker Guidelines

f.opr.all uses f.add.ifm, and therefore, produces also graphs G I [q] for
various questions q . f.opr.all also says that we should not apply
f.add.ifm to those Fragments that are detailed enough, and a Frag-
ment is, if it is known how to satisfy it and who is responsible for
doing so. Notice, then, that f.opr.all did not define “being detailed

163

Chapter 8. Guidelines

Figure 8.2: A visualisation of a model in L.Acamar.

164

Chapter 8. Guidelines

enough” by the presence or absence of r.q relations, for, for example,
How and Who questions. Instead, f.opr.all made no commitment
about what exactly needs to be satisfied, in order for a Fragment to
be “detailed enough”.

If you want to define more precisely the conditions that a Frag-
ment should satisfy, to be detailed enough, this can be done with
another function. In that function, call it f.opr.all.b, all is identical to
f.opr.all, except that the second step is replaced by the following:

Apply f.add.ifm to every Fragment w ∈ X , and add to X
all new Fragments which you thereby find. A Fragment
a is detailed enough if both Who and How questions are
answered for that Fragment, and do not apply f.add.ifm
to that Fragment.

Above, the italics mark the part which differs relative to f.opr.all. The
difference is that now use r.q in judging if a Fragment is detailed
enough.

Verifying if a Fragment is detailed enough is simpler in f.opr.all.b
than in f.opr.all, as it involves checking for the presence of r.Who and
r.How instances, while in f.opr.all, you would have had to read the
individual Fragments, to say if they are detailed enough.

While f.opr.all.b did make it easier to check if a Fragment is de-
tailed enough, it did not necessarily result in a better guideline, since
it is easy to find examples of Fragments which would be detailed
enough for f.opr.all.b and not for f.opr.all. For example, answering a
Who question does not necessarily identify who is responsible, only
who is involved in satisfying what the Fragment describes. In short,
the guideline documented in f.opr.all.b gives more precise and clearer
instructions on what to do than f.opr.all, but neither function gives
precise and clear sufficient conditions for a Fragment to be detailed
enough.

Suppose that there are new conditions (which are neither in
f.opr.all, nor f.opr.all.b) that a Fragment has to satisfy, in order to
be considered detailed enough. Let f.opr.all.c be the function made
by adding these new conditions to f.opr.all.b. For example, the new
conditions are that a Fragment is detailed enough if and only if all q
questions are answered for it. I will say that f.opr.all.c is stronger than
f.opr.all.b, and that the former was made by strengthening the latter.

Strengthening a guideline involves adding conditions to check
when applying the guideline, or to check in order to establish if

165

Chapter 8. Guidelines

the guideline is correctly applied. Weakening is the opposite, and
consists of removing conditions that need to be checked.

As an additional illustration, remark that I said nothing about
negative influences among Fragments. It follows that any of the three
operationalisation functions can produce a set Z that operationalises
its input set X , and we could have had negative influence relations
between members of Z . One way to strengthen each of these func-
tions is to add to each of them the condition that there can be no
negative influences between members of Z .

8.5 Summary on Guidelines

The following are the main ideas discussed for guidelines:

• Guidelines recommend how to put the language to work when
doing problem-solving. I can embed guidelines into the defi-
nition of the language, and in that way force specific ways of
using it.

• You can define narrow guidelines on, for example, how to add
a new relation instance to a model. In this tutorial, such guide-
lines appeared in use rules for relations. You can also com-
bine narrow guidelines into broader ones, which use several
relations, functions, or otherwise (other kinds of Language
Modules introduced later in this tutorial), to deliver more com-
plicated Language Services.

• Guidelines can be strengthened or weakened. I made no sug-
gestions about universal rules on whether to strengthen or
weaken a guideline. The stronger a guideline is, the more de-
manding it is on those involved in modelling, as there are more
conditions to satisfy to use the language correctly. There may
be situations in which this is not realistic, and consequently
makes the language difficult to apply correctly, or makes it
inapplicable.

• While experienced users of a language can suggest guidelines,
it is also possible to identify guidelines by looking at recurring
arguments for modelling decisions.

166

Chapter 9

Categories

This Chapter looks at why and how to organise Fragments into cat-
egories. “Requirement”, “domain knowledge”, “specification”, “goal”,
and so on, are examples of recurrent categories in Requirements Engi-
neering. I focus on the following issues, moving from simpler to more
complicated topics on categories.

1. Why and how to use independent categories? (Section 9.2)

2. What to do when there is a taxonomy of categories? (Section
9.3)

3. What is the meta-model, and what the ontology of a language?
(Section 9.4)

4. Why and how to define derived categories and relations in a
language? (Section 9.5)

5. How to enforce the intended use of categories in a language?
(Section 9.6)

167

Chapter 9. Categories

9.1 Motivation

A category groups Fragments which share the same properties. Cate-
gories are used to distinguish between Fragments having different
properties, and thereby should be used differently during problem-
solving.

In absence of categories, it is not possible, for example, to make a
language which represents instances of the Default Problem. This is
because the Default Problem distinguishes three categories, namely,
“requirement”, ”domain knowledge”, and “specification”. As I will
argue below, categories cut up the information used in problem-
solving, and thereby reflect the language designer’s understanding of
which way to cut up the information is useful to identify and solve
Problem instances.

9.2 Independent Categories

Categories are independent if, when adding them to a language, you
do not also need to add new relations. This also means that, when
there is a set of independent categories, you can choose any of its
subsets to add to a language.

Categories in the Default Problem are independent, even though
they are used together in that problem, and even though that prob-
lem would not be the same if we removed any of these categories
from it. They are independent, because whether a Fragment belongs
to the “requirement” category is independent from there being the
categories “domain knowledge” and “specification”. This, in turn, is
determined by how these categories are defined [155]:

“The primary distinction necessary for requirements en-
gineering is captured by two grammatical moods. State-
ments in the ‘indicative’ mood describe the environment
as it is in the absence of the machine or regardless of the
actions of the machine; these statements are often called
‘assumptions’ or ‘domain knowledge.’ Statements in the
‘optative’ mood describe the environment as we would
like it to be and as we hope it will be when the machine is
connected to the environment. Optative statements are
commonly called ‘requirements.’ [...] A specification is

168

Chapter 9. Categories

also an optative property, but one that must be imple-
mentable.”

Given the quote above, consider how you would define the min-
imal set of categories which a language would need, to make the
distinctions suggested in the quote from Zave & Jackson. How many
categories are needed? What are the properties which decide if a
Fragment is in one of these categories? Can a Fragment be in two
or more of these categories? If yes, which conditions does it have to
satisfy? If not, then why not?

I define each of the three categories with a Language Module.
The Language Module has the same slots as for relations, which is
unsurprising, since you can see categories as unary relations. But it
should be clear when I am talking about relations, and when about
categories, and consequently categories have their own Language
Module. Below is a definition of the requirement category, inspired
by the definition of requirement in Default Problem.

Category: r

c.rRequirement

Domain

c.r⊆ F, where F is a set of Fragments.

Membership conditions

x is in the optative mood, and describes “the environment as we
would like it to be and as we hope it will be when the machine
is connected to the environment” [155].

Reading

x ∈ c.r reads “x is a requirement”.

Language Services

169

Chapter 9. Categories

• s.IsReqs.IsReq: Is x a requirement? Yes, if x ∈ c.r.

The “membership conditions” slot above carries over the infor-
mal definition from Zave & Jackson, that the requirement must be an
optative statement. Following this same approach, there is a category
for domain knowledge.

Category: k

c.kDomain knowledge

Domain

c.k⊆ F, where F is a set of Fragments.

Membership conditions

x is in indicative mood and describes “the environment as it is
in the absence of the machine or regardless of the actions of the
machine” [155].

Reading

x ∈ c.k reads “x is domain knowledge”.

Language Services

• s.IsDomKs.IsDomK: Is x domain knowledge? Yes, if x ∈ c.k.

And finally, there is a category for specifications.

Category: s

c.sSpecification

170

Chapter 9. Categories

Domain

c.s⊆ F, where F is a set of Fragments.

Membership conditions

x is a statement in optative, which is implementable, that is, it
is known who and how will do what the statement says.

Reading

x ∈ c.s reads “x is a specification”.

Language Services

• s.IsSpecs.IsSpec: Is x a specification? Yes, if x ∈ c.s.

The three categories above can be used together, in a function
that categorises sets of Fragments to deliver the following Language
Service.

Language Service: WhichKSR

Which Fragments in X are requirements, which are domain
knowledge, and which are specifications? s.WhichKSR

s.WhichKSR is similar to asking if one specific Fragment is in any
of the three categories. Such questions are relevant when solving the
Default Problem, because we need to check, for example, if satisfy-
ing Fragments for domain knowledge and specifications, positively
influences the satisfaction of requirements Fragments. The function
below delivers s.WhichKSR.

171

Chapter 9. Categories

Function: cat.ksr

f.cat.ksrCategorise in Default Problem categories

Input

Set X of Fragments.

Do

For each x ∈ X :

• if x is in c.r, then let cat(x) = c.r, else

• if x is in c.k, then let cat(x) = c.k, else

• if x is in c.s, then let cat(x) = c.s.

Output

Function ksr.

Language Services

• s.WhichKSR: Function ksr says, for each Fragment in X ,
if it is a requirement, domain knowledge, or specification.

Example 9.2.1. For illustration, below is the language L.Menkar,
which has r.inf.pos, r.inf.neg, r.str.inf, and f.cat.ksr.

Language: Menkar

L.MenkarLanguage Modules
r.inf.pos, r.inf.neg, r.str.inf, f.map.abrel.g, f.cat.ksr

Domain

172

Chapter 9. Categories

Fragments are partitioned onto requirements, domain knowl-
edge, and specifications, that is, F= c.r∪c.k∪c.s and c.r∩c.k∩
c.s=;. Influence relations are over Fragments, r.inf.pos⊆ F×F,
r.inf.neg⊆ F×F. Relative strength of influence is a relation over
influence relations of the same type:

r.str.inf⊆ (r.inf.pos× r.inf.pos)∪ (r.inf.neg× r.inf.neg).

Syntax

A model M in the language is a set of symbols M = {Z1, . . . , Zn},
where every Z is generated according to the following BNF
rules:

A ::= x | y | z | . . .

B ::= r (A) | k(A) | s(A)

C ::= B influences+ B

D ::= B influences- B

E ::= C infstronger C | D infstronger D

Z ::= B |C | D | E

Mapping

A symbols denote uncategorised Fragments. B symbols de-
note categorised Fragments, so D(r (A)) ∈ c.r, D(k(A)) ∈ c.k,
and D(s(A)) ∈ c.s. C symbols denote positive influence re-
lations, D(C) ∈ r.inf.pos, and D negative influence relations,
D(D) ∈ r.inf.neg. E symbols denote relative strength of influ-
ence, D(E) ∈ r.str.inf.

Language Services

Those of r.inf.pos, r.inf.neg, r.str.inf, f.map.abrel.g, and f.cat.ksr.

Figure 9.1 is a visualisation of a model in L.Menkar. Label “R”
marks c.r Fragments, “K” those of c.k, and “S” those of c.s. •

173

Chapter 9. Categories

Figure 9.1: A visualisation of a model in L.Menkar.

174

Chapter 9. Categories

9.3 Taxonomy of Categories

A taxonomy of categories is a set of categories related by the is-a
relation, also called the specialisation relation. If a category A is
a specialisation of the category B, then all members of B are also
members of A, but not all members of A are necessarily members of
B. In more technical terms, the extension of category A is a subset of
the extension of B.

It is common in Requirements Engineering to distinguish be-
tween two kinds of requirements, often called functional and non-
functional requirements. I can have two categories for them, both
specialisations of c.r.

I will consider that a requirement is functional, if it can either be
satisfied or not. A requirement is nonfunctional, if it can be satisfied
to some extent, and different stakeholders may judge the require-
ment to be satisfied to different extents, by the same system. This
follows oft-cited research in Requirements Engineering, such as the
NFR framework. According to this view, being able to communi-
cate via radio with an ambulance is a functional requirement, while
quickly responding to incidents is a nonfunctional requirement.

Category: r.f

c.r.fFunctional requirement

Domain

c.r.f⊆ X , where X ⊆ c.r.

Membership conditions

x is a member of c.r such that it is either satisfied or not.

Reading

x ∈ c.r.f reads “x is a functional requirement”.

Language Services

175

Chapter 9. Categories

• s.IsFunctReqs.IsFunctReq: Is x a functional requirement? Yes, if
x ∈ c.r.f.

Category: r.nf

c.r.nfNonfunctional requirement

Domain

c.r.nf⊆ X , where X ⊆ c.r.

Membership conditions

x is a member of c.r such that it is can be satisfied to some
extent, rather than either satisfied or failed, and different stake-
holders may judge it to be satisfied to different extents by the
same system.

Reading

x ∈ c.r.nf reads “x is a nonfunctional requirement”.

Language Services

• s.IsNFunctReqs.IsNFunctReq: Is x a nonfunctional requirement? Yes,
if x ∈ c.r.nf.

If you let all Fragments be partitioned onto requirements, do-
main knowledge, and specifications, then the latter three categories
are specialisations of a category for Fragments. You can see that
Fragments category as the most general category, as shown in the
taxonomy in Figure 9.2.

If a category is a specialisation of another one, then the former
inherits the properties of the latter. Modules above captured inher-

176

Chapter 9. Categories

Figure 9.2: Taxonomy of categories from Sections 9.2 and 9.3.

itance by restricting domains, in that functional requirements are
some of the requirements. This is clear from the slot “categorises” in
the Language Modules above.

An important design decision concerns the coverage of the taxon-
omy. If c.r is specialised onto functional and nonfunctional require-
ments, are these its only subcategories? The taxonomy in Figure
9.2 says these are the only categories, but the Language Modules
do not. To add this constraint, you could add a function to the lan-
guage, which categorises any requirement either as a functional or a
nonfunctional one.

9.4 In Meta-Models and Ontologies

A meta-model is a conceptual model which represents all the cate-
gories and relations of a language. An ontology is a specification of a
conceptualisation, and in Requirements Modelling Languages, it is
the specification of the categories and relations of the domain of the
language, that the things in the domain that language expressions,
the formulas, are used to represent. The categories and relations are
chosen so as to help the representation and resolution of Problems
[88]. In formal ontology, such a specification is written in a formal
logic [62, 132, 134].

The meta-model and ontology of a language should not be con-
fused [39]. The meta-model will usually represent also the consid-
erations which are purely practical, and concern, for example, the
structure of expressions in a language. In the terminology of the

177

Chapter 9. Categories

languages discussed in this book, a meta-model will, for example,
include a category “Graph”, which may then be specialised into cat-
egories of graphs specific to each relation. However, the fact that
graphs are used to represent relation instances is usually simply a
practical matter, not something that fundamentally determines the
conceptualisation of the requirements problems, which a language
is defined for. In other words, a meta-model of the language may
include all categories and relations from the ontology of the lan-
guage, but will usually include also other categories and relations,
concerned purely with practical issues of how to represent or do
some transformations of the instances of the categories and relations
in the ontology of the language.

If a sufficiently expressive ontology specification language is used,
it may be that the formal ontology of the language could define
the language in its entirety. To the best of my knowledge, this has
not been done in Requirements Engineering. The ontology of a
language has usually been equated to the set of all categories and
all relations in the language, together with axioms as constraints on
how to correctly use the categories and relations. This is the case in
i-star, KAOS, Techne, NFR, among others.

One way, then, to think of the ontology of an Requirements Mod-
elling Language, is that it is the definition of the categories and rela-
tions needed to define instances of the requirements problem which
the language is made to solve, and potential solutions to these prob-
lems. For example, the definition of L.D1a is a specification of what
that language is, and so, a specification of a conceptualisation. The
other view is to see the ontology of the language only as all categories
and relations of the language. In Requirements Modelling Languages,
this has often equated to a meta-model of the language, a conceptual
model showing all categories and relations of the language. To repre-
sent the language ontology in such a way complements category and
relation definitions with Language Modules, as Language Modules
include information use rules and Language Services, which the said
models do not represent.

Example 9.4.1. Figure 9.3(a) shows the categories and relations of
two different languages, in Figures 9.3(a) and 9.3(b). Nodes represent
categories and links represent relations.

Figure 9.3(a) shows the ontology of a language in which r.ifm,
r.inf.pos, and r.inf.neg are over the members of any category in the
taxonomy in Figure 9.2.

178

Chapter 9. Categories

Figure 9.3(b) shows an ontology with same categories as in Figure
9.3(a), but now, the influence relations can go only from specification
Fragments to requirement Fragments.

•

9.5 Derived Categories and Relations

When new categories and relations are defined only as combinations
of other parts of a language, I call them derived. Those which are
not derived are called core language components. The core includes
the minimal set of categories and relations, needed to define the
others in that language. Derived relations will therefore inherit the
properties of the core ones.

Derived categories and relations can be used to emphasise spe-
cific ideas in a language, or, for example, to simplify modelling. They
are syntactic sugar in an Requirements Modelling Language. The
following example illustrates this.

Example 9.5.1. Figure 9.3 shows that there can be an influence rela-
tion over problem-solving information, and consequently, over any
pair of Fragments, regardless of either of them being a requirement,
domain knowledge, or otherwise. If you want to emphasise that there
is a difference between having an influence relation from a specifica-
tion to a requirement, as opposed to having it between requirements,
you can add a derived relation as follows. Call it r.rls.

Relation: rls

r.rlsRealise

Domain & Dimension

r.rls⊆ S ×R, where S ×R ⊆ r.inf, S ⊆ c.s and R ⊆ c.r.

Properties

irreflexive and transitive.

Reading

179

Chapter 9. Categories

(a) Visualisation of the ontology of one lan-
guage.

(b) Visualisation of the ontology of another
language.

Figure 9.3: Visualisation of two ontologies.

180

Chapter 9. Categories

(x, y) ∈ r.rls reads “specification x realises the requirement y”.

Language Services

Inherits from r.inf.

r.els is the abbreviation of an influence from a specification to
a requirement. You may want to distinguish r.rls from others in an
Requirements Modelling Language, because there may be guidelines
which rely on it, and so it may be simpler to talk of realisation every
time the guidelines are applied, rather than of all that it abbreviates.
Or, it may be that there is a convention among stakeholders, who
speak of requirements being realised or not, and you interpret this
as being about the presence or absence of influence relations from
specifications to these requirements. •

A derived category can be defined from categories and relations
only, but also from combinations of other language components,
categories and functions for example. I look at the former first.

Example 9.5.2. Suppose that I am particularly interested in require-
ments which are negatively influenced by environment conditions.
If I assume that I cannot change the environment conditions, then
such requirements will likely need to be revised, to avoid that the
system fails them too often at run-time. To highlight them in models,
I define a new derived category c.r.clsh. •

Category: r.clsh

c.r.clshClashing requirement

Domain

c.r.clsh⊆ X , where X ⊆ c.r.

Membership conditions

x is such that there is (y, x) ∈ r.inf.neg, and y ∈ c.k.

181

Chapter 9. Categories

Reading

x ∈ c.r.clsh reads “x is a requirement which clashes with envi-
ronment conditions”.

Language Services

• s.IsClshReqs.IsClshReq: Does x clash with environment conditions?
Yes, if x ∈ c.r.clsh.

Example 9.5.3. Now suppose that I want to categorise a requirement
as irrelevant, if that requirement is not acceptable. Acceptability
works as in Section 7.5.2. I use f.Accepted to define the category
c.r.irrl. •

Category: r.irrl

c.r.irrlIrrelevant requirement

Domain

c.r.irrl⊆ X , where X ⊆ c.r.

Membership conditions

x is not acceptable in a given model M according to f.acc.

Reading

x ∈ c.r.irrl reads “x is an irrelevant requirement”.

Language Services

• s.IsIrrlReqs.IsIrrlReq: Is x an irrelevant requirement? Yes, if x ∈
c.r.irrl.

182

Chapter 9. Categories

9.6 Enforce Category Use

Categories are interesting because they distinguish Fragments in
terms of how they are used in problem-solving. So categorising a
Fragment is only part of how categories are used. The other part is to
define rules about how to use these categories. This can, for example,
be functions which say what to do, when there is an instance of some
category, or if instances of a category are in some specific relations
with instances of other categories.

Another way to view this, is that you are adding new functions to
a language, in order to make sure that the categories in it are used as
you intended. In the following example, I use c.r as a completeness
check of models.

Example 9.6.1. Knowing that a Fragment is a requirement leads me
to ask if this requirement is operationalised in the given model model.
If it is not, then I might want to conclude that this is negative, and say
that the model is incomplete. If I want to force this notion of model
completeness on language users, I can build it into the language with
the following function.

Function: chk.rop

f.chk.ropCompleteness of requirements operationalisation

Input

A set X of Fragments, G(X, r.ifm), and G(X, r.inf.pos).

Do

1. Let H be a hypergraph made by merging G(X, r.ifm) and
G(X, r.inf.pos).

2. If there is x ∈ X such that x is in c.r and there is no path
in H from z ∈ X to x, such that z is in c.s, then the model
which includes exactly the Fragments in X is incomplete
with regards to requirements operationalisation and v =
1.

183

Chapter 9. Categories

Output

v .

Language Services

• s.IsROpComps.IsROpComp: Is the model that includes exactly the
Fragments X incomplete with regards to requirements
operationalisation? : Yes, if v = 1, no otherwise.

I can use f.chk.rop as a way to check how close we are to identify-
ing a solution to the Problem being solved. If some requirements are
not operationalised, then I have to look further for specifications, as
I have not solved the problem yet. •

9.7 Summary on Categories

The following are the main ideas discussed on categories:

• To add some category C to a language, it is necessary to define
how it is used. At the very least, this involves answering the
following questions:

1. What conditions have to be satisfied for x to belong to (to
be in the extension of) the category C ?

2. Can members of the extension of C be members of the ex-
tensions of other categories in the given language? If yes,
then why and of which categories? This is answered by
defining taxonomic (is-a) relations between categories.

3. How are category instances, if in any way, related to those
of other categories? This is answered by the relations over
members of extensions, of the categories.

• Using categories for classification is only part of the motivation
for having them in languages. After adding a category, such as
c.r, you may want to add new relations, functions, and so on,
in order to use that category in problem-solving. For example,
having a category for requirements and for specifications begs

184

Chapter 9. Categories

the question of how the satisfaction of the latter influences that
of the former, and to answer it, you need influence relations.
Having domain knowledge and requirements categories begs
the question of what to do if there is negative influence from
the latter to the former, and so requires guidelines for resolving
this.

• It is useful to distinguish core categories and relations from
derived ones in a language. It is otherwise hard to know what
is absolutely necessary in a language, in order to deliver Lan-
guage Services, as well as to compare languages in terms of
their components.

185

Chapter 10

Valuation

Valuation consists of associating variables to model parts, and func-
tions to relations over the model parts. The aim is to have models,
where values of some variables depend on values of others. Given the
values of some, you can then compute those of others. Value Type,
Value Assignment, and Outcome are central notions in valuation. A
Value Type is simply a set of values, such that a variable x has Value
Type T, if and only if any value of that variable must be a member of T.
A Value Assignment is the value that a variable has, among the values
of its Value Type. An Outcome is a non-empty set of Value Assignments.
The Chapter looks at how to define Value Types, how to compute Value
Assignments and Outcomes, and how to use all of these in a language.
This is done by discussing the following questions.

1. How to define a language with a single binary Value Type, that
is, where model parts take either of two values, and why this
may be interesting? (Section 10.2),

2. How to, and why define a language which has more than one
binary Value Type, so that any model part is assigned a tuple of
values, instead of a single value? (Section 10.3),

3. How to, and why define a language with an unordered set of
values as its only Value Type? (Section 10.4),

4. What if the value type for the language is an ordered set? (Sec-
tion 10.5),

186

Chapter 10. Valuation

5. Why and how to have in a language, a Value Type defined over
real numbers? (Section 10.6).

These discussions will also illustrate how to use Value Types in new
guidelines for a language.

187

Chapter 10. Valuation

10.1 Motivation

Valuation can enable various interesting Language Services. It is also
related to Language Services discussed earlier. For example, valua-
tion in a language can say that each Fragments is associated with
its own variable for satisfaction. The variable might be allowed to
take either 1, read “satisfied”, or 0 for “not satisfied”. A function may
then be associated to every positive and negative influence relation,
to compute how the value of the influenced Fragment depends on
those of Fragments influencing it. This section will give many exam-
ples unrelated to satisfaction, but satisfaction remains an important
motive to think about valuation in a language.

In this book, a language has rules for valuation if, in its models,
variables can be associated to model parts, functions to relation
instances, and if that language answers the following questions:

1. Which values can be assigned to which variables?

2. Which functions relate the values of the variables?

3. How to compute the values of the variables?

This Chapter will illustrate how to answer the questions above for
various Value Types.

10.2 Propagating Binary Values

This section discusses and combines two topics:

• How to have a language in which any Fragment and relation
instance can be assigned one of two satisfaction values, namely
“satisfied” or “not satisfied”? That is, how to define a language
which has only one binary Value Type? (Section 10.2.1)

• Given a model in that language, and knowing the satisfaction
value of some Fragments and, or relation instances, how to
compute the values of others? In other words, how to define
functions in a language, which return the satisfaction value of
a Fragment or relation instance, and take into account already
known satisfaction values of other Fragments and relation in-
stances? (Section 10.2.2)

188

Chapter 10. Valuation

I use satisfaction values because I discussed satisfaction already
in relation to influence relations. However, the discussion in this
section remains relevant for any binary Value Type. As for how to
compute values, I use a simple approach which I refer to as “value
propagation”. In this approach, a relation instance from y to x is
seen, roughly speaking, as a pipe that conducts a value from y to x,
whereby the value to conduct depends on the value of y and on the
specifics of the relation. Values thus get “pushed” through potentially
many such pipes to a Fragment, and there is then a rule which aggre-
gates them, and outputs a single value for that Fragment. There are
other ways to compute values on model parts. I will mention some
of them, and leave others outside the scope of this tutorial.

10.2.1 Binary Value Type

To motivate the use of binary Value Types, recall the first condition in
the DRP. It says that there has to be a proof of requirements from do-
main knowledge and specifications. The more general idea is this: it
should be shown that if conditions that domain knowledge and spec-
ifications describe are satisfied, then the conditions described with
requirements are satisfied as well. This gives the following Language
Service.

Language Service: SatReq

Are all requirements satisfied in the model M? s.SatReq

To deliver s.SatReq, it is necessary to have a Value Type for sat-
isfaction. Given how s.SatReq is phrased, it looks enough to have
two values, for satisfied and not satisfied. If s.SatReq asked, instead,
for how well requirements were satisfied, then a binary Value Type
would not work.

To deliver, then, s.SatReq, I will use v.Satisfaction, a binary Value
Type such that

v.Satisfaction= {1,0},

where 1 reads “satisfied” and 0 reads “not satisfied”.

189

Chapter 10. Valuation

s.SatReq mentions requirements, so that the language has to
distinguish requirements Fragments from others. I will keep using
the three categories defined earlier, namely c.r, c.k, and c.s.

What, in a model, gets a value of v.Satisfaction? A variable, which
is associated to every Fragment and every relation instance. The
language thus also needs a set of variables. There will be as many
variables as there are Fragments and relation instances. As I am
working with a single Value Type here, all variables will take values
from v.Satisfaction.

10.2.2 Value Propagation

The language needs to represent if the satisfaction value a Fragment
depends on the satisfaction values on one or more other Fragments,
and if it does, then how exactly. This is done by having a function
which is sensitive to the relations between Fragments. Given the
motivation discussed earlier for influence relations, the language
will include r.inf.pos and r.inf.neg. It will also need another function,
which is presented later below.

Recall that influence relations were not defined specifically with
v.Satisfaction in mind, but simply to represent, when it exists, the in-
formation that satisfaction of a Fragment depends on that of another.
The next language design decision to make, then, is to define how ex-
actly the satisfaction value of a Fragment influences that of another,
when there is an influence relation between them. The following
rules come to mind, for (y, x) ∈ r.inf.pos in a model M :

• if y gets the value 1 from v.Satisfaction, x should get 1 as well,
if one ignores all (if any) other influence relation that may be
targeting x in M ,

• if y gets 0, then x gets 0, too, if one ignores all (if any) other
influence relation that may be targeting x in M .

I emphasised in both rules above that they are local: they say
which value to assign to x only by considering the value that y has,
and that the relation instance is a positive influence (rather than a
negative influence). The rules ignore all other positive or negative
influences to x, from Fragments other than y .

To have these rules in a language, I will add a new function called
f.sat.inf.pos. It relies on f.sat to return the satisfaction value of a Frag-
ment. f.sat remains undefined for the moment. When I define it later,

190

Chapter 10. Valuation

it will say what the satisfaction value of a Fragment is, given poten-
tially many positive and negative influence relation instances to that
Fragment. This is different than f.sat.inf.pos, which concentrates on
the satisfaction value of a single positive influence relation instance.

I will write 〈x, t , v〉 for a variable of v.t which is associated to the
Fragment or relation instance x, and whose value is v . This is called
a “Value Assignment”. Value Assignment

notation

Function: sat.inf.pos

f.sat.inf.posPositive influence satisfaction

Input

(y, x) ∈ r.inf.pos and model M .

Do

v = 1 if y is satisfied in M , and v = 0 otherwise.

Output

〈(y, x),v.Satisfaction, v〉.

Language Services

• s.WhPosInfSats.WhPosInfSat: What is the v.Satisfaction value of (y, x) ∈
r.inf.pos? : 〈(y, x),v.Satisfaction, v〉.

The function f.sat.inf.pos is based on the idea of “propagating”
values. Value propagationTo see what this amounts to, suppose that there are Fragments
y and x in a model M , and there is positive influence from y to x. So
if y is satisfied, then this positively influences the satisfaction of x.
But you cannot simply conclude that x is in fact satisfied, because
there may be other influences, positive or negative, which target x,
from Fragments other than y .

Propagation consists of seeing relation instances as a kind of

191

Chapter 10. Valuation

pipes, each of which propagates a value to its target. There may be
many relation instances which propagate different values to the same
target, and therefore, it is necessary to have rules which aggregate all
these values that a Fragment receives, and concludes one satisfaction
value for that Fragment.

When valuation involves value propagation, the values on rela-
tion instances may be somewhat confusing, as in the function below.
It propagates satisfaction values of negative influence.

Function: sat.inf.neg

f.sat.inf.negNegative influence satisfaction

Input

(y, x) ∈ r.inf.neg and model M .

Do

If y is not satisfied in M , then x should be, and v = 1. If y is
satisfied in M , then x should not, and so v = 0.

Output

〈(y, x),v.Satisfaction, v〉.

Language Services

• s.WhNegInfSats.WhNegInfSat: What is the v.Satisfaction value of (y, x) ∈
r.inf.neg? : 〈(y, x),v.Satisfaction, v〉.

A satisfied negative influence is thus not an influence which suc-
cessfully negatively affects its target, but one which fails to do so, and
therefore propagates 1 to x in f.inf.neg.

The next step is to define f.sat which computes the satisfaction
value of a Fragment, based on all positive and negative influences to
that Fragment.

192

Chapter 10. Valuation

For some Fragments, the satisfaction value will be computed, for
others, it will be manually assigned. I therefore need rules for how
to compute values, as I otherwise cannot answer such questions as
“What should be the v.Satisfaction value of a Fragment x, when x is the
target of two or more positive and/or negative influence relations?”
For example, what is the satisfaction value of x, if f.sat.inf.pos(y, x) =
1, f.sat.inf.pos(z, x) = 0, and f.sat.inf.neg](w, x) = 0?

Let (p1, x), . . . , (pn , x) be instances of r.inf.pos and (q1, x), . . . , (qm , x)
be instances of r.inf.neg, all targeting the Fragment x. Consider the
following rules:

1. if for all i = 1, . . . ,n, it is the case that f.sat.inf.pos((pi , x)) = 1,
and for all j = 1, . . . ,m, f.sat.inf.neg((q j , x)) = 1, then the satis-
faction value of x is 1,

2. in all other cases, the satisfaction value of x is 0.

I can add these rules to a language via the function f.sat, defined
as follows.

Function: sat

f.satSatisfaction

Input

Fragment x ∈ F and model M .

Do

Let {(p1, x), . . . , (pn , x)} ⊆ r.inf.pos be the set of all positive in-
fluence relation instances to x in M , and {(q1, x), . . . , (qm , x)} ⊆
r.inf.neg be the set of all negative influence relation instances to
x in M . Then,

v =
n∏

i=1
f.sat.inf.pos((pi , x), M) ·

m∏
j=1

f.sat.inf.neg((q j , x), M)

f.sat.inf.pos((pi , x), M) returns the satisfaction value of, or prop-
agated by (pi , x) ∈ r.inf.pos in M . f.sat.inf.neg((q j , x), M) returns
the satisfaction value of (q j , x) ∈ r.inf.neg in M .

193

Chapter 10. Valuation

Output

〈x,v.Satisfaction, v〉

Language Services

• s.WhSats.WhSat: What is the satisfaction value of x in M? : It is
〈x,v.Satisfaction, v〉.

Which rules are relevant for f.sat depends on what exactly these
rules should do for you. Above, the rules reflect the idea that x will
be satisfied only if everything influencing it positively is satisfied as
well, and everything influencing it negatively is not satisfied. In some
sense, it reflects a demanding and defensive attitude about when
Fragments are satisfied. If any one of these two conditions fails, for
example, a Fragment is satisfied, and negatively influences x, it will
not matter that there may be other Fragments which are satisfied and
positively influence x. The conclusion will be that x is not satisfied.

To give a satisfaction value of some x, f.sat needs all influence
relations to x. But what if there are none? f.sat cannot assign a
satisfaction value to x, and neither can f.sat.inf.pos and f.sat.inf.neg.
You need to choose in another way the values of Fragments, whose
values cannot be computed with these three functions.

In addition to the three functions, another function is needed
to assign satisfaction values for every Fragment which is target of
no influence relation. These are Fragments from which you start
propagating satisfaction values. If you think in terms of graphs over
influence relations, then this amounts to assigning a satisfaction
value to every leaf node only, and then using the three functions
mentioned above, to compute the satisfaction values of other Frag-
ments. This leads to f.sat.leaf below, which takes a Fragment with no
influence relations and assigns a satisfaction value to it.

Function: sat.leaf

f.sat.leafAssume a satisfaction value for a non-influenced Fragment

194

Chapter 10. Valuation

Input

Fragment x and model M , such that there is no (y, x) ∈ r.inf,
(y, x) ∈ r.inf.pos, and (y, x) ∈ r.inf.neg in M with y also in M .

Do

If you assume that x is satisfied, then v = 1, else if you assume
that x is not satisfied, then v = 0, else leave v without value.

Output

〈x,v.Satisfaction, v〉

Language Services

• s.WhAsmSatLfs.WhAsmSatLf: Which, if any, is the assumed v.Satisfaction
value of x in M? : 〈x,v.Satisfaction, v〉 if v ∈ {0,1}, other-
wise no v.Satisfaction value is assumed for x.

The four functions, f.sat.inf.pos, f.sat.inf.neg, f.sat, and f.sat.leaf
are enough to assume and compute satisfaction values on models
that relate Fragments with positive and negative influence relations.
The following language puts these notions together.

Language: Rigel

L.RigelLanguage Modules
r.inf.pos, r.inf.neg, f.map.abrel.g, f.cat.ksr, f.sat.inf.pos, f.sat.inf.neg,
f.sat, f.sat.leaf

Domain

There is a set of Fragments F, a singleton for Value Types

T= {v.Satisfaction},

195

Chapter 10. Valuation

and a set of Value Assignments V. Fragments have three par-
titions, namely requirements, domain knowledge, and spec-
ification Fragments, F = c.r∪ c.k∪ c.s and c.r∩ c.k∩ c.s = ;.
Influences are over Fragments, r.inf.pos⊆ F×F, r.inf.neg⊆ F×F.
Value assignments are over Fragments or relation instances,
involve a Value Type, and a value, so that

V⊆ (F∪ r.inf.pos∪ r.inf.neg)×T×v.Satisfaction.

Satisfaction is binary, v.Satisfaction= {1,0}.

Syntax

A model M in the language is a set of symbols M = {Z1, . . . , Zn},
where everyφ is generated according to the following BNF rules:

A ::= x | y | z | . . .

B ::= r (A) | k(A) | s(A)

C ::= B influences+ B

D ::= B influences- B

G ::= 〈A,E ,F 〉
Z ::= B |C | D |G

Mapping

A symbols denote Fragments, D(A) ∈ F. B symbols are used to
distinguish requirements, domain knowledge, and specification
Fragments, so that D(r (α)) ∈ c.r, D(k(α)) ∈ c.k, D(s(α)) ∈ c.s. C
and D symbols denote, respectively, positive and negative in-
fluence relations. E symbols denote Value Types, D(E) ∈ T. F
symbols denote a value of a Value Type, and as there is one
Value Type, D(F) ∈ v.Satisfaction. G symbols denote Value As-
signments, D(G) ∈V.

Language Services

Those of relations and functions in the language, and s.SatReq.

196

Chapter 10. Valuation

Models in L.Rigel can represent mutually exclusive Value Assign-
ments on same Fragments and relation instances, and therefore,
mutually exclusive Outcomes This is useful, because, for example,
different people may use f.sat.leaf, and they may have different as-
sumptions about the values of leaf Fragments. Or the model user
wishes to ask what-if kinds of questions, such as “What if all leaf
Fragments get these satisfaction values, as opposed to these other
satisfaction values?” and wishes to compare the Outcomes (more on
this in Section 14). This is illustrated in Example 10.2.1 below.

In Example 10.2.1, Figures 10.1 and 10.2 do not include Outcomes.
Figure 10.3 includes one Outcome, and Figure 10.4 includes two. An
Outcome can be specific to one Value Type, as in Figures 10.3 and
10.4, where only v.Satisfaction values can be assigned anyway, due
to the specifics of the language used. When I want to say that an
Outcome has values of only one, or some specific set of Value Types,
I will write so. For example, Figures 10.3 and 10.4 show v.Satisfaction
Outcomes.

Example 10.2.1. This example illustrates how L.Rigel computes Value
Assignments in a model. Figures 10.1–10.4 show four models in
L.Rigel.

The first model in Figure 10.1 shows a model with assignments
of satisfaction values to Fragments with no incoming positive or
negative influence relations. This assignment is a result of applying
f.sat.leaf. There can be other assignments, as the values depend
entirely on the model user who is assigning them.

The second model, in Figure 10.2 is the result of applying f.sat.inf.pos
andf.sat.inf.neg on positive and negative influence relation instances
which are directly connected to the leaf Fragments. You can think of
this model as showing one step of propagating the satisfaction values
assumed and shown in the first model in Figure 10.1.

The third model shows the satisfaction values assigned after ap-
plying f.sat.inf.pos, f.sat.inf.neg, and f.sat to all influence relation
instances and Fragments in the model.

The model in Figure 10.4 shows two Outcomes, that is, two assign-
ments of satisfaction values to every Fragment and relation instance.
Values for one Outcome are shown on black squares, and on grey
squares for the other. •

L.Rigel delivers s.SatReq in the following way. Given a model,
you apply f.sat.leaf and assign one satisfaction value to every leaf
Fragment. You then propagate satisfaction values using f.sat.inf.pos,

197

Chapter 10. Valuation

Figure 10.1: Satisfaction values assigned with f.sat.leaf.

198

Chapter 10. Valuation

Figure 10.2: After applying f.sat.inf.pos and f.sat.inf.neg.

199

Chapter 10. Valuation

Figure 10.3: One Outcome.

200

Chapter 10. Valuation

Figure 10.4: Two Outcomes.

201

Chapter 10. Valuation

f.sat.inf.neg, and f.sat, until you have one Outcome. If that Outcome
assigns the satisfaction value 1 to every requirement in the model,
then the answer to s.SatReq is affirmative, and is “no” otherwise.

10.3 Combining Several Binary Value Types

This section looks at how to have more than one Value Type in a
language. It focuses on a simple case when there are two binary
Value Types. Consider the following Language Service.

Language Service: AppSat

Which requirements in the model M are both approved by all
stakeholders, and satisfied? s.AppSat

The language needs two Value Types, one for satisfaction and the
other for approval. They will be called v.Satisfaction and v.Approval. If
you allow a stakeholder to either approve or not a requirement, then
v.Approval is a binary Value Type. By analogy to v.Satisfaction, which
remains here the same as in Section 10.2, there is v.Approval= {1,0},
where 1 reads “approved”, and 0 “not approved”.

Then, it is necessary to decide how the approval of a Fragment
depends on the approval of other Fragments, if in any way. One
option is to ask stakeholders to assign an approval value to each
requirement Fragment, and therefore not compute the approval
value of requirements. Another is to allow influence relations (or
some other relations in the language) to be significant for approval,
perhaps in the same way that they were significant for satisfaction in
Section 10.2. That is, if there is (y, x) ∈ r.inf.pos, and it is known that
y is approved, than a rule would say how this should be taken into
account to compute the approval value of x.

Section 10.3.1 looks at the case where the approval values are
assigned to every Fragment manually, so that there is no need for
rules to compute those values. Section 10.3.2 focuses on the case
where missing approval values can be computed from those that
exist in a model.

202

Chapter 10. Valuation

10.3.1 Independent Value Assignments

Suppose that the approval value of a Fragment or relation instance
is independent from the approval value of another Fragment, or of
a relation instance. Moreover, suppose that the satisfaction values
are independent from approval values, and vice versa. If I approved
Fragment x, then this has nothing to do with whether I will approve
Fragment y , or whether y is satisfied. How would you enable a lan-
guage to assign approval values in this way and deliver s.AppSat?

You can add v.Approval to L.Rigel, and add a function for assert-
ing approval values which works in the same way as f.sat.leaf. The
function is as follows.

Function: app.asg.ind

f.app.asg.indAssume independent approval value

Input

Fragment x ∈ F.

Do

If a stakeholder approves x, then v = 1, else v = 0.

Output

〈x,v.Approval, v〉

Language Services

• s.AsmApps.AsmApp: Is x approved by a stakeholder? : Yes, if
〈x,v.Approval,1〉, no otherwise.

Assigning approval values in a model M with f.app.asg.ind con-
sists of asking a stakeholder to approve each Fragment and relation
instance.

203

Chapter 10. Valuation

Two issues arise:

1. There can be many stakeholders, so you should decide if the
approval value reflects the approval of a single stakeholder, of
some, or of all. The issue is whether to allow the assignment
of tuples of approval values to model parts, with one approval
value per stakeholder. f.app.asg.ind assigns individual values.

2. How to read and use, if in any way, the combination of a sat-
isfaction and approval value on a Fragment? For example, is
there some new information to conclude from knowing both
that a Fragment is satisfied and that it is not approved? Sat-
isfaction and approval values still are independent, but the
question is if you should draw some additional conclusion
from knowing both the satisfaction and approval value of a
Fragment or relation instance.

On the first issue, if the models need to show all approval values,
from all stakeholders, then the language should allow every model
part to carry as many approval values as there are stakeholders. The
approval value of a model part would be a tuple, each element being
the approval value of one stakeholder.

If it is necessary to decide a single approval value of a model part,
when there are many approval values coming from many stakehold-
ers, then the language needs to have rules for aggregating approval
values. For example, aggregation rules can be that if all stakeholders
approve a model part, then it is approved, or that if the majority
approves a model part, then it is approved, and so on. Research in
group decision making [33] and social choice [28, 5] are one source
of such aggregation rules.

The second issue is if knowing both the satisfaction and approval
values together gives some additional information for problem solv-
ing, and which is useful for deciding what to do next with the model.
For example, if a model part is both satisfied and approved, then it
is probably more interesting to look at other model parts in the next
steps of problem-solving. If model parts are seen as representations
of parts of the problem being solved and of its potential solutions,
then a satisfied and approved model part can be considered as a
solved problem part.

In this same line of thinking, if a model part is not satisfied, but
is approved, then it will need to be solved, that is, it is necessary to

204

Chapter 10. Valuation

change the model in such a way as to ensure that, in the changed
model, the model part is both satisfied and approved. There is the
case of a satisfied and not approved part, which can become solved
by, for example, negotiating its approval with or among stakeholders,
or by removing from the model those parts which satisfy it, yet are
unnecessary for satisfying the approved model parts. The final case is
that of a part which is neither satisfied, nor approved. It may thereby
not even be a part of the problem, even if it is part of the model. Table
10.1 summarises these ideas.

Table 10.1: Combinations of v.Satisfaction and v.Approval values.

Approved Not approved

Satisfied No action needed Negotiate or remove
Not satisfied Find a way to satisfy it Ignore

The more general point for language design is that allowing two
or more Value Types raises the question of how to use the various
combinations of these values in problem solving, if to use them at
all.

If the value combinations are useful, then this can be captured
by a new Value Type, and functions for assigning and, or comput-
ing their values. For illustration, two new Value Types are defined
blow, one from combinations of v.Approval only, the other from both
v.Approval and v.Satisfaction.

Example 10.3.1. v.MajApp = {1,0} is such that 1 is given to a model
part if half or more of all stakeholders have assigned the v.Approval
value 1 to this model part. This gives the following function. •

Function: app.maj

f.app.majMajority approval

Input

205

Chapter 10. Valuation

Fragment x ∈ F.

Do

If more than half of all stakeholders approve x, then v = 1, else
v = 0.

Output

〈x,v.MajApp, v〉.

Language Services

• s.IsMajApps.IsMajApp: Is x approved by the majority of stakehold-
ers? : Yes, if 〈x,v.MajApp,1〉, no otherwise.

Example 10.3.2. v.SatNext= {1,0} is used to mark model parts which
are approved and not satisfied. As they are approved, there is no
need to discuss them further with stakeholders, but focus on how to
change the model to satisfy them. These values are assigned with the
following function. •

Function: sat.nxt

f.sat.nxtSatisfy next

Input

Fragment x ∈ F.

Do

v = 1 if 〈x,v.Satisfaction,0〉 and 〈x,v.Approval,1〉, else v = 0.

Output

〈x,v.SatNext, v〉.

206

Chapter 10. Valuation

Language Services

• s.DoSatNexts.DoSatNext: Should problem solving focus next on how
to satisfy x? : Yes, if 〈x,v.SatNext,1〉.

Neither v.MajApp, nor v.SatNext are defined over all four possible
combinations of v.Satisfaction and v.Approval values. This is because
a Value Type which is defined over all four combinations is not binary,
but instead an unordered set of four values. It is discussed in Section
10.4.

10.3.2 Dependent Value Assignments

In Section 10.3.1, only f.app.maj computed the approval value of a
Fragment from other approval values on that same Fragment. There
were no rules about how, for example, to compute the approval value
of x from those of other Fragments, which x is somehow related to.

If you have a language which cannot assign v.Approval values, how
would you change that language so that it can assign these values to
Fragments and relation instances, along similar lines as f.sat.inf.pos,
f.sat.inf.neg, f.sa or f.sat.x, and f.sat.leaf did for v.Satisfaction values?
Would you need new relations in that language? Which new functions
would you add, and why?

To compute approval values in models, rather than assign them
manually to all Fragments, you need to make analogous decisions to
those made for functions which computed satisfaction values in Sec-
tion 10.2. Therefore, if the language does not represent alternatives,
and you want to assign approval values by propagating them, then
you need to make the following decisions:

1. What is the relation r whose instance (y, x) ∈ r should exist, in
order for the approval value of the Fragment x to depend on
the approval value of the Fragment y?

2. If there is a relation instance (y, x) ∈ r , and the approval value
of y is 1 (or 0), what should be the approval value of x?

3. If there are several relation instances (y1, x) ∈ r1, . . . , (yn , x) ∈ rn ,
and approval values of y1, . . . , yn are not the same, then what

207

Chapter 10. Valuation

should be the approval value of x?

4. If there are no r relation instances to x, then what should be
the approval value of x?

Recall how the questions above were answered for v.Satisfaction.
The presence of r.inf.pos or r.inf.neg between two Fragments x and y
meant that the satisfaction value of one depended on that of the other.
If you think in terms of value propagation, positive and negative
influence relations were used to propagate satisfaction values. That
answers the first question. f.sat.inf.pos and f.sat.inf.neg defined how
satisfaction value of x depends on that of y , in case when there is,
respectively, (y, x) ∈ r.inf.pos or (y, x) ∈ r.inf.neg. f.sat answers the
third question above. Finally, f.sat.leaf was the answer to the fourth
question.

10.4 Sets of Values

Consider now a Value Type which is a set of values, and there is no
order over them. In Section 10.3, there were four combinations of
binary values from two core binary Value Types, v.Satisfaction and
v.Approval. Table 10.1 gave a reading of these combinations. The four
combinations can be used to define the three values of a new Value
Type, called v.ToDo. These values are as follows:

• Done, when satisfaction and approval values are both 1,

• Operationalise, when satisfaction is 0 and approval 1,

• Negotiate or remove, when approval is 0, regardless of satisfac-
tion.

Each value suggests what to do next about the Fragment or rela-
tion instance it is assigned to, hence the name of the Value Type. The
rules for assigning this Value Type are straightforward, as its values
are fully determined by the satisfaction and approval values.

To illustrate a more complicated Value Type which is also a set
of unordered values, recall that I defined five questions, Who, How,
When, Where, and WhoFor and the corresponding unary relations.
Suppose that you want to make a language which delivers the follow-
ing Language Service.

208

Chapter 10. Valuation

Language Service: WhichDetail

Which of the questions among Who, How, When, Where, and
WhoFor were not asked for the Fragment x? s.WhichDetail

There are different ways to deliver s.WhichDetail, but I will focus
on one which uses a Value Type, whose values are assigned exclu-
sively to Fragments. The assigned value is such that it tells the mod-
eller exactly those questions which were not asked for that Fragment.
Examples of its values are the set {When,Where,WhoFor} when these
three questions are not answered for a Fragment, or{Who} if only that
question was not answered for the Fragment.

This new Value Type is v.AskNext, and it has 25 possible values.
The value to assign to a Fragment x is computed using simple rules,
which look at the presence or absence of r.q instances that target x,
where q is any of the five questions. The following function defines
these rules.

Function: ask.next

f.ask.nextWhat to ask next

Input

Fragment x ∈ F and model M .

Do

Let V be an empty set. Let Ix = {(p1, x), . . . , (pn , x)} ⊆ r.ifm be the
set of all instances of r.ifm in M which end in x. For each q ∈
{Who,How,When,Where,WhoFor}, if there is (pi , x) ∈ Ix such
that (pi , x) ∈ r.q, then add q to V .

Output

〈x,v.AskNext,V 〉.

209

Chapter 10. Valuation

Language Services

• s.WhichDetail: Those which are missing from V , where V
is from 〈x,v.AskNext,V 〉.

An important idea illustrated with all Value Types so far, and in
particular with v.SatNext, v.ToDo, and v.AskNext, is that values on
model parts can act as cues for what to do next with the model, and
more generally, what next steps to take in problem solving.

10.5 Constraints on Assignments

What if some sequences of assignments of values to the same Frag-
ment or relation instance are not allowed? That is, you can assign
some value v1 only to those Fragments or relation instances which
are already assigned the value v2, and not some other value. Suppose
that the aim is to design a language which delivers the following
Language Service:

Language Service: WorkProgrRep

What is the progress in the implementation of the specifications
in the model M? s.WorkProgrRep

This Language Service can be interesting for teams where the
model is used to distinguish specifications which are implemented,
from those that remain to be implemented. If the model includes
requirements, domain knowledge, and specifications, asking about
the progress of work may refer to how close the team is to finding a
solution such that the requirements are satisfied. Or if a solution was
found, if, or what parts of it, are implemented, and thereby get an
idea about how much of the system is already in place. These two are
two different ways to understand ”work progress”. I will focus on the
second one, because the first was discussed earlier, with v.SatNext,

210

Chapter 10. Valuation

v.ToDo, and v.AskNext.
Suppose that the team is using the following simple steps for each

specification Fragment x:

1. check if specification x is approved by the system designer, and
if yes then

2. check if there is an estimate of time required to implement x,
and if yes then

3. check if x is added to product roadmap, and if yes then

4. check if x is ready for testing, and if yes

5. check if x is approved for release, and if yes, then stop.

The process suggests values for a new Value Type. Call it v.ProgrStatus.
Let it have the following values, each corresponding to the respective
step above: DesignApproved, EstimateDone, InRoadmap, TestReady,
and ApprovedForRelease. Assuming that these values are manually
assigned in a model (rather than computed). Given the discussions
of valuation so far, it should be clear how to add this Value Type to
any of the languages in the preceding sections.

What I want to emphasise with this Value Type, is that its values
alone do not convey the idea which is informally clear in s.WorkProgrRep
and from the steps described above, namely, that there is an order,
from the approval that x should be done, or implemented, or other-
wise completed, to its completion and release.

The order introduces constraints on when a value can be assigned
to x, and depends on the value which x already has. Suppose that
I want to force modellers to assign the values of v.ProgrStatus ac-
cording to this order. That is, if some x is assigned DesignApproved,
then it cannot be assigned InRoadmap. The modeller can change
the value on x from DesignApproved to EstimateDone, and only then
change the value to InRoadmap, not go straight from DesignApproved
to InRoadmap. This can be done with a function which checks if the
assignment of a value of v.ProgrStatus satisfies the order over the
values. The function is as follows.

Function: chk.progrstatus

f.chk.progrstatusCheck progress status sequence

211

Chapter 10. Valuation

Input

Fragment x ∈ F and two Value Assignments 〈x,v.ProgrStatus, vold〉
and 〈x,v.ProgrStatus, vnew〉, where 〈x,v.ProgrStatus, vnew〉 is the
new value that a modeller wishes to add to x, to replace 〈x,v.ProgrStatus, vold〉.

Do

Check if (vold, vnew) is in the following set

{ (none,DesignApproved), (DesignApproved,EstimateDone),

(EstimateDone, InRoadmap), (InRoadmap,TestReady),

(TestReady,ApprovedForRelease)}

If yes, then let v = 1, else v = 0.

Output

v .

Language Services

• s.ProgrStatusOks.ProgrStatusOk: Can 〈x,v.ProgrStatus, vnew〉 replace 〈x,v.ProgrStatus, vold〉?
: Yes, if v = 1, otherwise no.

The function takes the current (old) assignment of a v.ProgrStatus
value, and checks if the new Value Assignment, which replaces the
old, satisfies the constraints on the sequence in which the values
of this Value Type can be assigned. Returning to s.WorkProgrRep,
notice that it is delivered as soon as it is possible to assign values of
v.ProgrStatus to model parts in a language.

10.6 Real Numbers

The hypothetical work process in Section 10.5 has a step, when one
checks if there exists an estimate of time required to implement what
a Fragment describes. If these estimates need to be recorded in
models, then there can be a new Value Type, call it v.ImplTime, whose

212

Chapter 10. Valuation

allowed values are positive reals.
Depending on the specifics of the language which has this Value

Type, the assignment of implementation time values can be entirely
manual or partly automated. In absence of automation, the language
would require that an individual, or more of them, assign a positive
integer value to each Fragment.

In the partly automated case, values assigned to some Fragments
would be used to compute values on others. Let the language have
positive and negative influence relations, for example. Suppose that
there are only two positive influence relations (y, x) and (z, x) to
a Fragment x. If the assigned implementation time to y is 10 man-
hours, and to z is 5 man-hours, the language could include a function
which sums these two, and returns 15 man-hours a the implemen-
tation time for x. More generally, that function would be summing
implementation time over all incoming positive influence relations.

It is up to you to decide if such a function is useful in a language.
The point is simply that you can define new functions for such pur-
poses. They can aggregate already assigned values into values of a
new Value Type. Again, I leave it to you as an exercise, to define a
language which uses v.ImplTime.

Return now to v.ProgrStatus, where the step called EstimateDone
was completed for a Fragment x if, in the terminology of this section,
there is a value of v.ImplTime assigned to x.

Now, suppose that the team, which uses the language and is
designing the system, has the rule that, if a Fragment obtains an
v.ImplTime value equal or greater than 20 man-hours, then it has
to be approved again by the system designer. Nothing else should
change in their work process. Once x is approved, it will immediately
enter the product roadmap, because it has the implementation time
estimate.

To add this to a language, define a function which is applied
for every Fragment that has a v.ImplTime value of 20 or more, and
which simply removes the value of v.ProgressStatus of that Fragment,
thereby requiring again the approval of the system designer (the
language has to have f.chk.progrstatus). The definition of the function
is as follows.

Function: chk.20more

213

Chapter 10. Valuation

f.chk.20moreRecheck 20 or more

Input

Model M .

Do

For every Fragment x in M , if x is such that its v.ImplTime is 20
man-hours or more, and its v.ProgrStatus is EstimateDone, and
since it was added to the model, it was only once been assigned
the value DesignApproved, then remove the v.ProgrStatus value
from x.

Output

A new model M ′, where all Fragments which were assigned
v.ImplTime of 20 man-hours or more, and which were not as-
signed twice the v.ProgrStatus value DesignApproved, now have
no v.ProgrStatus value.

Language Services

• s.WhAppAgains.WhAppAgain: Which Fragments in a model M , among
all those that have v.ImplTime of 20 man-hours or more,
need to be approved again by the system designer? : All
Fragments in M , which in M had, and in M ′ do not have
a v.ProgressStatus value.

10.7 Summary on Valuation

Valuation consists of assigning variables to Fragments and relation
instances, defining functions over these variables, and given an as-
signment of values to some of the variables, using the functions to
compute values of others.

The section on gave various illustrations of Value Types and how
to assign values to parts of models. I focused on functions which
values of binary Value Types in models. This showed one compelling

214

Chapter 10. Valuation

reason for having Value Types in the first place, and thinking about
valuation in a language.

Many other topics on valuation are important, and I discuss some
of them in subsequent sections, while others remain outside the
scope of the tutorial:

• What if random variables need to be assigned to model parts,
to say, for example, that there is a probability for a Fragment to
get some value? I discuss this in Chapter 11.

• How to say that some Value Assignments are mutually exclu-
sive, and thereby enable a language to represent alternative
Problem and solution instances? This is discussed in Chapter
12.

• How to say in models that some values are more or equally de-
sirable than others, on the same Fragment or relation instance,
or on other Fragments and relation instances? This is the topic
of Chapter 14.

• How are Value Types and valuation related to truth values in
classical and non-classical logics? I will revisit this briefly, for
classical logic, in Chapter 15.

215

Chapter 11

Uncertainty

What if you need models to say that a Value Assignment is uncertain,
and to quantify that uncertainty? What if models need to include
random variables? This Chapter focuses on how to represent that
Value Assignments to model parts are uncertain. This is done by al-
lowing random variables to be associated to model parts, and defining
probability spaces for these random variables, so that you can give
a probability that the random variable takes a specific value, or any
value in a range. The section is organised around the following ques-
tions:

• How to represent independent random variables in a model?
(Section 11.2),

• What to do when there are dependent random variables in a
model? (Section 11.3).

216

Chapter 11. Uncertainty

11.1 Motivation

In Section 10.6, the implicit assumption was that there is no uncer-
tainty in Value Assignments of v.ImplTime. This may be unrealistic.
There can be changes in requirements, domain knowledge, and, or
specifications, errors in the implementation, or other issues. Stake-
holders may be unsure about their estimates.

It was not possible to represent uncertainty about estimates with
languages discussed so far. I could not deliver the following Language
Service, for example.

Language Service: UncImplTime

How uncertain is the assignment of the v.ImplTime value to the
Fragment x in M? s.UncImplTime

If a language can deliver s.UncImplTime, then its models can also
answer such questions as, for example, “How uncertain is it that the
implementation time of x will be v?”, where v is the v.ImplTime value
assigned to x.

This same assumption was implicit when v.Satisfaction values
were assigned. If a model assigns the satisfaction value 1 to a re-
quirement such as, say, AddRepEm, then the model says that all
emergency calls are responded to. The requirement is idealistic, as it
is inevitable that, among tens of thousands of calls, some will not be
responded to, or not within some prescribed time. But again, there
was no way to show more realistic requirements in a model. To avoid
this assumption, the language would need to deliver the Language
Service below.

Language Service: UncSat

How uncertain is the assignment of the v.Satisfaction value to a
Fragment x in M? s.UncSat

217

Chapter 11. Uncertainty

v.Approval Value Assignments can be uncertain as well. A stake-
holder may change her mind, and change previously assigned ap-
proval values. A model may capture this by describing the uncer-
tainty of an approval value on a Fragment, that is, would deliver the
following Language Service.

Language Service: UncApp

How uncertain is the assignment of the v.Approval value to a
Fragment x in M? s.UncApp

If a model can answer the above, then it can also answer ques-
tions such as, for example, “How certain is it that the approval value
of x will change?”. This is relevant if you need to decide whether
to ask stakeholders for approving again a model, or if the already
assigned approval values are stable enough to avoid another round
of approval.

To deliver the Language Services above, a language needs to have
means for qualifying or quantifying uncertainty. Qualifying amounts
to having a scale of qualitative values for describing uncertainty,
such as, for example, a scale with only the values “low”, “medium”,
and “high”. Quantifying usually means assigning and calculating
probability values to events. A language can also combine both, by,
for example, having rules that map ranges of probability values to
values on a qualitative scale (say, if probability that a stakeholder
changes her approval value on x is at most 0.1, then this corresponds
to the value “low” on the qualitative scale), but the challenge in
having both is being clear on what they are used for.

11.2 Independent Random Variables

To quantify the uncertainty of Value Assignments, it is necessary to
define the probability space of a random variable.

Recall that a probability space Probability spaceis a triple (S ,E ,P), where S is
the sample space, which includes all possible outcomes of a phe-
nomenon, E is the set of all events, where an event can contain zero
or more outcomes, and P is a probability measure, a function which

218

Chapter 11. Uncertainty

given an event, returns a real value in the range [0,1]. If e ∈ E , then
P (e) is called the probability of e. If, for example, the phenomenon
of interest is the tossing of a perfect coin, then the sample space
is S = {H ,T }, with two outcomes, called H when the “heads” side
of the coin is up, and T when the “tails” side is. E includes all pos-
sible combinations of outcomes, that is, it is the power set of S ,
and the probabilities of events are as follows: P (;) = 0, P ({H }) = 0.5,
P ({T }) = 0.5, P ({H ,T }) = 1. The probability space would be different
if, for example, I was tossing a pair of coins.

An important consequence of allowing random variables in mod-
els, is that you have to define a probability space for each variable.
And there can be many such variables. For example, suppose that
you have a model in L.Rigel, and that all assignments of v.Satisfaction
values are uncertain. You know from L.Rigel that, because it has
f.sat.inf.pos, f.sat.inf.neg, f.sat, and f.sat.leaf, that you have to assign
all satisfaction values to leaf Fragments, and then propagate these
values to influence relation instances and Fragments. Now, to quan-
tify the uncertainty of all these Value Assignments of satisfaction
values, observe that you have as many random variables, as there are
assignments of satisfaction values. This is because if x is a Fragment
or relation instance, then there is a random variable x.v.Satisfaction,
and you need a probability space for it. So if 〈x,v.Satisfaction,1〉, or
equivalently, x.v.Satisfaction= 1, then you need a probability space
for x.v.Satisfaction in order to compute the probability of it getting a
specific satisfaction value. If that value is 1, you need its probability
space if you want a value for P (x.v.Satisfaction = 1), which is, given
my notational conventions in this book, the same as wanting the
value of P (〈x,v.Satisfaction,1〉).

To deliver s.UncImplTime, a language needs to associate a ran-
dom variable x.v.ImplTime to every Fragment x. In addition, each
random variable will come with its own probability space, which
includes the function that returns the probability of a specific value
of x.v.ImplTime.

Recall that v.ImplTime is a positive real. For any Fragment x, then,
and in the terminology of probability spaces, x.v.ImplTime takes a
value from the sample space [0,∞), and any such value is an outcome.
Any event of interest is any one of these outcomes. Furthermore,
as it takes a real value, x.v.ImplTime has a continuous probability
distribution, and has to have a probability density function, which is
denoted pdf(x.v.ImplTime) below.

219

Chapter 11. Uncertainty

For example, perhaps vx follows a normal (Gaussian) distribu-
tion with a mean of 10 man-hours, and a standard deviation of 2
man-hours, so that pdf(vx) = (1/2

p
2π)e−(vx−10)2/8. But, there can be

another Fragment y , which has vy as its random variable, and vy

may have a completely different probability density function (not
the one for normal distribution).

Regardless of the specifics of the probability density function, the
uncertainty of a value assigned to x.v.ImplTime is quantified with a
probability measure, whereby the probability that implementation
time x.v.ImplTime is in the interval [a,b] is given by

P [a ≤ vx ≤ b] =
∫ b

a
pdf(vx)d v.

Similar stories can be told for v.Satisfaction and v.Approval. If you
want to indicate in a model that you are unsure about the satisfaction
or approval value on a Fragment or relation instance x, then associate
the random variable to x, and define the probability space for it.

How does the discussion influence the Language Modules that
you define in a language. It is important to see that there are two
ways to use random variables.

1. Probability measurement consists of doing the following. Start
by assigning values to Fragments, and then calculate the proba-
bility of these values. For example, if the estimate of implemen-
tation time for a Fragment x is 13 man-hours, then calculate
the probability P [x.v.ImplTime ≤ 13]. The probability value
thus quantifies the uncertainty of this estimate, with the slight
adjustment that it gives the probability that implementation
time for x will be at most 13 man-hours, and not exactly 13
man-hours. The adjustment is due to pdf(x.v.ImplTime) be-
ing a continuous function over reals, so that P [x.v.ImplTime=
c] = 0, for any constant c. If x.v.ImplTime is discrete, and has a
probability mass function instead of pdf(x.v.ImplTime), then it
makes sense to compute P (x.v.ImplTime= 13).

2. Simulation: Do not assert the value of a random variable
x.v.ImplTime, but generate a value for it by simulation. So in-
stead of assigning yourself, or asking someone for a value of
implementation time, obtain that value through simulation
which generates random values that satisfy the specifics of the

220

Chapter 11. Uncertainty

probability density function, or probability mass function of
the random variable.

Both approaches add new functions and Value Types to a lan-
guage. The measurement approach adds functions which return
probability values, while the simulation approach adds functions
which return a value of a random variable, produced by simulation. If
a model has n random variables, then there have to be n probability
spaces, one per random variable. I introduce the convention that
each probability space defines a new Value Type, which is named as
follows: if x.v.ImplTime is the random variable, then there has to be
the Value Type v.prob(x.v.ImplTime) defined by the probability space
for x.v.ImplTime. Illustrations are below.

For the measurement approach, a language can have a generic
function which takes a probability space and returns a probability
value. It can be defined as follows.

Function: prob.asg

f.prob.asgAssign probability value

Input

• Assignment either of a single value 〈x,v.T, w〉 or of a range
〈x,v.T, w1 ≤ v ≤ w2〉 to random variable of Value Type T
on Fragment x, and

• Value Type v.prob(x.v.T), defined by the probability space
(S ,E ,P) for the random variable x.v.T.

Do

If the input is 〈x,v.T, w〉, then p = P (x.v.T = w). If input is
〈x,v.T, w1 ≤ v ≤ w2〉, then p = P [w1 ≤ vx ≤ w2].

221

Chapter 11. Uncertainty

Output

〈x,v.prob(x.v.T), p〉, that is, the assignment of a probability value,
which is the probability that 〈x,v.T, w〉 or 〈x,v.T, w1 ≤ v ≤ w2〉,
depending on the input to f.prob.asg.

Language Services

• s.WhProbabilitys.WhProbability: If the probability space for the random
variable x.v.T is (S ,E ,P), then what is the probability
that x.v.T = w if w is given, or that x.v.T ∈ [w1, w2], if
[w1, w2] is given? 〈x,v.prob(x.v.T), p〉 which f.prob.asg
returns.

As it is defined above, f.prob.asg is not specific to particular Value
Types, or to discrete or continuous random variables. The function
assumes that a probability space is already defined for a random
variable x.v.T, and f.prob.asg returns, using the probability function
defined for that space, the probability value. f.prob.asg is defined
rather loosely, since it says nothing about, for example, how it is
ensured that the input value or range for x.v.T matches the prop-
erties of the probability space, that is, makes sense for the given
probability space (for example, if a single value is input to f.prob.asg,
then f.prob.asg will return a zero value if the random variable is not
discrete).

If the language does allow the definition of random variables,
a major difficulty is to design relevant probability spaces, because
the required data may be hard to find, and there can be biases [141].
For instance, it may not be clear at all where to look for useful data,
in order to define the probability space for implementation time of
some Fragment x.

The simulation approach also involves adding one or more func-
tions to a language. For example, let the aim be to generate values
for random variables that follow the normal distribution. A function
is needed, which takes the mean and standard deviation parameters
of the normal distribution that the variable follows. The function
may apply, for example, the Box-Muller method [21] to generate and

222

Chapter 11. Uncertainty

output a value for the random variable.
A model can include random variables, such as some x.v.Tq,

whose probability is determined by a joint probability distribution of
two or more other random variables, say x1.v.T1, . . . , xn .v.Tm in the
same model.

For illustration, suppose that the probability space

v.prob(x.v.Satisfaction)

is such that the probability of x.v.Satisfaction is given by the joint
probability distribution of the variables

x1.v.Satisfaction, . . . , xn .v.Satisfaction.

If they are all independent variables, then

P (x.v.Satisfaction= b) =
P (x1.v.Satisfaction= a1) · . . . ·P (xn .v.Satisfaction= an).

If the model says that every Fragment x1, . . . xn has to be satisfied, in
order for x to be satisfied, then

P (x.v.Satisfaction= 1) =
P (x1.v.Satisfaction= 1) · . . . ·P (xn .v.Satisfaction= 1).

The above can be shown as a graph, by having an edge from each
of the random variables xi .v.Satisfaction to x.v.Satisfaction. Another
approach is to reuse instances of another relation, some r.K, which
already generates a graph. This consists of assuming that each r.K
instance also indicates that the probability of some Value Assignment
to a Fragment is the product of the probabilities of specific Value
Assignments on other Fragments. The following example illustrates
this.

Example 11.2.1. Recall that a language can have influence relations
to show how a satisfaction value of a Fragment or relation instance
influences that of another. These relations can be used to define the
joint probability distribution, to use to compute the probability of
satisfying a Fragment. Namely, a language can have a rule which
says that, if to satisfy x, it is necessary to satisfy all Fragments, say
x1, . . . , xn connected via r.inf.pos to x, then the probability of satis-
fying x is given by the joint probability distribution of the random
variables of v.Satisfaction, assigned to x1, . . . , xn . The rule can be
added to a language with f.prob.prod below.

223

Chapter 11. Uncertainty

Function: prob.sat.ind

f.prob.sat.indCompute probability that a Fragment is satisfied using prob-
abilities of satisfaction of Fragments which influence it pos-
itively

Input

Fragment x ∈ F and model M .

Do

1. Let {y1, . . . , yn} ⊆ r.inf.pos be all r.inf.pos to x in M .

2. Let

〈y1,v.prob(y1.v.Satisfaction),P (y1.v.Satisfaction= 1)〉,
. . . ,

〈yn ,v.prob(yn .v.Satisfaction),P (yn .v.Satisfaction= 1)〉

be probability values that each y1 will take the v.Satisfaction
value 1.

3. If y1.v.Satisfaction, . . . , yn .v.Satisfaction are independent
random variables, and the probability of x.v.Satisfaction
is given by the joint probability distribution of

y1.v.Satisfaction, . . . , yn .v.Satisfaction,

then

P (x.v.Satisfaction= 1) =
n∏

i=1
P (yi .v.Satisfaction= 1).

Output

〈x,v.prob(x.v.Satisfaction),P (x.v.Satisfaction= 1)〉.

224

Chapter 11. Uncertainty

Language Services

• s.WhProbSatInds.WhProbSatInd: What is the probability of satisfying x,
if y1, . . . , yn all positively influence x in M , the probability
of satisfying each of y1 is independent from the proba-
bility of satisfying any other y j , and the probability of
satisfying x is given by the joint probability distribution
function of satisfying all Fragments which influence x? :
〈x,v.prob(x.v.Satisfaction),P (x.v.Satisfaction= 1)〉.

The language below allows random variables in models, and has
f.prob.asg and f.prob.sat.ind.

Language: Adhara

L.AdharaLanguage Modules
r.inf.pos, r.inf.neg, f.map.abrel.g, f.cat.ksr, f.sat.inf.pos, f.sat.inf.neg,
f.sat, f.sat.leaf, f.prob.asg, f.prob.sat.ind

Domain

There is a set of Fragments F, a singleton for Value Types

T= {v.Satisfaction},

and a set of Value Assignments V. Fragments have three par-
titions, namely requirements, domain knowledge, and spec-
ification Fragments, F = c.r∪ c.k∪ c.s and c.r∩ c.k∩ c.s = ;.
Influences are over Fragments, r.inf.pos⊆ F×F, r.inf.neg⊆ F×F.
Value Assignments are over Fragments or relation instances,
involve a Value Type, and a value, so that

V ⊆ W × {v.Satisfaction}×v.Satisfaction

∪ W × {v.prob(x.v.Satisfaction) | xW }× [0,1],

where W = F∪ r.inf.pos∪ r.inf.neg.

225

Chapter 11. Uncertainty

The above says that any Value Assignment is the assignment of
a v.Satisfaction to a Fragment or influence relation instance,
or the assignment of a value from a range [0,1] of reals, to
x.v.prob(x.v.Satisfaction), where, again, x is a Fragment or an in-
fluence relation instance. So the first part of V are assignments
of satisfaction values, and the second part are assignments of
the probability of satisfaction Value Assignments.

The language has many Value Types,

T = {v.Satisfaction}∪ {v.prob(x.v.Satisfaction) | x ∈W },

where W = F∪ r.inf.pos∪ r.inf.neg.

with v.Satisfaction = {1,0} and v.prob(w.v.Satisfaction) = [0,1],
for every w ∈W .

Syntax

A model M in the language is a set of symbols M = {Z1, . . . , Zn},
where every Z is generated according to the following BNF
rules:

A ::= x | y | z | . . .

B ::= r (A) | k(A) | s(A)

C ::= B influences+ B

D ::= B influences- B

G ::= 〈A,E ,F 〉
Z ::= B |C | D |G

Mapping

A symbols denote Fragments, D(A) ∈ F. B symbols are used to
distinguish requirements, domain knowledge, and specification
Fragments, so that D(r (α)) ∈ c.r, D(k(α)) ∈ c.k, D(s(α)) ∈ c.s. C
and D symbols denote, respectively, positive and negative in-
fluence relations. E symbols denote Value Types, D(E) ∈ T. F
symbols denote a value of a Value Type, and as there is one
Value Type, D(F) ∈ v.Satisfaction. G symbols denote Value As-
signments, D(G) ∈V.

226

Chapter 11. Uncertainty

Figure 11.1: A model in L.Adhara with assignments of probability
values.

Language Services

Those of relations and functions in the language, and s.SatReq.

Figure 11.1 shows a model in L.Adhara, when all the random vari-
ables of type v.Satisfaction are independent. Each of these variable
is denoted v[m], where m is the Fragment identifier. Each random
variable is of type v.Satisfaction. There is the assignment of a proba-
bility value to each Fragment. Each indicates the probability that the
Fragment is satisfied, that the value of the variable is 1. The probabil-
ity that AmbArrIncLoc is satisfied is equal to the joint probability of
satisfying all other Fragments shown in the Figure. •

227

Chapter 11. Uncertainty

11.3 Dependent Random Variables

This section drops two assumptions made in Section 11.2: (i) that
events are independent, so that the occurrence of one does not in-
fluence the probability of another to occur, and (ii) that random
variables are independent, or in other words, that the occurrence of
events of one of the variables does not influence the probability of
the events of the other random variable.

A language can use Bayesian networks [111, 24] to represent de-
pendency between random variables, and to compute probabilities
of their events.

A Bayesian network is a directed acyclic graph (V ,E), where V
is a set of random variables and E of edges. There is an edge from
v1 ∈ V to v2 ∈ V , iff P (v1) 6= P (v1 | v2), that is, the probability of
an event of v1 is different from the probability of the event, given
the occurrence of an event of v2. If there are two edges to v1, for
example (v3, v1) and (v2, v1), then this says that P (v1) 6= P (v1 | v2, v3)
and that P (v1 | v2) 6= P (v1 | v2, v3). More generally, in a Bayesian
network, every random variable is dependent only on its direct parent
variables. In an edge (v2, v1), v2 is a direct parent of v1, while if there
another edge (v3, v2), then v3 is an indirect parent of v1, and so,
P (v1 | v2) = P (v1 | v2, v3).

An important property of Bayesian networks is that, to give the
joint probability distribution for all random variables in the network
(that is, to have the probability value for all events, of all random
variables in the network), it is enough to specify only the probabil-
ity values for all events of all root random variables (those with no
parents), and the conditional probability values for all events of all
non-root random variables, for all possible combinations of events of
their direct parents. While this can require considerable work as well,
it is less than the 2|V |−1 probability values, which would otherwise
need to be defined.

There are at least two approaches to enabling a language to rep-
resent Bayesian networks in its models, provided that this language
does allow associating random variables to Fragments. The approach
in Section 11.3.1 ignores relations which may exist in the language.
So there is no mapping between a Bayesian network and some graph
that a relation gives. This also means that there are no existing graphs
in a model in that language, which can be used to produce the corre-
sponding Bayesian network automatically. The approach in Section

228

Chapter 11. Uncertainty

11.3.2 automatically generates a Bayesian network, based on a graph
in a model of the language. I will consider both options below.

11.3.1 Ignoring Existing Relations

The first approach consists of adding a function which takes all ran-
dom variables assigned to Fragments in a model, and produces a
Bayesian network over these variables (note that the network does
not need to be a connected graph). The function is defined as follows.

Function: make.baynet

f.make.baynetMake a Bayesian Network

Input

Set X ⊂ F of Fragments.

Do

Let:

• VX be the set of all random variables, at most one per
Fragment in X ,

• (VX ,E) be a Bayesian network with no edges,

Then:

1. for every pair x, y in VX , if P (x) 6= P (x | y), then add an
edge to E , directed from y to x,

2. for every random variable which is a root node in (VX ,E),
define probability values for all its possible events,

3. for every random variable which is not a root node in
(VX ,E), define conditional probability values for all events
of all non-root random variables, for all possible combi-
nations of events of their direct parents.

229

Chapter 11. Uncertainty

Output

Bayesian network (VX ,E).

Language Services

• s.WhProbBNs.WhProbBN: What is the probability of an event e of
variable vx to occur, according to the Bayesian network
(VX ,E)? : P (vx = e) obtained by evaluating the Bayesian
network (VX ,E).

11.3.2 Using Existing Relations

Given a model in a language, f.make.baynet only uses the random
variables assigned to Fragments in that model. It ignores all else that
may be said in the model, such as the relations that the Fragments
are in.

When the aim is to reuse more of the information in a model,
then it may be relevant to derive (part of) a Bayesian network from
some relation in a language.

For illustration, recall that influence relations exist when the satis-
faction value of a Fragment depends on satisfaction values of others.
If I decide that positive influence relations should be interpreted as
giving probability dependence between random variables assigned
to Fragments in these relations, then I can map a graph over influ-
ence relation instances to a Bayesian network. The idea is that if
there is a positive influence from Fragment y to x, and vy and vx are
the random variables associated to, respectively y and x, then there
is an edge in the Bayesian network where vx and vy are nodes. The
following function does this.

Function: map.inf.pos.baynet

f.map.inf.pos.baynetMake a Bayesian Network from r.inf.pos instances

230

Chapter 11. Uncertainty

Input

G(X, r.inf.pos), where X is a set of Fragments.

Do

Let:

• VX be the set of all random variables, at most one per
Fragment in X ,

• (VX ,E) be a Bayesian network with no edges.

Then:

1. for every edge (y, x) in G I+, add an edge (vy , vx) to E ,
where vx and vy are random variables assigned to, re-
spectively, x and y ,

2. for every random variable which is a root node in (VX ,E),
define probability values for all its possible events,

3. for every random variable which is not a root node in
(VX ,E), define conditional probability values for all events
of all non-root random variables, for all possible combi-
nations of events of their direct parents.

Output

Bayesian network (VX ,E).

Language Services

s.WhProbBN.

Example 11.3.1. Figures 11.2 and 11.3 give a simple and hypothetical
example of applying f.map.inf.pos.baynet to a graph G(X, r.inf.pos) in
Figure 11.2.

Every Fragment in the graph G(X, r.inf.pos) in Figure 11.2 has
an associated random variable of the format v[. . .] in Figure 11.3.
Figure 11.3 shows a Bayesian network, where edges are marked “B”,

231

Chapter 11. Uncertainty

Figure 11.2: A model in L.Adhara, with no assignments of probability
values.

made by applying f.map.inf.pos.baynet to the graph G(X, r.inf.pos)
in Figure 11.2. Hypothetical probability values to root nodes, and
the conditional probability values to the one non-root node were
assigned manually. •

232

Chapter 11. Uncertainty

Figure 11.3: Bayesian network made by applying f.map.inf.pos.baynet
to the model in Figure 11.2.

233

Chapter 12

Alternatives

This Chapter focuses on how to represent mutual exclusion in models.
If parts A and B in a model are mutually exclusive, and that model
represents one or more problem and, or solution instances, then none
of these problems and solutions includes both A and B. In such a
model, it may be that some problem (or solution) instances include A,
others only B, some perhaps neither, but none will include both. I use
two notions to discuss how mutual exclusion can work in languages
in this book. One, called “Alternative”, allows me to represent that, say,
two Value Assignments are mutually exclusive. The other is Outcome,
which was introduced in Chapter 10. Using these notions, I discuss
the following questions.

1. How to represent Alternatives? (Section 12.2)

2. How to find an Outcomes which include no mutually exclusive
Value Assignment? (Section 12.3)

3. How to find Outcomes which include no mutually exclusive
Value Assignment, when the language has several different
Value Types? (Section 12.4)

234

Chapter 12. Alternatives

12.1 Motivation

The exact Problem instance to solve is often discovered during problem-
solving. It is not known up front, but discovered and designed along
the way. It is also rarely the case that you discover only one specific
problem instance. There may be different sets of more concrete re-
quirements, for example, such that each of these sets is an acceptable
way to add details to the same less concrete requirement. You are
thereby discovering a problem space, that is, a variety of problem in-
stances, one or some of which your solution will solve. And the same
applies to solutions, in that there is a solution space, rather than a
single solution. The challenge is, then, to understand the problem
space and the solution space, and find a pair, made of a problem
instance and a solution instance, as the outcome of problem-solving.

This Chapter focuses on how to represent mutual exclusion in
models. If parts A and B in a model are mutually exclusive, and that
model represents one or more problem and, or solution instances,
then none of these problems and solutions includes both A and B. In
such a model, it may be that some problem (or solution) instances
include A, others only B, some perhaps neither, but none will include
both.

In languages in this book, Fragments or relation instances are not
mutually exclusive themselves, but Value Assignments on them are.
This is because saying that Fragments x and y are mutually exclusive
is imprecise. Having Fragments be mutually exclusive may reflect
that they should not be satisfied together, or that they cannot both
be approved by stakeholders, or that they should not be included in
the same release of the system together, and so on. Yet it could be
that they both can be approved by stakeholders, but that they should
not both be included in the same release of the system. The point
being that, when mutual exclusion is about Value Assignment, then
such ambiguities can be avoided.

I use two notions to discuss how mutual exclusion can work
in languages in this book. One, called “Alternative”, allows me to
represent that, say, two Value Assignments are mutually exclusive.
The other is Outcome, which was introduced in Chapter 10.

There are different ways to fill out an incident report. It can be
printed on paper and manually filled out, or there could be a tem-
plate document of the report for use in word processing software, or
by having a dedicated functionality for this in the dispatch software,

235

Chapter 12. Alternatives

or in some other way. For each of these, you can probably think of
alternative organisational positions whom this responsibility can be
assigned, such as dispatcher or administrative assistant.

To represent different ways of doing FillIncRep, and do so with
languages defined so far, I would have to make one model each of
these mutually exclusive ways. This is impractical. Suppose that
there are three different ways to fill out a report, and two ways to al-
locate responsibility for doing so. This gives eight mutually exclusive
Outcomes, and they cover only some options and only for FillIncRep,
not other Fragments. Moreover, if the Requirements Modelling Lan-
guage cannot represent all of them, it will not be able to represent
relations between these Outcomes. You could thus have many mod-
els, but have no information in these models about which of them is,
for example, more desirable than another one over some criterion,
such as cost to implement.

Problem solving involves making decisions, that is, given various
possible ways to act, committing to only one. The concept of Alter-
native is a basic notion in decision making. AlternativeSome x, whatever it may
be, can be called an Alternative when there are m ≥ 1 other things,
say y1, . . . , ym that can perform the role of x, we have the ability to
choose any of x, y1, . . . , ym for that role, and x, y1, . . . , ym are mutually
exclusive, that is, neither is compatible with others, and neither is
part of another.

To use models for decision-making, it is necessary to be able to
represent Alternatives and to represent relations between them. The
model becomes a record of Alternatives which were encountered dur-
ing problem-solving. This allows you to postpone choosing any one
Alternative before discovering others and comparing them. You may
want to postpone choosing an Alternative, because you expect that
there may be others which might also be worth considering. Or you
may not have the authority to choose Alternatives yourself, but need
to present them to stakeholders who have the authority to decide.
Perhaps you also want first to find criteria for the comparison of the
Alternatives (more on this in Chapter 14), before doing anything else
with them.

236

Chapter 12. Alternatives

12.2 Alternatives over Binary Value Types

Suppose that you want a language to deliver the following Language
Service.

Language Service: SatAlt

Which are all the different ways for satisfying x according to the
model M? s.SatAlt

This section focuses on the simpler case, where v.Satisfaction is
binary.

Recall that L.Rigel can show positive and negative influence rela-
tions over Fragments, and propagate binary satisfaction values. But
it cannot show that some Value Assignments are mutually exclusive.

How would you represent in models that two or more Value As-
signments are mutually exclusive? Would you do it with a relation,
or otherwise? What would you add or remove from L.Rigel to enable
it to show in models that some Value Assignments are mutually ex-
clusive? Would the resulting language deliver s.SatAlt? If yes, then
how?

A Value Assignment becomes an Alternative to another Value
Assignment if it participates in a relation. I will call this relation
vr.alt.b when it is over Value Assignments of binary Value Types. It is
a binary relation over Value Assignments. It should be irreflexive, so
that I cannot write that a Value Assignment is mutually exclusive to
itself. It should also be symmetric, because if Value Assignments v
and w are mutually exclusive, then each is mutually exclusive to the
other. Finally, it is intransitive, as saying that v is mutually exclusive
to w , and w to q does not necessarily mean that v and q are mutually
exclusive.

Relation: alt.b

vr.alt.bMutually exclusive Value Assignments of a binary Value
Type

237

Chapter 12. Alternatives

Domain & Dimension

r.alt.b⊆V×V, where V is a set of Value Assignments of the same
binary Value Type.

Properties

• Irreflexive, symmetric, and intransitive.

• If (v, w) ∈ vr.alt.b in a model M , then there is no Outcome
of M which includes both v and w .

Reading

(v, w) ∈ vr.alt.b reads “Value Assignments v and w are Alterna-
tives”.

Language Services

• s.IsAlts.IsAlt: Are Value Assignments v and w Alternatives? Yes,
if (v, w) ∈ vr.alt.b.

I define below the language L.Mirfak, which can represent positive
and negative influence over requirements, domain knowledge, and
specifications, just as L.Rigel. L.Rigel, however, cannot represent
Alternatives. But because of Alternatives, L.Mirfak cannot use f.sat
from L.Rigel, since this function ignores Alternatives. I therefore
need a new function, called f.sat.alt.b. I define it later, as my aim now
is simply to illustrate the ability to represent Alternatives in models.

Language: Mirfak

L.MirfakLanguage Modules
r.inf.pos, r.inf.neg, f.map.abrel.g, f.cat.ksr, vr.alt.b, f.sat.inf.pos,
f.sat.inf.neg, f.sat.alt.b, f.sat.leaf

238

Chapter 12. Alternatives

Domain

There is a set of Fragments F, a singleton for Value Types

T= {v.Satisfaction},

and a set of Value Assignments V. Fragments have three par-
titions, namely requirements, domain knowledge, and spec-
ification Fragments, F = c.r∪ c.k∪ c.s and c.r∩ c.k∩ c.s = ;.
Influences are over Fragments, r.inf.pos⊆ F×F, r.inf.neg⊆ F×F.
Value assignments are over Fragments or relation instances,
involve a Value Type, and a value, so that

V⊆ (F∪ r.inf.pos∪ r.inf.neg)×T×v.Satisfaction.

Satisfaction is binary, v.Satisfaction = {1,0}. Alternatives are
over Value Assignments, vr.alt.b⊆V×V.

Syntax

A model M in the language is a set of symbols M = {Z1, . . . , Zn},
where everyφ is generated according to the following BNF rules:

A ::= x | y | z | . . .

B ::= r (A) | k(A) | s(A)

C ::= B influences+ B

D ::= B influences- B

G ::= 〈A,E ,F 〉
H ::= G alternativeTo G

Z ::= B |C | D |G | H

Mapping

A symbols denote Fragments, D(A) ∈ F. B symbols are used to
distinguish requirements, domain knowledge, and specification
Fragments, so that D(r (α)) ∈ c.r, D(k(α)) ∈ c.k, D(s(α)) ∈ c.s. C
and D symbols denote, respectively, positive and negative in-
fluence relations. E symbols denote Value Types, D(E) ∈ T. F
symbols denote a value of a Value Type, and as there is one

239

Chapter 12. Alternatives

Value Type, D(F) ∈ v.Satisfaction. G symbols denote Value As-
signments, D(G) ∈ V. H symbols denote Alternatives, D(H) ∈
vr.alt.b.

Language Services

Those of relations and functions in the language.

How should f.sat.alt.b work? Consider first why this function is
needed. Suppose that you have the L.Mirfak model in Figure 12.1.
Each node labeled “alt” is an instance of vr.alt.b. There are six such
instances in the model.

Each vr.alt.b in the Figure represents a constraint on Outcomes of
the model there. An Outcome which has, for example,

〈AutoAmbList influences+ IdAmb,v.Satisfaction,1〉,
〈ManTrckAmb influences+ IdAmb,v.Satisfaction,1〉

violates the vr.alt.b instance

〈AutoAmbList influences+ IdAmb,v.Satisfaction,1〉 alternativeTo

〈ManTrckAmb influences+ IdAmb,v.Satisfaction,1〉.
I will say that such an Outcome is Incoherent. Incoherent OutcomeMore generally, if
there is a vr.alt.b in a model, and an Outcome violates it, then that
Outcome is Incoherent. An Outcome may be Incoherent for other
reasons, which will be discussed later.

Figure 12.2 shows Value Assignments to leaf Fragments, made
using f.sat.leaf. If you apply f.sat.inf.pos, the resulting Value Assign-
ments will include

〈AutoAmbList influences+ IdAmb,v.Satisfaction,1〉,
〈UpdAutoAmbList influences+ IdAmb,v.Satisfaction,1〉,
〈ManTrckAmb influences+ IdAmb,v.Satisfaction,1〉

and you can stop propagating v.Satisfaction values, as the resulting
Outcome will inevitably be Incoherent. Figure 12.2 shows circles over
the three problematic Value Assignments, whose propagation gives
an Incoherent Outcome.

I will leave Incoherent Outcomes aside for now, and consider
only Value Assignments which will give Outcomes that are Coherent

240

Chapter 12. Alternatives

with regards to vr.alt.b. Figure 12.3 shows Value Assignments to leaf
Fragments, which will give Coherent Outcomes. What should be the
v.Satisfaction value of IdAmb and ChoAmb in Figure 12.3?

The Value Assignment in Figure 12.3 assures that IdAmb is satis-
fied. This is because AutoAmbList and UpdAutoAmbList are assumed
satisfied via f.sat.leaf, and each positively influences IdAmb. Each of
them is also an Alternative to ManTrckAmb, which is not satisfied. Any
Outcome where AutoAmbList and UpdAutoAmbList are satisfied, and
ManTrckAmb is not, will satisfy these two vr.alt.b instances. (There
can be other Outcomes which can satisfy these two vr.alt.b instances.
An Outcome which makes ManTrckAmb satisfied, but AutoAmbList
and UpdAutoAmbList not satisfied, will also be Coherent with regards
to the two vr.alt.b instances. I will be searching for all such Outcomes
in Section 12.3.)

f.sat will not propagate appropriate v.Satisfaction values when
there are vr.alt.b instances, as it would assign 0 to IdAmb in Figure
12.3. f.sat requires all incoming r.inf.pos instances to be satisfied, in
order for their target Fragment to be satisfied.

f.sat.alt.b should not require all incoming positive influences to
be satisfied, in order for the target to be satisfied. It should require
a subset of incoming positive influences to be satisfied, as long as
none of the members in this subset are themselves Alternatives. In
other words, there should be no vr.alt.b instance over the members of
such a subset. In the case of IdAmb, there are two candidate subsets,
call them A1 and A2,

A1 = { AutoAmbList influences+ IdAmb,

UpdAutoAmbList influences+ IdAmb },

A2 = { ManTrckAmb influences+ IdAmb }.

If all members of either A1 or A2 are satisfied, then IdAmb should be
satisfied as well. Notice my implicit assumption that these sets should
be the largest subsets of positive influences. I will make this into a
convention, since the idea with f.sat was that all positive influences
should be satisfied, not some subset thereof. So now, I want to have
as many non-Alternative positive influences satisfied and not, for
example, at least one of them.

The conclusion of the above is that f.sat.alt.b should work as fol-
lows, when applied to compute the v.Satisfaction value of a Fragment
x:

241

Chapter 12. Alternatives

1. Find all positive and negative influence relation instances
which target x. All these relation instances must have a satis-
faction value assigned already. Let VI be the set which includes
v.Satisfaction Value Assignments to all these positive and nega-
tive relation instances.

2. Find all vr.alt.b instances over the Value Assignments in VI . Let
AI be the set which includes all these vr.alt.b instances.

3. Find all the largest subsets of Vi , such that if oi is such a subset,
then there is no vr.alt.b instance over any pair of its members.

4. For each oi ∈O, compute the product of v.Satisfaction values
in it.

5. If there is at least one o j ∈O, whose satisfaction value is 1, then
〈x,v.Satisfaction,1〉, otherwise 〈x,v.Satisfaction,0〉.

When applied to the model in Figure 12.3 and IdAmb, the first
step gives

VI = { 〈AutoAmbList influences+ IdAmb,v.Satisfaction,1〉,
〈UpdAutoAmbList influences+ IdAmb,v.Satisfaction,1〉,
〈ManTrckAmb influences+ IdAmb,v.Satisfaction,0〉 }.

Note that I had to propagate satisfaction values over the three influ-
ence relation instances first, in order to get the members of VI . The
second step gives

AI = { 〈AutoAmbList influences+ IdAmb,v.Satisfaction,1〉
alternativeTo

〈ManTrckAmb influences+ IdAmb,v.Satisfaction,1〉,
〈UpdAutoAmbList influences+ IdAmb,v.Satisfaction,1〉
alternativeTo

〈ManTrckAmb influences+ IdAmb,v.Satisfaction,1〉 }.

The third step results in

O = { o1,o2 },

o1 = { 〈AutoAmbList influences+ IdAmb,v.Satisfaction,1〉,
〈UpdAutoAmbList influences+ IdAmb,v.Satisfaction,1〉 },

o2 = { 〈ManTrckAmb influences+ IdAmb,v.Satisfaction,1〉 }.

242

Chapter 12. Alternatives

The fourth step calculates the product of satisfaction values in each
Outcome, in O. The result is 1 for o1 and 1 for o2. Finally, the fifth
step concludes with

〈IdAmb,v.Satisfaction,1〉.

243

Chapter 12. Alternatives

Figure 12.1: A visualisation of a model in L.Mirfak.

244

Chapter 12. Alternatives

Figure 12.2: Value Assignments for an Incoherent Outcome.

245

Chapter 12. Alternatives

Figure 12.3: Value Assignments for an Incoherent Outcome.

246

Chapter 12. Alternatives

The following is a definition of f.sat.alt.b, which works according
to the rules above.

Function: sat.alt.b

f.sat.alt.bBinary satisfaction in presence of Alternatives

Input

Fragment or relation instance x, and model M .

Do

1. Find all positive and negative influence relation instances
which target x. All these relation instances must have a
v.Satisfaction value assigned already. Let VI be the set
which includes v.Satisfaction Value Assignments to all
these positive and negative relation instances. That is, do
the following:

(a) Find the set {(p1, x), . . . , (pn , x)} ⊆ r.inf.pos of all pos-
itive influence relation instances to x in M . Call this
set I+(x).

(b) Find the set {(pn+1, x), . . . , (pm , x)} ⊆ r.inf.neg of all
negative influence relation instances to x in M . Call
this set I−(x).

(c) For each (pi , x) ∈ I+(x)∪ I−(x), compute its satisfac-
tion Value Assignment

〈(pi , x),v.Satisfaction,1〉 = f.sat.alt.b((pi , x), M),

and add this Value Assignment to VI .

2. Find all vr.alt.b instances over the Value Assignments in VI .
Let AI be the set which includes all these vr.alt.b instances.
Thus, AI includes all vr.alt.b instances with either this

247

Chapter 12. Alternatives

format

〈pi influences+ x,v.Satisfaction,1〉 alternativeTo

〈p j influences+ x,v.Satisfaction,1〉

or this format

〈pi influences- x,v.Satisfaction,1〉 alternativeTo

〈p j influences- x,v.Satisfaction,1〉

where both (pi , x) and (p j , x) are members of I+(x) ∪
I−(x).

3. Find all the largest subsets of Vi , such that if oi is such a
subset, then there is no vr.alt.b instance over any pair of
its members.

4. For each oi ∈ O, compute the product of v.Satisfaction
values in it. Let v(oi) be that value.

5. If there is at least one o j ∈O, whose satisfaction value is
1, then let s = 1, otherwise let s = 0.

Output

〈x,v.Satisfaction, s〉.

Language Services

• s.WhSat: 〈x,v.Satisfaction, s〉.

Figure 12.4 shows a visualisation of a model in L.Mirfak. The Value
Assignments there show one Coherent Outcome, made by applying
f.sat.leaf, f.sat.inf.pos, f.sat.if.neg, and f.sat.alt.b.

248

Chapter 12. Alternatives

Figure 12.4: A Coherent Outcome in a L.Mirfak model.

249

Chapter 12. Alternatives

12.3 Picks and their Use

A Pick, denoted P, is an Outcome which satisfies the following condi-
tions: Pick

1. It is a Coherent Outcome,

2. It includes only Value Assignments which are for some reason
desirable to you.

The idea is that you first define a Pick for a model, and then search
for Outcomes which include that Pick. It may be that a model can
have Outcomes which include the Pick, but it can also happen that
there are no such Outcomes. If, for example, the Pick includes all
requirements in a model, and the model itself shows various ways
of satisfying these requirements, then looking for Outcomes which
include this Pick amounts to looking for Outcomes which ensure that
the requirements are satisfied.

There are no constraints on what goes in P. It can, for example,
include Value Assignments over different Value Types. There are
therefore different Picks, depending on the content of P.

To illustrate how to use Picks, and what for, consider how the
following Language Service can be delivered.

Language Service: MandSat

Given a model in which every Fragment can be assigned a bi-
nary satisfaction value, and a binary importance value, which
are all the Complete and Coherent Outcomes of that model, in
which all mandatory Fragments are satisfied? s.MandSat

A Complete Outcome has a Value Assignment to every variable
in a model. Recall that there is one variable per pair of Fragment and
Value Type. Complete Outcome

s.MandSat can work with a language with two Value Types. One
is a binary satisfaction value, and v.Satisfaction will do. The other is
binary importance value, which I will call v.Importance. Importance
value is either 1, if satisfying the Fragment or relation instance is
mandatory, or 0 otherwise. It follows that s.MandSat consists of

250

Chapter 12. Alternatives

finding all Outcomes of a model, which are a superset of the following
Pick:

P= { 〈x,v.Satisfaction,1〉 | ∀x ∈ M s.t.

x ∈ F and 〈x,v.Importance,1〉 }.

Having defined the Pick, I need a language whose Outcomes can
have it as a subset. Let L.Pollux be the language made by adding
v.Importance via f.imp.asm to L.Mirfak. For simplicity, there is no
propagation of importance values. They are assigned manually to
individual Fragments only, not to relation instances using f.imp.asm.
The new function is defined as follows.

Function: imp.asm

f.imp.asmAssume an importance value for a Fragment

Input

Fragment x and model M .

Do

If you assume that x must be satisfied, then v = 1, else v = 0.

Output

〈x,v.Importance, v〉

Language Services

• s.WhImpAsms.WhImpAsm: Which, if any, is the assumed v.Importance
value of x in M? : 〈x,v.Importance, v〉.

The language is made by adding f.imp.asm to L.Mirfak. Syntax
and mapping remain the same, the domain changes, as it now has
v.Importance.

251

Chapter 12. Alternatives

Language: Pollux

L.PolluxLanguage Modules
r.inf.pos, r.inf.neg, f.map.abrel.g, f.cat.ksr, vr.alt.b, f.sat.inf.pos,
f.sat.inf.neg, f.sat.alt.b, f.sat.leaf, f.imp.asm

Domain

There is a set of Fragments F and Value Types

T= {v.Satisfaction,v.Importance},

and a set of Value Assignments V. Fragments have three par-
titions, namely requirements, domain knowledge, and spec-
ification Fragments, F = c.r∪ c.k∪ c.s and c.r∩ c.k∩ c.s = ;.
Influences are over Fragments, r.inf.pos⊆ F×F, r.inf.neg⊆ F×F.
Satisfaction value assignments are over Fragments or relation
instances, involve a Value Type, and a value, so that

V⊆ (F∪ r.inf.pos∪ r.inf.neg)× {v.Satisfaction}×v.Satisfaction.

Importance Value Assignments are over Fragments only, so that

V⊆ F× {v.Importance}×v.Importance.

Both the satisfaction and importance Value Types are binary,
v.Satisfaction= v.Importance= {1,0}. Alternatives are over Value
Assignments of the same Value Type.

Syntax

A model M in the language is a set of symbols M = {Z1, . . . , Zn},
where everyφ is generated according to the following BNF rules:

A ::= x | y | z | . . .

B ::= r (A) | k(A) | s(A)

C ::= B influences+ B

D ::= B influences- B

252

Chapter 12. Alternatives

G ::= 〈A,E ,F 〉
H ::=G alternativeTo G

Z ::= B |C | D |G | H

Mapping

A symbols denote Fragments, D(A) ∈ F. B symbols are used to
distinguish requirements, domain knowledge, and specification
Fragments, so that D(r (α)) ∈ c.r, D(k(α)) ∈ c.k, D(s(α)) ∈ c.s. C
and D symbols denote, respectively, positive and negative in-
fluence relations. E symbols denote Value Types, D(E) ∈ T. F
symbols denote a value of a Value Type, and as there is one
Value Type, D(F) ∈ v.Satisfaction. G symbols denote Value As-
signments, D(G) ∈ V. H symbols denote Alternatives, D(H) ∈
vr.alt.b.

Language Services

Those of relations and functions in the language.

Figure 12.5 shows a visualisation of a model in L.Pollux. As there
are two Value Types, labels are different than in the visualisation
of L.Mirfak models. Now, label “s1” is for the assignment of the sat-
isfaction value 1, and “s0” if the satisfaction value is 0. “i1” is the
assignment of the importance value 1, and “i0” of value 0. According
to the model in the Figure, ChoAmb is the only Fragment which must
be satisfied. Therefore, the Pick is

P= { 〈AmbArrIncLoc,v.Satisfaction,1〉,
〈AmbArrIncLoc,v.Importance,1〉 }

that is, the Outcomes to find should assign the satisfaction value 1
and importance value 1 to AmbArrIncLoc.

How, then, to find all Outcomes in of the model in Figure 12.5,
which include the Pick P above? In other words, define a function
which takes a model in L.Pollux and a Pick, and returns all Outcomes
supersets of that Pick, if they exist, or an empty set if there are none.

This function will have to assign values in a different way prop-
agation. It should also not produce Outcomes which contradict

253

Chapter 12. Alternatives

those that would have been produced on a model, if satisfaction val-
ues were propagated from the leaves, using f.sat.inf.pos, f.sat.inf.neg,
f.sat.leaf, and f.sat, since these functions are part of L.Pollux.

In the model in Figure 12.5, AmbArrIncLoc must be satisfied, and
therefore must have the satisfaction value 1. It will have that value
only if all positive influences to it, and all negative influences to it
have the satisfaction value 1. Otherwise, I would be violating the rules
of f.sat.inf.pos, f.sat.inf.neg, and f.sat. It follows that any Outcome
which includes P must also include the following Value Assignments:

{〈ClIncRep influences+ AmbArrIncLoc,v.Satisfaction,1〉,
〈ConfMob influences+ AmbArrIncLoc,v.Satisfaction,1〉,
〈MobAmb influences+ AmbArrIncLoc,v.Satisfaction,1〉,
〈AsAmb influences+ AmbArrIncLoc,v.Satisfaction,1〉,
〈IdAmb influences+ AmbArrIncLoc,v.Satisfaction,1〉,
〈ChoAmb influences+ AmbArrIncLoc,v.Satisfaction,1〉 }.

According to f.sat.inf.pos, the an instance of a positive influence re-
lation will have the satisfaction vale 1 only if its origin Fragment
also has the satisfaction value 1. It follows that all Outcomes which
include P must also include these Value Assignments:

{〈ClIncRep,v.Satisfaction,1〉,
〈ConfMob,v.Satisfaction,1〉,
〈MobAmb,v.Satisfaction,1〉,
〈AsAmb,v.Satisfaction,1〉,
〈IdAmb,v.Satisfaction,1〉,
〈ChoAmb,v.Satisfaction,1〉 }.

The resulting Outcome is shown in Figure 12.6. It is an Incomplete
Outcome.

There are Alternatives for satisfying IdAmb in Figure 12.6. You can
find them by solving a system of equations over variables defined
by the positive influence relations to IdAmb, and the Fragments in
which these relation instances originate. To simplify notation and
write w1 for the variable

AutoAmbList.v.Satisfaction,

254

Chapter 12. Alternatives

Figure 12.5: A L.Pollux model.

255

Chapter 12. Alternatives

Figure 12.6: A L.Pollux model.

256

Chapter 12. Alternatives

use the following equivalences

w1 ≡AutoAmbList.v.Satisfaction,

w1.4 ≡ (AutoAmbList influences+ IdAmb).v.Satisfaction,

w2 ≡UpdAutoAmbList.v.Satisfaction,

w2.4 ≡ (UpdAutoAmbList influences+ IdAmb).v.Satisfaction,

w3 ≡ManTrckAmb.v.Satisfaction,

w3.4 ≡ (ManTrckAmb influences+ IdAmb).v.Satisfaction,

w7 ≡ IdAmb.v.Satisfaction.

The system of equations is then as follows:

0 = w1 −w1.4,

0 = w2 −w2.4,

0 = w3 −w3.4,

1 = |w1.4 −w3.4|,
1 = |w2.4 −w3.4|,

w4 = |w1.4 ∗w2.4 −w3.4|.

The first three equations above reflect the rules in f.sat.inf.pos. If
w1 = 1, that, is if AutoAmbList is satisfied, then the positive influence
from it, to IdAmb, must be satisfied as well, that is, w1.4 = 1. If w1 = 0,
then w1.4 = 0, and vice versa. The fourth and fifth equations are
due to r.alt.b instances. If w1 = w1.4 = 1, then w3 ∗w3.4 has to be 0
according to the fourth equation. The sixth equation is due to the rule
in f.sat.alt.b, which requires that the largest subset of non-Alternative
influence relation instances be satisfied, in order for their target to
be satisfied.

If you set w7 = 1, there are two solutions to the system of equa-
tions above. They are

w1 = 1, w1.4 = 1, w2 = 1, w2.4 = 1, w3 = 0, w3.4 = 0, and

w1 = 0, w1.4 = 0, w2 = 0, w2.4 = 0, w3 = 1, w3.4 = 1.

The system of equations above is specific to the paths which end
in IdAmb in Figure 12.6. There is another system of equations for
Alternatives to ChoAmb. Again, for simplicity, start with these equiv-

257

Chapter 12. Alternatives

alences:

u1 ≡DispSoftwRnkAmb.v.Satisfaction,

u2 ≡DispAmbRnk.v.Satisfaction,

u3 ≡CAsstChoAmb.v.Satisfaction,

u4 ≡NoAutAmbRnk.v.Satisfaction,

u5 ≡NoAmbRecomm.v.Satisfaction,

u6 ≡ChoAmb.v.Satisfaction,

u1.6 ≡ (DispSoftwRnkAmb influences+ ChoAmb).v.Satisfaction,

u2.6 ≡ (DispAmbRnk influences+ ChoAmb).v.Satisfaction,

u3.6 ≡ (CAsstChoAmb influences+ ChoAmb).v.Satisfaction,

u4.6 ≡ (NoAutAmbRnk influences+ ChoAmb).v.Satisfaction,

u5.6 ≡ (NoAmbRecomm influences+ ChoAmb).v.Satisfaction.

ChoAmb has to be satisfied, that is, u6 = 1, in order for AmbArrIncLoc
to be satisfied. You can consequently find all Outcomes which in-
clude the Fragments and positive influences above by solving the
following system of equations:

0 = u1 −u1.6,

0 = u2 −u2.6,

0 = u3 −u3.6,

0 = u4 −u4.6,

0 = u5 −u5.6,

1 = |u1.6 −u5.6|,
1 = |u1.6 −u4.6|,
1 = |u2.6 −u5.6|,
1 = |u2.6 −u4.6|,

u6 = u3.6 ∗|(u1.6 ∗u2.6 −u4.6 ∗u5.6)|.
There are two solutions. One is

u1 = u1.6 = u2 = u2.6 = u3 = u3.6 = 1,

u4 = u4.6 = u5 = u5.6 = 0,

and the other is

u1 = u1.6 = u2 = u2.6 = 0,

u3 = u3.6 = u4 = u4.6 = u5 = u5.6 = 1.

258

Chapter 12. Alternatives

As there are two solutions for each system of equations, and
there are two such systems in the model in Figure 12.5, it follows
that there are four Complete Outcomes of that model, each of which
is Coherent with regards to f.sat.inf.pos, f.sat.inf.neg, f.sat.leaf, and
f.sat.alt.b, and is a superset of P. The four are shown in Figures 12.7–
12.10. In each Figure, the circles highlight the Fragments and relation
instances which are not satisfied.

The following pages show the Figures mentioned above. After
the Figures, I discuss a function which can produce these systems of
equations for L.Pollux models.

259

Chapter 12. Alternatives

Figure 12.7: One Complete Outcome.

260

Chapter 12. Alternatives

Figure 12.8: Second Complete Outcome.

261

Chapter 12. Alternatives

Figure 12.9: Third Complete Outcome.

262

Chapter 12. Alternatives

Figure 12.10: Fourth Complete Outcome.

263

Chapter 12. Alternatives

To find all Outcomes which include a particular Pick, and do this
for models of L.Pollux, I need a function which produces the systems
of equations, in the same way I did for the model in Figure 12.5, then
solves them, and finally, returns the Outcomes. Here is a sketch of
how the function could work, based on what I did for the model in
Figure 12.5:

1. Take a L.Pollux model M , and make a directed hypergraph
H(M) from it, such that in H(M) there is one node for every
Fragment in M , and a directed edge for every positive and
every negative influence relation instance, in the direction of
influence.

Example 12.3.1. Figure 12.5 shows the graph for a model in
L.Pollux. It has at most one edge between any two nodes, and
is therefore not a hypergraph. •

2. Check if H(M) includes cycles:

• If yes, then stop, because the model M is Incoherent with
regards to r.inf.pos and, or r.inf.neg. These two relations
are irreflexive and transitive, and therefore, cycles are not
allowed in the hypergraph which these relations induce
over Fragments.

• If there are no cycles, then go to next step.

Example 12.3.2. (Example 12.3.1 continued.) The graph in
Figure 12.5 has no cycles. Note that it is a tree, as it is acyclic
and has one root. •

3. For each Fragment x in M , define a variable wx

wx ≡ x.v.Satisfaction

which takes a satisfaction value, and add that variable to the
set of all variables from M , denoted WM .

Example 12.3.3. (Example 12.3.2 continued.) WM includes one
variable per Fragment in Figure 12.5:

WM = { wAmbArrIncLoc, wClIncRep, wConfMob

wMobAmb, wAsAmb, wIdAmb,

wAutoAmbList, wUpdAutoAmbList, wManTrckAmb,

wChoAmb, wDispSoftwRnkmb, wDispAmbRnk,

wAsstChoAmb, wNoAutAmbRnk, wNoAmbRecomm }.

264

Chapter 12. Alternatives

•

4. For each r.inf.pos instance x influences+ y , from Fragment x to
Fragment y ,

(a) define a variable wx.p.y

wx.p.y ≡ (x influences+ y).v.Satisfaction,

and add this variable to WM ,

(b) define an equation

wx −wx.p.y = 0

which requires that wx and wx.p.y have the same v.Satisfaction
value, following the rules in f.sat.inf.pos, and add this
equation to the set of equations EM .

Example 12.3.4. (Example 12.3.3 continued.) To simplify nota-
tion, I introduce the following equivalences:

w1 ≡ wAmbArrIncLoc, w2 ≡ wClIncRep,

w3 ≡ wConfMob, w4 ≡ wMobAmb,

w5 ≡ wAsAmb, w6 ≡ wIdAmb,

w7 ≡ wAutoAmbList, w8 ≡ wUpdAutoAmbList,

w9 ≡ wManTrckAmb, w10 ≡ wChoAmb,

w11 ≡ wDispSoftwRnkmb, w12 ≡ wDispAmbRnk,

w13 ≡ wAsstChoAmb, w14 ≡ wNoAutAmbRnk,

w15 ≡ wNoAmbRecomm.

Using these equivalences, this first part of this fourth step gives
the following new variables for WM , one per positive influence
relation instance in Figure 12.5

w2.p.1, w3.p.1, w4.p.1, w5.p.1, w6.p.1, w10.p.1,

w7.p.6, w8.p.6, w9.p.6,

w11.p.10, w12.p.10, w13.p.10, w14.p.10, w15.p.10.

265

Chapter 12. Alternatives

The second part of this fourth step gives the following equa-
tions for EM

0 = w2 −w2.p.1, 0 = w3 −w3.p.1,

0 = w4 −w4.p.1, 0 = w5 −w5.p.1,

0 = w6 −w6.p.1, 0 = w10 −w10.p.1,

0 = w7 −w7.p.6, 0 = w8 −w8.p.6,

0 = w9 −w9.p.6,

0 = w11 −w11.p.10, 0 = w12 −w12.p.10,

0 = w13 −w13.p.10, 0 = w14 −w14.p.10,

0 = w15 −w15.p.10.

At this point, all Fragments and positive influence relation in-
stances have corresponding variables which take a satisfaction
value. •

5. For each r.inf.neg instance x influences- y , from Fragment x to
Fragment y ,

(a) define a variable wx.n.y

wx.n.y ≡ (x influences- y).v.Satisfaction,

and add this variable to WM ,

(b) define an equation

|wx −wx.n.y | = 1

which follows the rules f.inf.neg, and requires that if wx =
1 then wx.n.y = 0, and vice versa. Add this equation to the
set of equations EM .

At this point, you have the set WM which includes a variable
for every Fragment and every positive and negative influence
relation instance in M , and the set EM of equations, one per
positive and negative influence relation instance. You still need
equations which correspond to r.alt.b instances.

Example 12.3.5. (Example 12.3.4 continued.) There are no
negative influence relation instances in Figure 12.5. This step
therefore does not change WM and EM updated in the fifth
step. •

266

Chapter 12. Alternatives

6. For each r.alt.b instance over values of two variables wi ∈WM

and w j ∈WM ,

• if the instance is

(wi = 1) alternativeTo (w j = 1),

then add an equation

|wi −w j | = 1

to the set EM ,

• if the instance is

(wi = 1) alternativeTo (w j = 0),

then add an equation

wi −w j ≤ 0

to the set EM ,

• if the instance is

(wi = 0) alternativeTo (w j = 1),

then add an equation

wi −w j ≥ 0

to the set EM ,

• if the instance is

(wi = 0) alternativeTo (w j = 0),

then add an equation

|wi −w j | ≥ 0

to the set EM .

Example 12.3.6. (Example 12.3.5 continued.) All r.alt.b in-
stances are between the assignments of satisfaction value 1,

267

Chapter 12. Alternatives

so that only |wi −w j | = 1 equations need to be added to EM .
These equations are

1 = |w7.p.6 −w9.p.6|, 1 = |w8.p.6 −w9.p.6|,
1 = |w11.p.10 −w14.p.10|, 1 = |w11.p.10 −w15.p.10|,
1 = |w12.p.10 −w14.p.10|, 1 = |w12.p.10 −w15.p.10|.

•

7. For each Fragment x in M , do the following:

(a) Make the set W x
M , so that it only includes all variables

of the format wy.p.x and wy.n.x , where y is any Fragment
in M , so that W x

M includes all variables for positive and
negative influence relation instances which end in x.

Example 12.3.7. (Example 12.3.6 continued.) Of all Frag-
ments in Figure 12.5, only three are targets of influence
relation instances, so there are only three sets W x

M , as
follows:

W AmbArrIncLoc
M = { w2.p.1, w3.p.1, w4.p.1, w5.p.1,

w6.p.1, w10.p.1 },

W IdAmb
M = { w7.p.6, w8.p.6, w9.p.6 },

W ChoAmb
M = { w11.p.10, w12.p.10, w13.p.10,

w14.p.10, w15.p.10 }.

•

(b) Make the set Ox
M , which includes all the largest subsets

of W x
M which include no Alternatives, that is, every mem-

ber ox
i of Ox

M is the largest subset of W x
M in which there

are no two variables, which represent mutually exclusive
influence relation instances.

268

Chapter 12. Alternatives

Example 12.3.8. (Example 12.3.7 continued.) The sets are

OAmbArrIncLoc
M = { oAmbArrIncLoc

1 },

oAmbArrIncLoc
1 =W AmbArrIncLoc

M ,

OIdAmb
M = { oIdAmb

1 ,oIdAmb
2 },

oIdAmb
1 = { w7.p.6, w8.p.6 },

oIdAmb
2 = { w9.p.6 },

OChoAmb
M = { oChoAmb

1 ,oChoAmb
2 },

oChoAmb
1 = { w11.p.10, w12.p.10, w13.p.10 },

oChoAmb
2 = { w13.p.10, w14.p.10, w15.p.10 }.

•

(c) Add a formula

∑
ox

i ∈Ox
M

 ∏
wy.p.x∈ox

i

wy.p.x ·
∏

wy.n.x∈ox
i

wy.n.x

= wx

to EM , which is used to indicate that only one of all the
largest non-Alternative sets of influence relation instances
to x should be satisfied in one Outcome.

Example 12.3.9. (Example 12.3.8 continued.) The three
equations to add to EM are

w2.p.1 ·w3.p.1 ·w4.p.1 ·w5.p.1 ·w6.p.1 ·w10.p.1 = w1,

w7.p.6 ·w8.p.6 +w9.p.6 = w6,

w11.p.10 ·w12.p.10 ·w13.p.10

+w13.p.10 ·w14.p.10 ·w15.p.10 = w10.

•

8. Take the Pick you want to find Outcomes for, and add each
Value Assignment wi = v in the Pick to the set of equations
EM .

Example 12.3.10. (Example 12.3.9 continued.) Suppose that
the Pick is

P= { 〈AmbArrIncLoc,v.Satisfaction,1〉 },

and consequently, add w1 = 1 to EM . •

269

Chapter 12. Alternatives

9. Find all solutions to the system of equations defined by EM .
Each solution is a Complete Outcome of M .

The above remains a sketch of a function. Its aim is to illustrate
how you could generate systems of equations to solve, to find all Out-
comes which include a Pick of interest. I do not provide a proof that
it works correctly with any L.Pollux model, and I do not discuss how
hard it is to actually solve systems of equations it gives, for models
of any size. That is, I do not discuss reasoning complexity. These
issues are important when defining a new language. I leave them
outside this book, as they require deeper expertise in mathematics
and formal logic than I can offer.

12.4 Several Arbitrary Value Types

This section focuses on how Alternatives and Picks can be used when
there several arbitrary Value Types in a language. Consider this Lan-
guage Service:

Language Service: AccTime

According to the model M , what is the estimated time required
to make a system that satisfies those mandatory requirements,
for which the specifications are in the product roadmap? s.AccTime

s.AccTime can be relevant for a team which needs to

• document requirements, domain knowledge, and specifica-
tions,

• distinguish mandatory requirements from others,

• keep track of the progress in implementing specifications, and

• have an estimate of time to implement specifications, which
are mature enough to be in the roadmap, and are necessary to
satisfy the mandatory requirements.

270

Chapter 12. Alternatives

The language for this team needs to have f.WhichKSR, so as to
distinguish requirements, domain knowledge, and specifications in
models. v.ProgrStatus from Section 10.5 can be used to keep track of
progress in implementing specifications. Statuses can be assigned
in the sequence prescribed in f.chk.progrstatus. The language also
needs a Value Type for satisfaction, in order to identify the satisfied
mandatory requirements. v.Satisfaction will do. It needs a Value Type
to distinguish mandatory from other requirements, and it can use
v.Importance. Finally, it should be possible to assign time estimates
to specifications, and v.ImplTime can be used.

The resulting language has several arbitrary Value Types, in the
sense that v.Satisfaction and v.Importance are binary, v.ProgrStatus
has values on a nominal scale and comes with constraints defined
f.chk.progrstatus, and v.ImplTime takes a positive real value. The
language is called L.Avior and is defined below.

Language: Avior

L.AviorLanguage Modules
r.inf.pos, r.inf.neg, f.map.abrel.g, f.cat.ksr, vr.alt.b, f.sat.inf.pos,
f.sat.inf.neg, f.sat.alt.b, f.sat.leaf, f.imp.asm, f.chk.progrstatus

Domain

• The domain is made of a set of Fragments F, relation
instances R, Value Types T, and Value Assignments V.

• Fragments have three partitions, namely requirements,
domain knowledge, and specification Fragments, F =
c.r∪c.k∪c.s and c.r∩c.k∩c.s=;.

• Relation instances are binary and either over Fragments
or Value Assignments, R= (F×F)∪ (V×V), and are parti-
tioned as follows:

R= r.inf.pos∪ r.inf.neg∪vr.alt.b,

;= r.inf.pos∩ r.inf.neg∩vr.alt.b,

271

Chapter 12. Alternatives

where influences are over Fragments, r.inf.pos ⊆ F×F,
r.inf.neg⊆ F×F, and vr.alt.b⊆V×V.

• Value Types are

T= {v.Satisfaction,v.Importance,

v.ProgrStatus,v.ImplTime}.

v.Satisfaction = {1,0} and 1 reads “satisfied”, 0 “not sat-
isfied”. v.Importance = {1,0} and 1 reads “mandatory”, 0
“not mandatory”. v.ProgrStatus is called “progress status”,
and its values are

v.ProgrStatus= {none,DesignApproved,

EstimateDone, InRoadmap,

TestReady,ApprovedForRelease}.

v.ImplTime takes a real positive value, v.ImplTime ∈R+.

• Value Assignments are ternary relations over Fragments
or relation instances, Value Types, and values of Value
Types:

V⊆ (F∪R)×T× ⋃
v.t∈T

v.t.

and is partitioned as follows

V= (F∪R)× {v.Satisfaction} × {1,0}

∪F× {v.Importance} × {1,0}

∪F× {v.ProgrStatus} ×v.ProgrStatus

∪F× {v.ImplTime} ×v.ImplTime,

whereby the intersection of the sets above is empty. Note
from the above, that satisfaction values can be assigned
to Fragments and relation instances, while values of all
other Value Types can be assigned only to Fragments.

272

Chapter 12. Alternatives

Syntax

A model M in the language is a set of symbols M = {Z1, . . . , Zn},
where everyφ is generated according to the following BNF rules:

A ::= x | y | z | . . .

B ::= r (A) | k(A) | s(A)

C ::= B influences+ B

D ::= B influences- B

G ::= 〈A,E ,F 〉
H ::=G alternativeTo G

Z ::= B |C | D |G | H

Mapping

Symbols map to domain elements as follows:

• A symbols denote Fragments, D(A) ∈ F.

• B symbols are used to distinguish requirements, domain
knowledge, and specification Fragments, so that D(r (α)) ∈
c.r, D(k(α)) ∈ c.k, D(s(α)) ∈ c.s.

• C and D symbols denote, respectively, positive and nega-
tive influence relations.

• E symbols denote Value Types, D(E) ∈ T.

• F symbols denote a value of a Value Type, and as there is
one Value Type, D(F) ∈ v.Satisfaction.

• G symbols denote Value Assignments, D(G) ∈V.

• H symbols denote Alternatives, D(H) ∈ vr.alt.b.

Language Services

Those of relations and functions in the language.

273

Chapter 12. Alternatives

Figure 12.11 shows a model in L.Avior. Not all Fragments have
Value Assignment for all Value Types. For example, AutoAmbList has
no satisfaction value, has no importance value, is in the roadmap,
and the estimated implementation time is 25 man-days.

To deliver s.AccTime, you can define a function which would
work as follows, on a L.Avior model M :

1. Find all Complete v.Satisfaction Outcomes of M , which include
a Pick which you are interested in. Let O be the set of all these
Outcomes, and oi ∈ O a member of that set. An Outcome is
Complete for v.Satisfaction if a satisfaction value is assigned to
every Fragment and relation instance, which it can be assigned
to in a model, according to the language being used.

Example 12.4.1. Let the Pick be

P= {〈AmbArrIncLoc,v.Satisfaction,1〉,
〈AmbArrIncLoc,v.Importance,1〉}.

The Pick is shown in Figure 12.11. Figures 12.7–12.10 show
all four Complete v.Satisfaction Outcomes for the Pick above.
Although these are models in L.Pollux, they are also models in
L.Avior, since the latter was made by adding new Value Types
to the former, and without changing functions or syntax in the
former. •

2. For each oi ∈O, if a Fragment x is such that

(a) 〈x,v.Satisfaction,1〉 ∈ oi ,

(b) x is a specification Fragment, x ∈ c.s,

(c) x is a leaf Fragment, that is, there are no positive and
negative influence relation instances which target x in
M ,

(d) there is 〈x,v.ProgrStatus, InRoadmap〉, and

(e) there is 〈x,v.ImplTime, v〉, such that v > 0.

then add x to the set Toi .

274

Chapter 12. Alternatives

Example 12.4.2. (Example 12.4.1 continued.) Let o1 be the
Outcome in Figure 12.12, so that

To1 = {AutoAmbList,UpdAutoAmbList,

DispSoftwRnkAmb,DispAmbRnk}.

•

3. The answer to s.AccTime in M is given for each Complete
v.Satisfaction Outcome oi , by summing the v.ImplTime values
assigned to every member of Toi .

Example 12.4.3. (Example 12.4.2 continued.) For o1, the total
estimated implementation time is

25MD+4MD+30MD+5MD = 64MD.

•

12.5 Summary on Alternatives

A language that aims to support design may need to represent alter-
native design options in models, via Alternatives and Outcomes. This
section illustrated that discovery and indecision in problem-solving
make this a relevant capability for a language.

Enabling a language to represent Alternatives raises many chal-
lenges, and this section focused on the basic ones. Namely, how to
represent mutually exclusive pairs of Value Assignments. and how
to find Outcomes which include no mutually exclusive pair of Value
Assignments.

Mutual exclusion was discussed in a limited way in this section.
It remains unclear, for example, how to show that ranges of values
that can be assigned to a Fragment are mutually exclusive to ranges
of values that can be assigned to another Fragment. I will show in the
next section that mutual exclusion, as discussed here, is one kind of
constraint over Value Assignments, and that there are others which
can be relevant to show in models.

275

Chapter 12. Alternatives

Figure 12.11: A model in L.Avior.

276

Chapter 12. Alternatives

Figure 12.12: A model in L.Avior based on the model in Figure 12.7.

277

Chapter 13

Constraints

This Chapter focuses on how to have models with Constraints over
Value Assignments, which are richer than mutual exclusion from
Chapter 12. Here are some Constraints other than mutual exclusion:

• If x and z are both satisfied, then the implementation cost of y
should double.

• If x is not acceptable, then estimated revenue from y will de-
crease by 30%.

• If the decision about the acceptability of x arrives after a given
date, then implementation cost of x will increase by 50%.

• If the implementation time of x is above a, then implementation
time of y cannot be over b.

What is common to the above, is that there is an interdependence
between Value Assignments, and that interdependence cannot be re-
duced, or when it can, it is inefficient to reduce it to mutual exclusion
between pairs of Value Assignments. Given such Constraints, the aim
is to find one or all Outcomes which satisfy them. The overall idea
is that you need to define a system of equations which takes into ac-
count all constraints in a model, and find all Outcomes which are its
solutions. The rest of this Chapter looks at the following questions:

• How to represent various kinds of constraints? (Section 13.1)

• How to find Outcomes when the model has Constraints in a
model? (Section 13.2)

278

Chapter 13. Constraints

13.1 Representing Constraints

Constraints define n-ary relations over Value Assignments. The do-
main of the language needs to reflect the properties of the Constraints
which are allowed in the language, and the syntax should specify the
format in which these Constraints are written.

While it was straightforward to represent in graphs that two Value
Assignments are mutually exclusive, there is no corresponding simple
representation of many other kinds of Constraints.

Consider a language in which a model M is a set of Z symbols,
where each Z symbol is generated according to the following BNF
rules:

A ::= x | y | z | . . .

B ::= r (A) | k(A) | s(A)

C ::= B influences+ B

D ::= B influences- B

G ::= 〈A,E ,F 〉
H ::=G alternativeTo G

I ::= A.E

J ::=G | I | N

K ::= J | K +K | K −K | K ∗K | K /K

L ::= K = K | K > K | K < K | K ≥ K | K ≤ K

Z ::= B |C | D |G | H | L

Above, I symbols are variables without an assigned value, as opposed
to G symbols where the F symbol stands for the assigned value. A N
symbol is a real number. K symbols reflect the arithmetic operations,
and L symbols are used to write equality and inequality. L symbols
are symbols for Constraints.

Suppose that this language is such that it can represent all that
L.Avior could, so that the following Constraint can be associated to
the L.Avior model in Figure 12.11.

ChoAmb.v.ImplTime≤ 100

and if it included in a Pick, then you are looking for Outcomes which
include a Value Assignment which assigns at most 100 v.ImplTime
value to ChoAmb. You may be assuming or computing the v.ImplTime

279

Chapter 13. Constraints

value of ChoAmb, but in any case, you will not be interested in Out-
comes where the assigned value is greater than 100.

When reading Constraints such as above, recall the notational
convention that the pair ChoAmb and v.ImplTime defines a variable,
which can be written

ChoAmb.v.ImplTime

and if it is assigned a value, say 50, then there are two equivalent
ways of writing that Value Assignment, namely

ChoAmb.v.ImplTime= 50 ≡ 〈ChoAmb,v.ImplTime,50〉.

To illustrate both points above, I define a new language which
allows you to write constraints using arithmetic operations over Value
Assignments in L.Avior models.

There can be more complicated Constraints, such as

AutoAmbList.v.ImplTime∗AutoAmbList.v.Satisfaction< 20

which says that I am interested in Outcomes where, if AutoAmbList is
satisfied, then its implementation time has to be below 20. Note that
this Constraint will be satisfied by Outcomes where AutoAmbList is
not satisfied, since v.Satisfaction is binary. But it will not be satisfied
by Outcomes where it is satisfied, and implementation time is equal
to or above 20.

I could add the following Constraint to aPick, to say that I am
interested in Outcomes in which implementing AutoAmbList takes
at most twice the time to implement UpdAutoAmbList, if both are
satisfied:

AutoAmbList.v.Satisfaction∗AutoAmbList.v.ImplTime

≤ 2∗UpdAutoAmbList.v.Satisfaction∗UpdAutoAmbList.v.ImpltTime.

Constraints have to be sensitive to the Value Type, as arithmetic
operations do not need to make sense for any Value Type. For ex-
ample, multiplying two values of v.ProgrStatus makes no sense if
multiplication is used as in arithmetic. You could define new op-
erators for combining such values, but they would not be those of
arithmetic.

Note that r.alt.b, when defined over Value Assignments of Value
Types for which arithmetic operations make sense, can be rewritten

280

Chapter 13. Constraints

as a Constraint. I already did this when I rewrote r.alt.b instances in
Figures 12.7–12.10 in a system of equations in Section 12.3.

Below is a definition of the language L.Alphard, which has the
syntax given earlier. Its domain is loosely defined, as it includes no
detailed definition of arithmetic operations.

L.Alphard is made by extending L.Avior. Aside from differences
in syntax, the domains are also different. In L.Alphard, the domain
includes Constraints and real numbersR. A Constraint in the domain
is a set of relation instances over Value Assignments. Each of these
relation instances is such that when the variables in the Constraint
obtain values given in the Value Assignments in the relation instance,
the arithmetic expression of the Constraint is correct. To clarify this,
consider the following Constraint:

ChoAmb.v.ImplTime≤ 100.

Recall that v.ImplTime is the set of positive real numbers. It follows
that any positive real which is at most 100, that is, any real in [0,100],
makes the arithmetic expression above correct. This Constraint is
thus a set of instances of a unary relation, and that set is

{ 〈ChoAmb,v.ImplTime, v〉 | v ∈ [0,100] and v ∈R }.

Consider this Constraint for another illustration

AutoAmbList.v.Satisfaction∗AutoAmbList.v.ImpltTime

≤ 2∗UpdAutoAmbList.v.Satisfaction∗UpdAutoAmbList.v.ImpltTime.

In this case, the Constraint defines a set of instances of a four-place
relation, over assignments of values to these four variables

AutoAmbListv.Satisfaction,AutoAmbListv.ImplTime,

UpdAutoAmbListv.Satisfaction,UpdAutoAmbList.v.ImpltTime.

That set of instances are all assignments of values to all four variables
above, such that the arithmetic expression in the Constraint is correct.
The following is an instance in that set

(〈AutoAmbList,v.Satisfaction,0〉,〈AutoAmbList,v.ImplTime,50〉,
〈UpdAutoAmbList,v.Satisfaction,1〉,
〈UpdAutoAmbList,v.ImplTime,10〉).

281

Chapter 13. Constraints

Language: Alphard

L.AlphardLanguage Modules
r.inf.pos, r.inf.neg, f.map.abrel.g, f.cat.ksr, vr.alt.b, f.sat.inf.pos,
f.sat.inf.neg, f.sat.alt.b, f.sat.leaf, f.imp.asm, f.chk.progrstatus

Domain

• The domain is made of a set of Fragments F, relation
instances R, Value Types T, Value Assignments V, Con-
straints Q, and real numbers R.

• Fragments have three partitions, namely requirements,
domain knowledge, and specification Fragments, F =
c.r∪c.k∪c.s and c.r∩c.k∩c.s=;.

• Relation instances are over Fragments or Value Assign-
ments, R= (F×F)∪Vn , and are partitioned as follows:

R= r.inf.pos∪ r.inf.neg∪vr.alt.b∪⋃
Q,

;= r.inf.pos∩ r.inf.neg∩vr.alt.b∩⋂
Q,

where influences are over Fragments, r.inf.pos ⊆ F×F,
r.inf.neg⊆ F×F, and vr.alt.b⊆V×V. Each Constraint is a
n-ary relation over Value Assignments so that Q⊆℘(Vn).

• Value Types are

T= {v.Satisfaction,v.Importance,

v.ProgrStatus,v.ImplTime}.

v.Satisfaction = {1,0} and 1 reads “satisfied”, 0 “not sat-
isfied”. v.Importance = {1,0} and 1 reads “mandatory”, 0
“not mandatory”. v.ProgrStatus is called “progress status”,

282

Chapter 13. Constraints

and its values are

v.ProgrStatus= {none,DesignApproved,

EstimateDone, InRoadmap,

TestReady,ApprovedForRelease}.

v.ImplTime takes a real positive value, v.ImplTime ∈R+.

• Value Assignments are ternary relations over Fragments
or relation instances, Value Types, and values of Value
Types:

V⊆ (F∪R)×T× ⋃
v.t∈T

v.t.

and is partitioned as follows

V= (F∪R)× {v.Satisfaction} × {1,0}

∪F× {v.Importance} × {1,0}

∪F× {v.ProgrStatus} ×v.ProgrStatus

∪F× {v.ImplTime} ×v.ImplTime,

whereby the intersection of the sets above is empty. Note
from the above, that satisfaction values can be assigned
to Fragments and relation instances, while values of all
other Value Types can be assigned only to Fragments.

Syntax

A model M in the language is a set of symbols M = {Z1, . . . , Zn},

283

Chapter 13. Constraints

where everyφ is generated according to the following BNF rules:

A ::= x | y | z | . . .

B ::= r (A) | k(A) | s(A)

C ::= B influences+ B

D ::= B influences- B

G ::= 〈A,E ,F 〉
H ::=G alternativeTo G

I ::= A.E

J ::=G | I | N

K ::= J | K +K | K −K | K ∗K | K /K

L ::= K = K | K > K | K < K | K ≥ K | K ≤ K

Z ::= B |C | D |G | H | L

Mapping

Symbols map to domain elements as follows:

• A symbols denote Fragments, D(A) ∈ F.

• B symbols are used to distinguish requirements, domain
knowledge, and specification Fragments, so that D(r (α)) ∈
c.r, D(k(α)) ∈ c.k, D(s(α)) ∈ c.s.

• C and D symbols denote, respectively, positive and nega-
tive influence relations.

• E symbols denote Value Types, D(E) ∈ T.

• F symbols denote a value of a Value Type, and as there is
one Value Type, D(F) ∈ v.Satisfaction.

• G symbols denote Value Assignments, D(G) ∈V.

• H symbols denote Alternatives, D(H) ∈ vr.alt.b.

• I symbols denote variables, that is, pairs of Fragment or
relation instance, and a Value Type, D(I) ∈ (F∪R)×T.

• N symbols denote a real number, D(N) ∈R.

284

Chapter 13. Constraints

• K +K denotes the sum of K and K,

D(K +K) =D(K)+D(K),

• K −K denotes the subtraction of K on the right side of “-”
from the K on the left side of “-”,

D(K −K) =D(K)−D(K),

• K ∗K denotes the result of multiplying K and K ,

D(K ∗K) =D(K)∗D(K),

• K /K denotes the result of dividing the K on the left side
of “/” with the K on the right side of “/”,

D(K /K) =D(K)/D(K),

• K = K denotes that the two K are equal,

• K > K denotes that the K on the left side of “>” is greater
than the K on the right side of “>”,

• K < K denotes that the K on the left side of “<” is smaller
than the K on the right side of “<”,

• K ≥ K denotes that the K on the left side of “≥” is equal
or greater than the K on the right side of “≥”, and

• K ≤ K denotes that the K on the left side of “≤” is equal
or smaller than the K on the right side of “≤”.

Language Services

Those of relations and functions in the language.

Observe how the mapping works in L.Alphard. The arithmetic
operations map to standard arithmetic operations, so that when I
write

D(K +K) =D(K)+D(K),

285

Chapter 13. Constraints

the aim of the formula is to show that the “+” symbol should work
the same way that addition works in arithmetic, and this is shown by
simply taking it out of D. The mapping works in this same way for the
rest of the arithmetic operators, equality, and inequality symbols.

13.2 Constraints in Outcome Search

The aim now is to show a way to find Outcomes in a model with
Constraints. The idea is the same as in Section 12.3: define a Pick,
convert the model in a system of equations such that any solution of
that system is an Outcome which includes the Pick. As I will illustrate
below, the only change relative to Section 12.3 is that the system of
equations now includes also all of the Constraints in the model.

I will proceed step by step to define the system of equations from
the model in L.Alphard, shown in Figure 13.1. The Figure does not
include Constraints, and I will introduce them in due time below.

1. I am interested in finding all Complete and Coherent Out-
comes of the model in Figure 13.1, which include the following
Pick

P= { 〈x,v.Satisfaction,1〉 | ∀x ∈ M s.t.

x ∈ F and 〈x,v.Importance,1〉
and 〈x,v.ProgrStatus,DesignApproved〉 }.

2. Observe that the model in Figure 13.1 has Value Assignments
of four Value Types, v.Satisfaction, v.Importance, v.ImplTime,
and v.ProgrStatus. It follows that the system of equations will
be over four groups of variables, one per Value Type. Below is a
sample member of each of these groups

AmbArrIncLoc.v.Satisfaction,

AmbArrIncLoc.v.Importance,

DispSoftwRnkAmb.v.ImplTime,

DispAmbRnk.v.ProgrStatus.

I now define abbreviations for all variables in each group.

(a) For each Fragment x in M , I define a variable wx as the
variable which takes the v.Satisfaction value

wx ≡ x.v.Satisfaction

286

Chapter 13. Constraints

Figure 13.1: A model in L.Alphard.

287

Chapter 13. Constraints

Figure 13.2: Abbreviations of Fragments in variable numbers.

288

Chapter 13. Constraints

and to further simplify notation, I have these equiva-
lences

w1 ≡ wAmbArrIncLoc, w2 ≡ wClIncRep,

w3 ≡ wConfMob, w4 ≡ wMobAmb,

w5 ≡ wAsAmb, w6 ≡ wIdAmb,

w7 ≡ wAutoAmbList, w8 ≡ wUpdAutoAmbList,

w9 ≡ wManTrckAmb, w10 ≡ wChoAmb,

w11 ≡ wDispSoftwRnkmb, w12 ≡ wDispAmbRnk,

w13 ≡ wAsstChoAmb, w14 ≡ wNoAutAmbRnk,

w15 ≡ wNoAmbRecomm.

(b) I then define variables which take values of v.Importance
for each Fragment x in M , define a variable wx as the
variable which takes the v.Satisfaction value

px ≡ x.v.Importance

and I use these equivalences

p1 ≡ pAmbArrIncLoc, p2 ≡ pClIncRep,

p3 ≡ pConfMob, p4 ≡ pMobAmb,

p5 ≡ pAsAmb, p6 ≡ pIdAmb,

p7 ≡ pAutoAmbList, p8 ≡ pUpdAutoAmbList,

p9 ≡ pManTrckAmb, p10 ≡ pChoAmb,

p11 ≡ pDispSoftwRnkmb, p12 ≡ pDispAmbRnk,

p13 ≡ pAsstChoAmb, p14 ≡ pNoAutAmbRnk,

p15 ≡ pNoAmbRecomm.

(c) I now add equivalences for variables which take v.ImplTime
values, and which have this format

tx ≡ x.v.ImplTime

289

Chapter 13. Constraints

and I will use the following

t1 ≡ tAmbArrIncLoc, t2 ≡ tClIncRep,

t3 ≡ tConfMob, t4 ≡ tMobAmb,

t5 ≡ tAsAmb, t6 ≡ tIdAmb,

t7 ≡ tAutoAmbList, t8 ≡ tUpdAutoAmbList,

t9 ≡ tManTrckAmb, t10 ≡ tChoAmb,

t11 ≡ tDispSoftwRnkmb, t12 ≡ tDispAmbRnk,

t13 ≡ tAsstChoAmb, t14 ≡ tNoAutAmbRnk,

t15 ≡ tNoAmbRecomm.

(d) Finally, as far as variables for Fragments are concerned,
there are variables which take v.ProgrStatus values

sx ≡ x.v.ImplTime

and I will use the following

s1 ≡ sAmbArrIncLoc, s2 ≡ sClIncRep,

s3 ≡ sConfMob, s4 ≡ sMobAmb,

s5 ≡ sAsAmb, s6 ≡ sIdAmb,

s7 ≡ sAutoAmbList, s8 ≡ sUpdAutoAmbList,

s9 ≡ sManTrckAmb, s10 ≡ sChoAmb,

s11 ≡ sDispSoftwRnkmb, s12 ≡ sDispAmbRnk,

s13 ≡ sAsstChoAmb, s14 ≡ sNoAutAmbRnk,

s15 ≡ sNoAmbRecomm.

Figure 13.2 shows which number in a variable name corre-
sponds to which Fragment in the model in Figure 13.1.

3. L.Alphard lets me assign v.Satisfaction values over relation in-
stances, so that I need variables for all relation instances as
well. They will have the following format, where x and y are
Fragments

wx.p.y ≡ (x influences+ y).v.Satisfaction.

Given the other abbreviations defined so far, I will have, for
example

w2.p.1 ≡ (ClIncRep influences+ AmbArrIncLoc).v.Satisfaction.

290

Chapter 13. Constraints

I will not write all the other influence relation instances, as it
should be clear what they are from the abbreviations above.

4. So far, I have defined the set of variables that will appear in
the system of equations. Relation instances and functions for
propagating satisfaction values give me a first set of equations.
As there are only positive influences in Figure 13.1, and each
uses the rules from f.sat.inf.pos, the resulting equations are
(same as in Section 12.3)

0 = w2 −w2.p.1, 0 = w3 −w3.p.1,

0 = w4 −w4.p.1, 0 = w5 −w5.p.1,

0 = w6 −w6.p.1, 0 = w10 −w10.p.1,

0 = w7 −w7.p.6, 0 = w8 −w8.p.6,

0 = w9 −w9.p.6,

0 = w11 −w11.p.10, 0 = w12 −w12.p.10,

0 = w13 −w13.p.10, 0 = w14 −w14.p.10,

0 = w15 −w15.p.10.

5. r.alt.b instances also give equations, and they are found the
same way as in Section 12.3

1 = |w7.p.6 −w9.p.6|,
1 = |w8.p.6 −w9.p.6|,
1 = |w11.p.10 −w14.p.10|,
1 = |w11.p.10 −w15.p.10|,
1 = |w12.p.10 −w14.p.10|,
1 = |w12.p.10 −w15.p.10|,

w1 = w2.p.1 ·w3.p.1 ·w4.p.1 ·w5.p.1 ·w6.p.1 ·w10.p.1,

w6 = w7.p.6 ·w8.p.6 +w9.p.6,

w10 = w11.p.10 ·w12.p.10 ·w13.p.10

+w13.p.10 ·w14.p.10 ·w15.p.10.

6. The first set of Constraints reflects the Value Assignments to
leaf Fragments in Figure 13.1. These Constraints are as follows,

291

Chapter 13. Constraints

for v.ImplTime Value Assignments

t2 = 6, t3 = 24, t4 = 6, t5 = 2,

t7 = 25, t8 = 4, t9 = 0,

t11 = 30, t12 = 5, t13 = 14, t14 = 1,

t15 = 0,

and they are the following, for v.ProgrStatus

t7 = InRoadmap, t8 = InRoadmap,

t11 = InRoadmap, t12 = InRoadmap,

t13 = DesignApproved.

7. Observe that I did not define a specific relation which says how
the implementation time of, say ChoAmb, depends on that
of other Fragments in the model. I do this with the following
Constraints

t1 =
∑

i∈{2,3,4,5,6,10}
ti ∗wi ,

t6 =
∑

i∈{7,8,9}
ti ∗wi ,

t10 =
∑

i∈{11,12,13,14,15}
ti ∗wi .

The Constraints convey the idea that implementation time
of a Fragment x is the sum of the implementation times of
all Fragments which are satisfied, and which are positively
influencing x.

8. I have no Constraints for v.Importance Value Assignments,
other than the one in the Pick, which is

p1 = 1.

9. The Pick gives two other Constraints, namely

w1 = 1,

s1 = DesignApproved.

292

Chapter 13. Constraints

10. Recall from the definition of v.ProgrStatus, that DesignAp-
proved is the first progress status that can be assigned to a Frag-
ment, and following f.chkprogrstatus that it can be assigned
only to Fragments which have no other progress status value.
Observe also that arithmetic operations are not defined over
v.ProgrStatus, so that I need to introduce a coding of its values
into, say, integers.

Since the Pick requires AmbArrIncLoc to get the value Desig-
nApproved, I introduce the following equivalences

none ≡ 0,

DesignApproved ≡ 1,

EstimateDone ≡ 1,

InRoadmap ≡ 1,

TestReady ≡ 1,

ApprovedForRelease ≡ 1.

The above reflects the fact that design is approved on any
Fragment which either has DesignApproved value, or has any
v.ProgrStatus value which, according to f.chi.progrstatus, can
be assigned after DesignApproved, that is, after the design has
been approved.

Furthermore, I consider that if a Fragment x is target of pos-
itive influence relation instances, then its progress status de-
pends on the progress status of the Fragments in which these
positive influences originate. Therefore, I have the following
Constraints

s1 =
∏

i∈{2,3,4,5,6,10}
si ∗wi ,

s6 =
∏

i∈{7,8,9}
si ∗wi ,

s10 =
∏

i∈{11,12,13,14,15}
si ∗wi .

11. I add the following as a final Constraint

t1 ≤ 80.

293

Chapter 13. Constraints

12. At this point, I have equations which correspond to the Pick,
to all Constraints resulting from the influence and r.alt.b rela-
tions in the model, and to all Constraints I added in relation
to v.ImplTime and v.ProgrStatus. All these equations constitute
the system of equations to solve, in order to find one or more
(if there are) Outcomes which include the Pick.

Observe that such an Outcome cannot satisfy both AutombList
and DispSoftwRnkAmb, as this would violate the Constraint
that implementation time of AmbArrIncLoc is below 80 MD.

13.3 Summary on Constraints

This Chapter illustrated how Constraints over Value Assignments can
be represented in models, and how they can be taken into account
when searching for Outcomes. The discussion was limited to con-
straints defined over arithmetic operations only. I did not discuss the
computational complexity of finding Outcomes, and this remains
outside the scope of this book.

An important idea in this Chapter, and in part already illustrated
in Chapter 12, is that a language may be such that its models can be
rewritten as systems of equations. In other words, you can see such
models as representations of the underlying systems of equations.
This is relevant when you are interested in finding Outcomes which
include a specific Pick which you defined. It also follows that you can
see languages such as L.Alphard as tools to construct these systems
of equations incrementally and iteratively.

294

Chapter 14

Preferences

When there are several Outcomes, all of which include a Pick you are
interested in, which one of these Outcomes do you choose? How do
you choose it? Which one is the “best”? What tells you, in a model, if
an Outcome is “better” than another? This Chapter focuses on how
to enable languages to represent preferences and criteria, and then
identify the best Outcome. I discuss the following questions.

1. What are preferences and criteria? (Section 14.2)

2. How to represent preferences and criteria? (Section 14.3)

3. Where to find Criteria in requirements? (Section 14.4)

4. How to use preferences to find best Outcomes in models? (Section
14.5)

295

Chapter 14. Preferences

14.1 Motivation

It may be more desirable to stakeholders that incident reports are
managed via the dispatching software, than having it done via other
software. Each of these, in turn, may be more desirable than to fill
out and keep incident reports in paper format. Some Outcomes will
suggest to use dispatching software to manage incident reports, and
will, with regards to how incident reports are managed, be more
desirable to other Outcomes, which recommend otherwise.

Choosing the “best” Outcome can be done by indicating the rela-
tive desirability of Value Assignments, that is, preferences. Preferences
can be associated to different criteria, such as cost, time to imple-
ment, ease of use, and so on. Given preferences and the criteria in
a model, the aim is to somehow use them to compare Outcomes.
This involves various activities, such as eliciting preferences, finding
criteria, inferring missing preferences and orders over Outcomes.

You rarely have a total order over Outcomes. There may be so
many Value Assignments, so it is not feasible to elicit all the compar-
isons needed to define the total order. It can also happen that you
have no one to elicit them from. Or you may, but perhaps you do not
trust that these comparisons will remain unchanged. Stakeholders
need not know the values or Outcome to prefer, especially if it is
unclear how these values and Outcomes translate to their specific
context.

To define the total order, you can elicit pairwise comparisons of
some Value Assignments, and, or Outcomes, and somehow deduce
the remaining comparisons that you need to define the total order.
In the worst case, you would need to elicit all possible comparisons
among pairs of Value Assignments. Such comparisons are called pref-
erences, each saying that some Value Assignment v1 is more desirable
than some other v2.

Preferences are associated to Criteria, such as “low cost”, “short
implementation time”, “positive effect on the scalability of the sys-
tem”, and so on. For example, it may be more desirable that the
average time to respond to incidents is 12 minutes than 16 minutes,
and the Criterion in this case may be called “lower average time to
respond to an incident”. However, it may be that achieving an aver-
age of 12 minutes is more costly (requires more ambulances, more
personnel, and so on) than achieving an average of 16 minutes. The
two Value Assignments are thus compared over two criteria, one

296

Chapter 14. Preferences

being the average time to respond to an incident, the other the cost
of the future system.

In short, the idea is that you would discover and elicit preferences
incrementally and often partially. You may decide to stop, when you
have enough of them to approximate the total order over Outcomes,
and thereby highlight the best one.

This absence of information about preferences, and its incremen-
tal discovery and elicitation are also major reasons to make languages
which can represent preferences. As you elicit new preferences, you
add them to a model, and you can analyse how they relate to already
existing preferences, over the same criteria, or if you need to add new
criteria as well. You can evaluate if a given model includes enough
information on preferences and criteria, to produce a partial or total
order, over many criteria, over the Outcomes.

14.2 Preferences and Criteria Basics

There is considerable research on preferences in philosophy [119, 66],
economics [89, 140, 142, 148, 22, 136, 106, 101], operations research
[50, 58, 48], and artificial intelligence [6, 44, 42]. In Section 14.2.1,
I recall common ideas about two core preference relations, called
strict preference and indifference. In Sections 14.2.2, I introduce the
preference-related terminology specific to this book, and in Section
14.2.3 I introduce Criteria and relate them to preferences.

14.2.1 Core Preference Relations

If you ask which of A and B is more desirable, you can expect any
one of three answers. A, for example, may be more desirable than B ,
that is, better than B , or vice versa. In that case, there is the so-called
strict preference for one over the other. Strict preferenceAnother answer is that A and
B are equally desirable, that neither is better than the other. This is
a case of being indifferent between A and B . IndifferenceFinally, A and B can
be incomparable in terms of desirability, in which case there is no
preference between them.

Strict preference and indifference are two core preference rela-
tions [67], and any other is a derived preference relation. When I
write "core preference relations", I am referring to strict preference
and indifference relations. When I want to be specific, I will write
"strict preference" or "indifference".

297

Chapter 14. Preferences

Strict preference is usually an irreflexive, antisymmetric, and
transitive binary relation. Indifference is reflexive, symmetric, and
transitive.

Core preference relations can, but need not be complete over
a domain. CompletenessA strict preference relation is complete for its domain
iff there is an instance thereof between every pair of elements in
that domain. This is different than the usual approach, in that a
preference relation can be complete if there is either strict preference
or indifference between any pair of elements in the domain. I do this
in order to simplify the discussion in this book.

Completeness is a desirable property when you want to establish
a total order over Outcomes. But as I said earlier, it can be difficult to
find enough information to achieve it. There is considerable work on
the elicitation of preferences [25], which I leave to you to explore.

All things in the domain of a preference relation are assumed
to be comparable. ComparabilityThis means that there are strict preference, or
indifference, or both relation instances between any two pairs of
things in the domain.

In addition to the above, it is also usually assumed that all things
in the domain of a preference relation are mutually exclusive. That
is, none is part of another, and none is compatible with another.

14.2.2 Domains of Preference Relations

In this book, preference relations are over value assignments. The
domain of a preference relation includes only value assignments.

Fragments (and the same applies to relation instances), when
taken independently of values, are not members of domains of pref-
erence relations. If I write that "Fragment x is strictly preferred to
a Fragment y" then it is not clear if I am trying to say that "satis-
fying Fragment x is strictly preferred to a satisfying Fragment y",
or that "including in the model the Fragment x is strictly preferred
to a including in the model the Fragment y", or both, or none of
these, but something else. Having only value assignments in pref-
erence domains allows me to be more precise, without losing the
ability to say either of these. The statement "satisfying Fragment x
is strictly preferred to a satisfying Fragment y" is a preference over
satisfaction values, while "including in the model the Fragment x is
strictly preferred to a including in the model the Fragment y" can be
a preference over acceptability value assignments.

298

Chapter 14. Preferences

14.2.3 Criteria

In this book, a preference relation is always associated to a Criterion.
CriterionA Criterion c, denoted crit.c, is a function over value assignments,

such that if there is a preference relation instance

(〈xi , t j , vk〉,〈xl , tp , vq 〉),

and it is associated to crit.c, then

crit.c(〈xi , t j , vk〉) > crit.c(〈xl , tp , vq 〉)
A Criterion is, then, a function which returns a greater value for more
desirable Alternatives.

Every Criterion can have its own Value Type, which may, but need
not be related in some way to other Value Types. Above, suppose that
〈xi , t j , vk〉 is a cost value, and 〈xl , tp , vq 〉 an estimate of implemen-
tation time. The preference (〈xi , t j , vk〉,〈xl , tp , vq 〉) thus says that
observing a specific cost is strictly more preferred than to observe a
specific implementation time.

Criteria specialise preference relations, in that there can be a
preference relation specific to cost, another one specific to imple-
mentation time, and so on. I will write

(〈xi , t j , vk〉,〈xl , tp , vq 〉) ∈ r.Pref.c

if (〈xi , t j , vk〉,〈xl , tp , vq 〉) is an instance of some preference relation
called Pref, associated to the Criterion C .

14.3 Representing Preferences

A preference relation instance compares two Value Assignments for
desirability. To represent the core preference relations from Section
14.2, a language needs relations of two kinds, namely strict pref-
erence and indifference. There needs to be one strict preference
relation, and one indifference relation per Criterion in the language.

Relation: pref.c

r.pref.cStrict Preference

299

Chapter 14. Preferences

Domain & Dimension

r.pref.c ⊆ V×V, where c is a Criterion, and V is a set of Value
Assignments.

Properties

Irreflexive, antisymmetric, and transitive.

Reading

(v, w) ∈ vr.pref.c reads “Value Assignment v is strictly more de-
sirable than Value Assignment w on the Criterion c”.

Language Services

• s.IsPrefs.IsPref: Is Value Assignment v strictly preferred to Value
Assignment w on crit.c? : Yes, if (v, w) ∈ vr.pref.c.

L.Bellartrix, the language defined below, adds vr.pref.c and Criteria
to L.Pollux. An additional change is that besides v.Satisfaction and
v.Importance, the language has n > 1 additional Value Types. Each
of these is the set of positive reals, R+. The language gives generic
names to each of these Value Types, and you can define aliases for
them, which are meaningful in the Problem instance you are solving.
I will illustrate this after the language definition.

Language: Bellatrix

L.BellatrixLanguage Modules
r.inf.pos, r.inf.neg, f.map.abrel.g, f.cat.ksr, vr.alt.b, vr.pref.c,
f.sat.inf.pos, f.sat.inf.neg, f.sat.alt.b, f.sat.leaf, f.imp.asm

Domain

• The domain is made of a set of Fragments F, relation
instances R with a special subset P of preference relation

300

Chapter 14. Preferences

instances, Value Types T, Value Assignments V, Criteria
C, and real numbers R.

• Fragments have three partitions, namely requirements,
domain knowledge, and specification Fragments, F =
c.r∪c.k∪c.s and c.r∩c.k∩c.s=;.

• Relation instances are over Fragments or Value Assign-
ments, R= (F×F)∪(V×V), and are partitioned as follows:

R= r.inf.pos∪ r.inf.neg∪vr.alt.b∪P,

;= r.inf.pos∩ r.inf.neg∩vr.alt.b∩P,

where
P= ⋃

crit.c∈C
vr.pref.c,

influences are over Fragments, r.inf.pos⊆ F×F, r.inf.neg⊆
F×F, while mutual exclusion and preferences are over
Value Assignments vr.alt.b∪P⊆V×V.

• Value Types are

T= {v.Satisfaction,v.Importance}∪
n>1⋃
q=1

v.q.

v.Satisfaction and v.Importance are binary. Satisfaction
value 1 reads “satisfied”, and 0 “not satisfied”. Importance
value 1 reads “mandatory”, 0 “not mandatory”. Each of
the q= 1, . . . ,n Value Types v.q is the set of positive reals.

• Value Assignments are ternary relations over Fragments
or relation instances, Value Types, and values of Value
Types:

V⊆ (F∪R)×T× ⋃
v.t∈T

v.t.

and has the following three partitions

(F∪R)× {v.Satisfaction} × {1,0},

F× {v.Importance}× {1,0}, and

F×
n>1⋃
q=1

v.q×R+.

301

Chapter 14. Preferences

Satisfaction values can be assigned to Fragments and
relation instances, while values of all other Value Types
can be assigned only to Fragments.

Syntax

A model M in the language is a set of symbols M = {Z1, . . . , Zn},
where everyφ is generated according to the following BNF rules:

A ::= x | y | z | . . .

B ::= r (A) | k(A) | s(A)

C ::= B influences+ B

D ::= B influences- B

G ::= 〈A,E ,F 〉

H ::=G alternativeTo G

I ::=G Pref.J G

J ::= c1 | c2 | . . .

Z ::= B |C | D |G | H | I

Mapping

Symbols map to domain elements as follows:

• A symbols denote Fragments, D(A) ∈ F.

• B symbols are used to distinguish requirements, domain
knowledge, and specification Fragments, so that D(r (α)) ∈
c.r, D(k(α)) ∈ c.k, D(s(α)) ∈ c.s.

• C and D symbols denote, respectively, positive and nega-
tive influence relations.

• E symbols denote Value Types, D(E) ∈ T.

• F symbols denote a value of a Value Type, and as there is
one Value Type, D(F) ∈ v.Satisfaction.

302

Chapter 14. Preferences

• G symbols denote Value Assignments, D(G) ∈V.

• H symbols denote Alternatives, D(H) ∈ vr.alt.b.

• I symbols denote instances of preference relations, one
per Criterion c,

D(I) ∈ ⋃
crit.c∈C

vr.pref.c.

• J symbols denote Criteria, D(J) ∈C.

Language Services

Those of relations and functions in the language.

Figure 14.1 is a visualisation of twelve preference relation in-
stances, over a model in L.Bellatrix. The model takes its contents
from parts of the model in Figure 13.2. The numbers used to abbrevi-
ate variables in Figure 13.2 are the same in Figure 14.1.

Figure 14.1 shows two Criteria, and each is associated to four
preferences. crit.AdvDecSup says that the software should provide
more advanced decision support. It follows that having the software
automatically update the list of available ambulances, and having it
make that list is strictly preferred to having control assistants perform
this work manually. This is conveyed by the following preferences

〈UpdAutoAmbList,v.Satisfaction,1〉 Pref.AdvDecSup

〈ManTrckAmb,v.Satisfaction,1〉 and

〈AutoAmbList,v.Satisfaction,1〉 Pref.AdvDecSup

〈ManTrckAmb,v.Satisfaction,1〉.

Following the same Criterion, it is more desirable to have the
software rank candidate ambulances for dispatching to an incident
location, and that it displays the ranking, than not to assist control

303

Chapter 14. Preferences

Figure 14.1: Preferences and Criteria in a model in L.Bellatrix.

304

Chapter 14. Preferences

assistants in this way. This is represented with these preferences

〈DispSoftwRnkAmb,v.Satisfaction,1〉 Pref.AdvDecSup

〈NoAutAmbRnk,v.Satisfaction,1〉,
〈DispSoftwRnkAmb,v.Satisfaction,1〉 Pref.AdvDecSup

〈NoAmbRecomm,v.Satisfaction,1〉,
〈DispAmbRnk,v.Satisfaction,1〉 Pref.AdvDecSup

〈NoAutAmbRnk,v.Satisfaction,1〉, and

〈DispAmbRnk,v.Satisfaction,1〉 Pref.AdvDecSup

〈NoAmbRecomm,v.Satisfaction,1〉.

The second Criterion in Figure 14.1 is crit.MinImplTime, and says
that lower implementation times, that is, lower values of v.ImplTime
are strictly preferred to higher values of this Value Type. This gives
the following preferences

〈ManTrckAmb,v.Satisfaction,1〉 Pref.MinImplTime

〈UpdAutoAmbList,v.Satisfaction,1〉,
〈ManTrckAmb,v.Satisfaction,1〉 Pref.MinImplTime

〈AutoAmbList,v.Satisfaction,1〉,
〈NoAutoAmbRnk,v.Satisfaction,1〉 Pref.MinImplTime

〈DispSoftwRnkAmb,v.Satisfaction,1〉,

〈NoAutoAmbRnk,v.Satisfaction,1〉 Pref.MinImplTime

〈DispAmbRnk,v.Satisfaction,1〉,
〈NoAmbRecomm,v.Satisfaction,1〉 Pref.MinImplTime

〈DispSoftwRnkAmb,v.Satisfaction,1〉, and

〈NoAmbRecomm,v.Satisfaction,1〉 Pref.MinImplTime

〈DispAmbRnk,v.Satisfaction,1〉.
As a digression, note that all the preferences above can be writ-

ten with variable abbreviations from Section 13.2. These are two
examples:

(w8 = 1) Pref.AdvDecSup (w9 = 1) and

(w7 = 1) Pref.AdvDecSup (w9 = 1).

305

Chapter 14. Preferences

Figure 14.2: More preferences and Criteria in a model in L.Bellatrix.

All the preferences above are strict preferences over Value As-
signments of the same Value Type, v.Satisfaction. There can also be
preferences over Value Assignments over different Value Types, on
the same or different Fragments. Figure 14.2 shows examples.

The model part shown in Figure 14.2 involves three new Value
Types relative to Figure 14.1. There is v.AvgIncArrTime, which is
the average time for an ambulance to arrive at an incident, from the
moment the incident was reported. Ideally, this should be minimised,
hence the Criterion crit.LowAvgIncArrTime. The Criterion gives this

306

Chapter 14. Preferences

preference

〈AmbArrIncLoc,v.LowAvgIncArrTime,15〉 Pref.LowAvgIdAmbErr

〈AmbArrIncLoc,v.AvgIdAmbErr,19〉.

v.AvgIdAmbErr is the average percentage of ambulance identifi-
cations, in which the ambulance was identified as available, but it in
fact was not. That is, this is the average proportion of erroneous iden-
tifications of available ambulances. Lower values are preferred, so
that there is crit.LowAvgIdAmbErr, which gives this strict preference
over two assignments of v.AvgIdAmbErr

〈IdAmb,v.AvgIdAmbErr,0.04〉 Pref.LowAvgIdAmbErr

〈IdAmb,v.AvgIdAmbErr,0.08〉.

Both preferences above are, each, over Value Assignments of
values of one Value Type to one Fragment.

There is also the Value Type v.AvgErrTrckAmb, which gives the per-
centage of errors when keeping track of ambulances manually, as in
ManTrckAmb. There is the Criterion crit.MinErrOvDecSup, which says
that minimising errors is preferred to giving more decision support
to control assistants. Hence these two preferences, which are over
Value Assignments of different Value Types, on different Fragments:

〈ManTrckAmb,v.AvgErrTrckAmb,0.02〉 Pref.MinErrOvDecSup

〈AutoAmbList,v.Satisfaction,1〉, and

〈ManTrckAmb,v.AvgErrTrckAmb,0.02〉 Pref.MinErrOvDecSup

〈UpdAutoAmbList,v.Satisfaction,1〉.

Preferences, as in the examples above, suggest how to compare
entire Outcomes, depending on the Value Assignments in each. I
consider this task in Section 14.5.

14.4 Finding Criteria

Fragments can include statements which suggest many preference
relation instances. For example, suppose that stakeholders agree that
they prefer lower to higher average times for ambulances to arrive at
incidents, and that there is no lower limit to how short the average

307

Chapter 14. Preferences

time can be. Perhaps a stakeholder said that she wants an ambulance
to arrive as quickly as possible to an incident.

Statements such as “low incident response times”, “less mainte-
nance”, “low cost” have been studied in Requirements Engineering
for several decades, as nonfunctional requirements, and as critical
for understanding and measuring system quality [16, 108].

I view these statements as suggesting Criteria. For example, “am-
bulance quickly arrives at incident” gives a Criterion, in that if there
are two Alternatives in a model, and they result in different values of
a measure of how quickly ambulances arrive at incidents, then the
one which gives a better value will be strictly preferred than the other
on this Criterion.

A statement such as “ambulance quickly arrives at incident” is not
enough by itself to define a Criterion. There should be a Value Type,
whose values measure how quickly ambulances arrive at incidents,
and it is necessary to clarify what exactly these values measure.

The more general suggestion is to look for Criteria in Fragments
which include gradable adjectives, such as quick, slow, big, small,
efficient, usable, easy to make, and so on. This is because such
adjectives are applied presumably after comparison. Something
is fast, because it was compared to something else which seemed
less fast. This also means that there is no universal threshold for
a gradable adjective to truthfully apply always, everywhere, and in
everyone’s eyes. You may call a car A fast, because you are used to
car B, which is not that fast. Another person may consider A as slow,
because she is used to car C, which is faster than A, and so on.

Given a statement with a gradable adjective, such as “ambulance
quickly arrives at incident”, you can do the following.

1. In the model, identify the Fragments such that Value Assign-
ments on them can be characterised by the statement. These
Fragments will talk of things, situations, events, or otherwise,
and the Value Assignments will be assigning values that de-
scribe some properties of these things, situations, events.

For example, a Fragment which says that an ambulance does
or should arrive at an incident, is about a process of the ambu-
lance arriving to the incident.

2. Define a Value Type, whose values can be used to describe
some property of the situation, event, or object mentioned
in Fragments in the step above. The property should be such

308

Chapter 14. Preferences

that the statement with the gradable adjective seems true for
some of its values, but not for all of them, and therefore, the
value of that property can be used to compare different Value
Assignments.

Continuing the example, there can be a Value Type whose
values describe the average time for an ambulance to arrive
at an incident. If the statement with the gradable adjective is
“ambulance quickly arrives at incident”, then this statement will
apply to some, but not all values of this Value Type. Perhaps 15
min average time for an ambulance to arrive at an incident is
quick, but 30 min is not.

3. Make Alternative Value Assignments of the Value Type defined
above, and use the statement with the gradable adjective to
define strict preferences over these Value Assignments.

Continuing the example above, if there are two Value Assign-
ments, 15 min and 30 min, then there will necessarily be a
strict preference for 15 min over that of 30 min.

Another way to understand the steps above, and using the termi-
nology of the example, is that you are trying to a scale such that, when
given any two different values on that scale, you or a stakeholder can
say which of the two values describes ambulances arriving faster
than the other. The solution in the example is to have a Value Type
which gives the average time to arrive at an incident, so that when
you have a value v and w of that Value Type, and v 6= w , then it is
clear that, if v < w , then v describes ambulances arriving faster than
w .

I define crit.LowAvgIncArrTime below, in such a way as to gener-
ate preference relation instances over Value Assignments, when it is
given a pair of v.AvgIncArrTime Value Assignments. The Language
Module template for Criteria is the same as for functions. The Crite-
rion takes a pair of Value Assignments, and returns the preference
relation over them. It works as a function. Nevertheless, I want to dis-
tinguish Criteria from other kinds of functions, hence the dedicated
template.

Criterion: LowAvgIncArrTime

309

Chapter 14. Preferences

crit.LowAvgIncArrTimeAmbulance quickly arrives at incident

Input

A pair of Value Assignments

〈x1,v.AvgIncArrTime, v1〉, and

〈x2,v.AvgIncArrTime, v2〉.

Do

Let vi be the minimum and v j the maximum in {v1, v2}.

Output

(〈xi ,v.AvgIncArrTime, vi 〉,〈x j ,v.AvgIncArrTime, v j 〉)
∈ vr.pref.LowAvgIncArrTime.

Language Services

• s.WhLowAvgIncArrTimes.WhLowAvgIncArrTime: According to

crit.LowAvgIncArrTime,

which of the Value Assignments 〈x1,v.AvgIncArrTime, v1〉
and 〈x2,v.AvgIncArrTime, v2〉 is strictly preferred to the
other? : The one strictly preferred according to the output
of this module.

You can define a more general Criterion, to use with Value Assign-
ments where Value Types are real numbers, and lowest or highest
values are the most desirable. This Criterion is below.

Criterion: d.t

310

Chapter 14. Preferences

crit.d.tPrefer higher (or lower) v.t values

Input

• A Value Type t ,

• a parameter d , which is either d = low or d = high, and

• a pair of Value Assignments 〈x1,v.t, v1〉 and 〈x2,v.t, v2〉,
such that v.t takes real values.

Do

Let vi be the minimum and v j the maximum in {v1, v2}, and

• if d = Low, then w = (〈xi ,v.t, vi 〉,〈x j ,v.t, v j 〉) ∈ vr.pref.d.t,

• if d = High, then w = (〈x j ,v.t, v j 〉,〈xi ,v.t, vi 〉) ∈ vr.pref.d.t.

Output

w .

Language Services

• s.WhPref.d.ts.WhPref.d.t: According to crit.d.t, which of the Value
Assignments 〈x1, t , v1〉 and 〈x2, t , v2〉 is strictly preferred
to the other? : The one strictly preferred according to w
which this module outputs.

If a model has no Criteria which generate preference relations,
then all individual preferences in the model need to come from some
other approach to preference elicitation. Otherwise, if you have
Criteria which do generate preference relation instances, and there
are Value Assignments which these Criteria apply to, then you can
automatically add preference relation instances.

Criteria can reflect more complicated preferences than crit.d.t.
The following example is an illustration. It defines a Criterion, which

311

Chapter 14. Preferences

is remotely related to a classical proposal in the field of multiple-
criteria decision analysis.

Example 14.4.1. Suppose that there is a Value Type v.ImplCost, and
that you assign its values to Fragments, to indicate an estimate of the
cost to implement what the Fragment describes.

Moreover, suppose that you have elicited the following statement,
or concluded this from having elicited some other information from
stakeholders: “The lowest implementation cost Alternative is best,
unless it is not less than 20% cheaper than the next lowest cost Alter-
native, in which case the latter is better than the former”.

This is inspired by the so-called Type V criterion in the PROMETHEE

approach to multiple-criteria decision analysis [19], where the indi-
vidual is assumed to be indifferent to Value Assignments, until the
difference between them reaches a certain value. Here, I adapt this
idea to there being no indifference relation, and consider that there
is a strict preference, until the difference between the two assigned
values goes above a threshold, which is some given percentage of the
higher value. If the value goes above the threshold, then the strict
preference reverses. The following Criterion captures these ideas.

Criterion: low.rev.h

crit.low.rev.hPrefer lower of two v.t values, until their difference is more
than h% of the higher

Input

• v.t, which must be a subset of real numbers,

• a percentage value h%, and

• a pair of Value Assignments 〈x1,v.t, v1〉 and 〈x2,v.t, v2〉.

Do

Let vi be the minimum and v j the maximum in {v1, v2}, and if

312

Chapter 14. Preferences

|vi − v j |/v j > h/100, then

w = (〈xi ,v.t, vi 〉,〈x j ,v.t, v j 〉) ∈ vr.pref.rev.d.t, else

w = (〈x j ,v.t, v j 〉,〈xi ,v.t, vi 〉) ∈ vr.pref.rev.d.t.

Output

w .

Language Services

• s.WhPref.low.rev.hs.WhPref.low.rev.h: According to crit.low.rev.h, which of
the Value Assignments 〈x1,v.t, v1〉 and 〈x2,v.t, v2〉 is strictly
preferred to the other? : The one strictly preferred accord-
ing to w which this module outputs.

•

The more general point is that preference relation instances can
be automatically added to a model, in case you have defined a Cri-
terion which suggests such preferences. There are many proposals
for generic Criteria which can be used in this way, especially in the
field of multiple-criteria decision analysis [156, 103, 48]. The issue
which remains unsolved is how to make sure that the Criteria do
correspond to stakeholders’ preferences, an issue to be solved via
elicitation, validation, and negotiation, rather than, unfortunately,
Language Modules.

14.5 Better and Best Outcomes

Given a model which includes Criteria and preference relation in-
stances over Fragments, how would you deliver the following Lan-
guage Services?

• s.BestOutcomes.BestOutcome: Which is the best Complete Outcome of M?

• s.BetterOutcomes.BetterOutcome: Which of two Outcomes oi and o j is better
in model M?

313

Chapter 14. Preferences

Both are problems of preference aggregation, that is, of taking
preference relation instances over Value Assignments in a model,
and deciding how to use them together in order to compare Com-
plete Outcomes. Preference aggregation is a topic studied in various
domains, including, for example, artificial intelligence [18], formal
logic [113], multi-criteria decision-making [48], social choice [106].

I choose one approach to preference aggregation from artifi-
cial intelligence. Given a model M with Value Assignments, pref-
erence relations, and Criteria, I want to deliver s.BestOutcome and
s.BetterOutcome by mapping the Value Assignments and preferences
to a Conditional Preference Network, CP-Net hereafter [18]. The Lan-
guage Services s.BestOutcome and s.BetterOutcome are delivered by
applying known algorithms to the resulting CP-Net.

To reduce the number of preference relation instances that need
to be elicited, CP-Nets use the conditional preference relation. Conditional preference

A conditional preference is a pair (a, p), where p is a preference
relation instance and a = 〈x,v.t, v〉 is a Value Assignment. The idea
is that if the Outcome includes a, then the preference p should be
taken into account when computing answers to s.BestOutcome and
s.BetterOutcome.

In order to map models to CP-Nets, it should be possible to repre-
sent conditional preferences in models. This is done with the relation
vr.pref.cond below.

Relation: pref.cond

r.pref.condConditional preference

Domain & Dimension

r.pref.cond⊆V×P, where V is a set of Value Assignments, and
P is a set of vr.pref instances.

Properties

If the preference p ∈ P should be taken into account when
comparing Outcomes, all of which include 〈x,v.t, v〉, then let

(〈x,v.t, v〉, p) ∈ vr.pref.cond.

314

Chapter 14. Preferences

Reading

(〈x,v.t, v〉, p) ∈ vr.pref.cond reads “use the preference relation
p when comparing Outcomes, only if all these Outcomes s
include 〈x, t , v〉”.

Language Services

• s.IsCondPrefs.IsCondPref: Should the preference p be used to com-
pare Outcomes in the set O? : Yes, if there is (〈x,v.t, v〉, p) ∈
vr.pref.cond and all Outcomes in O include 〈x, t , v〉.

To illustrate how to make CP-Nets from a model, I define below
the language called L.Elnath, by adding vr.pref.cond to L.Bellatrix, and
allowing manual assignment of binary v.Approval values on Frag-
ments.

Language: Elnath

L.ElnathLanguage Modules
r.inf.pos, r.inf.neg, f.map.abrel.g, f.cat.ksr, vr.alt.b, vr.pref.c,
vr.pref.cond, f.sat.inf.pos, f.sat.inf.neg, f.sat.alt.b, f.sat.leaf,
f.imp.asm

Domain

• The domain is made of a set of Fragments F, non-conditional
relation instances R with a special subset P of prefer-
ence relation instances, conditional relation instances
cP, Value Types T, Value Assignments V, Criteria C, and
real numbers R.

• Fragments have three partitions, namely requirements,
domain knowledge, and specification Fragments, F =
c.r∪c.k∪c.s and c.r∩c.k∩c.s=;.

315

Chapter 14. Preferences

• Relation instances are over Fragments or Value Assign-
ments, R= (F×F)∪(V×V), and are partitioned as follows:

R= r.inf.pos∪ r.inf.neg∪vr.alt.b∪P,

;= r.inf.pos∩ r.inf.neg∩vr.alt.b∩P,

where
P= ⋃

crit.c∈C
vr.pref.c,

influences are over Fragments, r.inf.pos⊆ F×F, r.inf.neg⊆
F×F, while mutual exclusion and non-conditional pref-
erences are over Value Assignments vr.alt.b∪P⊆V×V.

• Conditional preference relation instances are over Value
Assignments and non-conditional preference relation in-
stances in P,

cP= vr.pref.cond,

vr.pref.cond⊆V×P.

• Value Types are

T= {v.Satisfaction,v.Importance,v.Approval}∪
n>1⋃
q=1

v.q.

v.Satisfaction, v.Importance, and v.Approval are binary. Sat-
isfaction value 1 reads “satisfied”, and 0 “not satisfied”.
Importance value 1 reads “mandatory”, 0 “not manda-
tory”. Approval value 1 reads “approved” and 0 reads “not
approved”. Each of the q= 1, . . . ,n Value Types v.q is the
set of positive reals.

• Value Assignments are ternary relations over Fragments
or relation instances, Value Types, and values of Value
Types:

V⊆ (F∪R)×T× ⋃
v.t∈T

v.t.

316

Chapter 14. Preferences

and has the following three partitions

(F∪R)× {v.Satisfaction} × {1,0},

F× {v.Importance}× {1,0}, and

F×
n>1⋃
q=1

v.q×R+.

Satisfaction values can be assigned to Fragments and
relation instances, while values of all other Value Types
can be assigned only to Fragments.

Syntax

A model M in the language is a set of symbols M = {Z1, . . . , Zn},
where everyφ is generated according to the following BNF rules:

A ::= x | y | z | . . .

B ::= r (A) | k(A) | s(A)

C ::= B influences+ B

D ::= B influences- B

G ::= 〈A,E ,F 〉

H ::=G alternativeTo G

I ::=G Pref.J G

J ::= c1 | c2 | . . .

K ::=G CondFor I

Z ::= B |C | D |G | H | I | K

Mapping

Symbols map to domain elements as follows:

• A symbols denote Fragments, D(A) ∈ F.

317

Chapter 14. Preferences

• B symbols are used to distinguish requirements, domain
knowledge, and specification Fragments, so that D(r (α)) ∈
c.r, D(k(α)) ∈ c.k, D(s(α)) ∈ c.s.

• C and D symbols denote, respectively, positive and nega-
tive influence relations.

• E symbols denote Value Types, D(E) ∈ T.

• F symbols denote a value of a Value Type, and as there is
one Value Type, D(F) ∈ v.Satisfaction.

• G symbols denote Value Assignments, D(G) ∈V.

• H symbols denote Alternatives, D(H) ∈ vr.alt.b.

• I symbols denote instances of preference relations, one
per Criterion c,

D(I) ∈ ⋃
crit.c∈C

vr.pref.c.

• J symbols denote Criteria, D(J) ∈C.

• K symbols denote conditional preference relation in-
stances, D(K) ∈ vr.pref.cond.

Language Services

Those of relations and functions in the language.

Given a model M in L.Elnath, I need the following tuple from it:

(Vars(M),V,vr.pref,vr.pref.cond)

where Vars(M) is the set of all variables in the model, V is a set of
Value Assignments, and

vr.pref.c⊆V×V,

vr.pref.cond⊆V× ⋃
crit.c∈C

vr.pref.c.

The following function takes the tuple above, and makes a CP-Net
from it.

318

Chapter 14. Preferences

Function: make.CPNet

f.make.CPNetMake a CPNet

Input

(Vars(M),V,vr.pref,vr.pref.cond).

Do

1. Let G(M) be a graph, in which Vars(M) is the set of nodes,
and every node x.t ∈ Vars(M) is annotated with a so-
called Conditional Preference Table (CPT), denoted CPT(x.v.t),
where x.v.t is the variable from Vars(M).

2. For every variable x.v.t ∈ Vars(M), find all preference in-
stances over that variable, let that set be P (x.v.t) and find
all conditional preferences to members of P (x.v.t), and
let that set be CP (x.v.t).

3. For every variable x.v.t ∈ Vars(M), define its CPT(x.v.t)
by adding every preference (〈x,v.t, vi 〉,〈x,v.t, v j 〉) ∈ P (x.t)
and member of CP (x.v.t) to the relevant CPT(x.v.t).

4. For each variable x.v.t ∈ Vars(M), if its CPT(x.v.t) is not
complete, then elicit or otherwise find the missing prefer-
ences and vr.pref.cond instances, and add them to CPT(x.v.t).

Output

The CP-Net G(M).

319

Chapter 14. Preferences

Language Services

• s.BestOutcome: The best Outcome is the Outcome re-
turned by an outcome optimisation query [18] on the
CP-Net G(M).

• s.BetterOutcome: The better Outcome is the one returned
by a dominance query [18] on the CP-Net G(M).

Figure 14.3 shows a model in L.Elnath. There are no Value As-
signments in the Figure. Each Fragment in the Figure is annotated
with two preference relation instances. One gives the preference
over satisfaction values, and the other over approval values for that
Fragment.

There are four conditional preference relations in the Figure. Two
indicate that preference over satisfaction values of ChkDblLoc de-
pends on the satisfaction value of IncCalRep. The other two say that
preference over satisfaction values of DispSoftwChkDbl depends on
the satisfaction value of ChkDblLoc.

Given these conditional preferences, and all other preferences in
the Figure, what is the best Complete Outcome? That is, what are the
best assignments of values to all Fragments and relation instances in
that model?

To answer this, the first step is to make a CP-Net, so as to find the
best Value Assignmentto the Fragments whose satisfaction values
involve conditional preferences. The resulting CP-Net is shown in
Figure 14.4. Next, running an outcome optimisation query on the CP-
Net in Figure 14.4 will result in the graph in Figure 14.5, where each
edge runs from a better to a worse combination of Value Assignments.
That graph shows that the best combination assigns the satisfaction
value 0 to IncCalRep, ChkDblLoc, and DispSoftwChkDbl.

While Figure 14.5 does show the best combination of satisfaction
values over three Fragments, the best Outcome will not necessarily
include that best combination. The reason is that you still need
to assign satisfaction and approval values to all other Fragments
and relation instances in the model, and in doing that, you need to
take care about how satisfaction values propagate via f.sat.inf.pos,
f.sat.inf.neg, f.sat, and f.sat.leaf.

320

Chapter 14. Preferences

The best approval Outcome is easy to find. As the approval value
of a Fragment, or relation instance, is independent of other assign-
ments of approval values in the model, you can assign the preferred
approval value to every Fragment and relation instance. To keep the
figures simple, I assume that the preferred approval value for every
influence relation is 1. The best approval Outcome is shown in Figure
14.6.

Figure 14.7 shows an Outcome which includes the best combi-
nation of satisfaction values of IncCalRep, ChkDblLoc, and DispSoft-
wChkDbl, and the best assignment of satisfaction values to other
Fragments, which still satisfies propagation rules in f.sat.inf.pos,
f.sat.inf.neg, f.sat, and f.sat.leaf. The obvious problem with that Out-
come is that AddRepEm is not satisfied.

You can repair AddRepEm by choosing an Outcome which ig-
nores the conditional relations. This Outcome is shown in Figure
14.8, where red circles highlight differences from the satisfaction
values in Figure 14.7. Another approach is to change the conditional
preferences on DispSoftwChkDbl, so that they are conditional on
the satisfaction value of AddRepEm, rather than ChkDblLoc. Also,
you could change the influence relations, by removing the one from
ChkDblLoc to AddRepEm.

14.6 Summary on Preferences

I introduced binary preference relations, illustrated how to add them
to languages and represent them in models, and finally, how to map
models to CP-Nets in order to use conditional preferences to find
best Outcomes. Many open questions remain outside the scope of
this book:

• How to represent that preferences are conflicting, which is that
improvement over one leads to a decrease over another?

• How to represent acceptable tradeoffs between preferences,
which are the allowed improvements on one preference, and
the acceptable decreases over others, which are in conflict with
the first?

• How to use tradeoffs when searching for the best Outcome?

321

Chapter 14. Preferences

Figure 14.3: Model in L.Elnath, with no Value Assignments.

322

Chapter 14. Preferences

Figure 14.4: CP-Net made from conditional preferences in Figure
14.3.

Figure 14.5: Preference graph from the CP-Net in Figure 14.4.

323

Chapter 14. Preferences

Figure 14.6: Best approval Outcome, assuming 1 is the preferred
approval value on all relation instances.

324

Chapter 14. Preferences

Figure 14.7: Best Outcome according to conditional preferences.

325

Chapter 14. Preferences

Figure 14.8: Best Outcome which ignores conditional preferences.

326

Chapter 15

Links to Formal Logic

This Chapter is on how to relate languages in this book to formal logics.
The convention in the Chapter is that a formal theory, or simply theory,
is a name for a set of formulas with no free variables, in some formal
logic. So how can you map (parts of) models to theories, and why
do so? Relationships between Requirements Modelling Languages
and formal logics are a recurrent topic in Requirements Engineering.
In KAOS, theories in linear temporal first-order logic are themselves
parts of models. Same in Tropos. The motivation is that you can
take a model in an Requirements Modelling Language, map (parts
of) it to a theory in some formal logic, in order to answer questions
which your Requirements Modelling Language could not. I will look
at two among many topics on the relationships between Requirements
Modelling Languages and formal logics. I restrict the discussion to one
formal logic, namely classical propositional logic (CPL) and discuss
the following questions.

1. How to map a model to a CPL theory, if every Fragment equates
to an atomic proposition? (Section 15.2)

2. How to map a model to CPL theory, if every Fragment maps
to a conjunction of formulas of classical propositional logic?
(Section 15.3)

3. What can be the risks of mapping models to theories? (Section
15.4)

327

Chapter 15. Links to Formal Logic

15.1 Motivation

The overall aim of mapping models to theories is to deliver Lan-
guage Services which the Requirements Modelling Language could
not deliver by itself. For example, I had no notion of consistency or
inconsistency in languages which I introduced so far. To check if a
model (part) is consistent, I need to have a notion of consistency
in the language, that is, define the conditions that a model has to
satisfy, in order to be consistent. I can do this independently of any
existing notion of consistency in another language, or a formal logic.
Or, I can map my models to theories of a formal logic, and consider
my models as consistent in my language, if the corresponding theo-
ries are consistent in the formal logic. That is, I borrow a notion of
consistency from an existing language or logic.

To be more concrete, recall that many languages defined so far
can distinguish between Fragments that are requirements, domain
knowledge, or specifications. To represent instances of the DRP, a
language also needs to be able to check if requirements, domain
knowledge, and the specification are consistent, and there is a proof
of all requirements from the domain knowledge and the specification.
This is summarised in the following Language Service.

Language Service: DRPSol

Given a model M which includes an instance P of DRP, is the
part S of that model a solution to the problem instance? s.DRPSol

s.DRPSol requires two capabilities, one related to proving re-
quirements from domain knowledge and specifications, the other
proving the absence of inconsistency. To avoid confusion about
these, Provability Condition abbreviates hereafter the first condition
in the DRP, and Consistency Condition the second condition.

To enable a language to deliver s.DRPSol, you need to define
rules for constructing proofs, and in relation to these rules, defining
when inconsistency is the result of a proof.

A cautious approach to delivering s.DRPSol is to map the content
of a Requirements Model to formulae in a formal logic, where the
notions of proof and inconsistency already are well-defined. The

328

Chapter 15. Links to Formal Logic

clear benefit is that you are freed from the burden of inventing a
new set of proof rules and justifying them. The risk is that you may
be adopting the conventions of the formal logic, and they may be
clashing with the conventions in the language you use. I return to
this issue in Section 15.3.

The cautious approach has the effect that you do not need to
add new relations to models. In other words, you will still be saying
the same with your models, and you will use logic only to deliver
s.DRPSol. The other way could have involved adding new relations
to the language because of the ability of the formal logic to state such
relations. In brief, I focus on mapping models to formulae of logic,
not the other way round. For the sake of simplicity, I will be mapping
models to CPL theories [124].1

15.2 Models to Theories, Approach One

Suppose that I have a model in a language which can represent Frag-
ments and positive and negative influence relations over Fragments.
Since I am interested in the DRP, the language should also categorise
all Fragments into requirements, domain knowledge, and specifica-
tions. A simple language which has this is L.Rigel. Recall that L.Rigel
also has v.Satisfaction and functions which propagate these values
over relation instances and Fragments.

Consider what do you need to add to L.Rigel in order to map
its models to propositional logic theories? Can the same model be
mapped to different theories? If yes, then why would you map it to
one of these theories and not another?

I start with the convention that the formal theory should have
exactly one atomic proposition per Fragment in a model. So a Frag-
ment is not rewritten into a sentence of CPL, but maps to an atomic
proposition of CPL.

I will map positive influences to an implication from a conjunc-
tion, and negative influences to implication to inconsistency. This is
inspired by Techne. The following function does it.

1Since I want to have a language that represents instances of the DRP, and not some
other class of Problems, a disclaimer is in order: The syntactic consequence relation in
classical propositional logic is usually denoted `, and this at least visually resembles
the relation in DRP. I do not know exactly which logic the DRP takes that relation from,
as the accompanying paper [155] does not say. I take classical propositional logic to
be a conservative choice.

329

Chapter 15. Links to Formal Logic

Function: map.infl.impl

f.map.infl.implMap positive influences to implications, negative influences
to inconsistency

Input

Model M .

Do

1. Let ∆ be an empty set.

2. For every Fragment x in M :

(a) Let {(p1, x), . . . , (pn , x)} be the set of all positive influ-
ences to x in M .

(b) Let {(q1, x), . . . , (qm , x)} be the set of all negative in-
fluences to x in M .

(c) Add the following sentences to ∆:

p1 ∧ . . .∧pn → x,

q1 ∧ . . .∧qm ∧x → ⊥.

Output

Set ∆ of propositional logic sentences.

Language Services

• s.WhCPLThs.WhCPLTh: What CPL theory corresponds to positive
and negative influences over Fragments in M? : ∆.

f.map.infl.impl sees positive influences as implications, because
that roughly corresponds to the idea that if p1, . . . , pn are satisfied,

330

Chapter 15. Links to Formal Logic

then so should x. In contrast, it sees negative influences as logical
inconsistencies, so that if q1, . . . , qm negatively influence x, then there
can be no consistent model which includes all of them. Negative
influences, in this approach, should not be tolerated in solutions.

If you add f.map.impl.infl to L.Rigel, you have a language which can
deliver s.DRPSol. It is called L.Sirius and defined below. Delivering it
involves finding in a model an instance of the Default Problem, and
then being able to check if a submodel is a solution, that is, satisfies
the Provability Condition and the Consistency Condition.

The convention is that a model M ′ in some language is a sub-
model of a model M in the same, or another language, if M ′ can
be obtained by only removing Fragments and, or relation instances
from M . Submodel

Language: Sirius

L.SiriusLanguage Modules
r.inf.pos, r.inf.neg, f.map.abrel.g, f.cat.ksr, f.sat.inf.pos, f.sat.inf.neg,
f.sat, f.sat.leaf, f.map.infl.impl

Domain

There is a set of Fragments F, a singleton for Value Types

T= {v.Satisfaction},

and a set of Value Assignments V. Fragments have three par-
titions, namely requirements, domain knowledge, and spec-
ification Fragments, F = c.r∪ c.k∪ c.s and c.r∩ c.k∩ c.s = ;.
Influences are over Fragments, r.inf.pos⊆ F×F, r.inf.neg⊆ F×F.
Value assignments are over Fragments or relation instances,
involve a Value Type, and a value, so that

V⊆ (F∪ r.inf.pos∪ r.inf.neg)×T×v.Satisfaction.

Satisfaction is binary, v.Satisfaction= {1,0}.

331

Chapter 15. Links to Formal Logic

Syntax

A model M in the language is a set of symbols M = {Z1, . . . , Zn},
where everyφ is generated according to the following BNF rules:

A ::= x | y | z | . . .

B ::= r (A) | k(A) | s(A)

C ::= B influences+ B

D ::= B influences- B

G ::= 〈A,E ,F 〉
Z ::= B |C | D |G

Mapping

A symbols denote Fragments, D(A) ∈ F. B symbols are used to
distinguish requirements, domain knowledge, and specification
Fragments, so that D(r (α)) ∈ c.r, D(k(α)) ∈ c.k, D(s(α)) ∈ c.s. C
and D symbols denote, respectively, positive and negative in-
fluence relations. E symbols denote Value Types, D(E) ∈ T. F
symbols denote a value of a Value Type, and as there is one
Value Type, D(F) ∈ v.Satisfaction. G symbols denote Value As-
signments, D(G) ∈V.

Language Services

Those of relations and functions in the language, and

• s.DRPSol: Yes, S is the solution to the Default Problem
instance defined by the sub model P , if the following
conditions are satisfied:

1. P and S are submodels of M ,

2. If Fc.k is the set of atomic CPL propositons, one per
domain knowledge Fragment in M , Fc.s the set of
atomic CPL propositons, one per specification Frag-
ment in M , Fc.r the set of atomic CPL propositons,
one per requirement Fragment in M , and ∆ the set

332

Chapter 15. Links to Formal Logic

of CPL sentences produced by applying f.map.imfl.impl
to M , then

(a) Fc.k,Fc.s,∆` Fc.r, that is, the Provability Condi-
tion is satisfied,

(b) Fc.k,Fc.s,∆ 6` ⊥, that is, the Consistency Condi-
tion is satisfied,

3. S includes all Fragments denoted by the atomic
propositions in Fc.s, and

4. P includes all Fragments denoted by the atomic
propositions in Fc.k ∪Fc.r.

Finding an Default Problem instance in a model in L.Rigel is
simple. If the model has a set of requirements Fragments and domain
knowledge Fragments, then it includes a Default Problem instance.
There was no need for f.map.impl.infl to do this.

Recall that the Provability Condition consists of showing that
K ,S ` R. Let K be the set of all domain knowledge Fragments in
M , S of specification Fragments, and R of requirements. You then
need to have an atomic proposition for each Fragment, so let Fc.k
be the set of atomic CPL propositons, one per domain knowledge
Fragment in M , Fc.s the set of atomic CPL propositons, one per spec-
ification Fragment in M , Fc.r the set of atomic CPL propositons, one
per requirement Fragment in M .

None of these sets includes influence relations, and it follows,
cannot include ∆, the implications which correspond to the positive
and negative influences in M . The revised Provability Condition is
then to show that

Fc.k,Fc.s,∆` Fc.r.

The Consistency Condition becomes

Fc.k,Fc.s,∆ 6` ⊥.

In a summary, if M gives the sets R , K , and S of propositions, and via
f.map.infl.impl the set of implications ∆, and if it can be shown that
the above two conditions are satisfied, then S is the solution to the
Default Problem in M .

Note that M may include other Fragments and relations, but if
only f.map.infl.impl is used, then M will be logically inconsistent if

333

Chapter 15. Links to Formal Logic

F,∆`⊥, where F are all the Fragments in M . It follows that M may
be inconsistent, all the while K ,S,∆` R and K ,S,∆ 6` ⊥.

Suppose that you are given the following CPL formulas:

Fc.k = { SwtchCal,NoDropCal }

Fc.s = { SrcMap, IncLocVisSw,UpdOpIncLoc,FilSwIncRep }

Fc.r = { AddRepEm }

∆ = { FilIncRep∧ChkDblLoc∧ IdIncLoc∧RecEmCal

∧NoDropCal∧SwtchCal→AddRepEm,

SwtchCal∧NoDropCal→RecEmCal,

SrcMap→ IdIncLoc,

UpdOpIncLoc∧ IncLocVisSw→SwIdDuplCal,

SwIdDuplCal→ChkDblLoc,

FillSwIncRep→ FillIncRep }.

What Fragments and relations are in a model M , if it is a model in
L.Sirius, and which includes only the Fragments that correspond to
atomic propositions in Fc.k, Fc.s, and Fc.r above, and has influences
which mapped to those in ∆ above, via f.map.inf.impl? Is there a
Default Problem problem instance in M? Is S given above a solution
to that Default Problem instance in M? I leave this to you.

15.3 Models to Theories, Approach Two

Instead of mapping each Fragment an atomic proposition, what
would happen if you mapped a Fragment to a CPL sentence?

Suppose, then, that there is a function which takes a Fragment
and returns a sentence. Call it f.map.f.sntc. I have no suggestions
on how to define this function, other than that the modeller takes a
Fragment and writes a CPL sentence which best corresponds to the
information in the Fragment.

The effect of having f.map.f.sntc is that R, K , and S are now sets
of sentences. You still need to map relations to sentences, and
f.map.inf.impl can still be used, with the change that implications are
now not necessarily only over atomic propositions, but over atomic
propositions and, or sentences.

Changes to the problem are the same as in Section 15.2. Prov-
ability Condition is K ,S,∆ ` R and the Consistency Condition is

334

Chapter 15. Links to Formal Logic

K ,S,∆ 6` ⊥.
This has an effect on the complexity of checking the two con-

ditions. The check could be done in linear time when the output
are atomic propositions and implications in Section 15.2, since that
output amounts to a set of propositional Horn clauses [43].

15.4 Risks of Mapping to Formal Theories

Suppose that you have L.Rigel and f.map.inf.impl, and that you map
Fragments to atomic propositions of CPL, as in Section 15.2.

Let x be a Fragment, and an atomic proposition which is a re-
quirement in a model M . You might want to check if

K ,∆` x,

and if yes, conclude that the requirement x is satisfied by the do-
main knowledge. More generally, you may want to check if M ′ ` x,
where M ′ is the mapping of the model M to atomic propositions and
implications.

There is nothing problematic with wanting to do this, but it can be
misleading. The syntactic consequence relation ` in CPL is reflexive,
meaning that if x ∈ M ′, then also M ′ ` x. So even if there are no
implications from domain knowledge and specifications to x, and
thus, no clear idea how to satisfy the requirement x with M , it is
the case that M ′ ` x. The danger is to conclude that x is a satisfied
requirement according to M ′ and therefore, that M says how to satisfy
x. This is incorrect.

A similarly misleading case is if M ′ `⊥. When M ′ is inconsistent,
then any atomic proposition and sentence is its conclusion in CPL. So
any y , be it in M or not, is such that M ′ ` y . If you were reading M ′ `
x as indicating that M says how to satisfy the requirement x, then
you would conclude anytime you have an inconsistent M ′, regardless
of there being x in it, or not, or there being domain knowledge and
specifications in M which say how to satisfy x.

The odd cases above happen not because there is a problem with
the formal logic, or with the Requirements Modelling Language, but
with the rules about how the two are related. For example, if M ′ can
be inconsistent, then it might be interesting to use a paraconsistent
logic rather than CPL, to check if there is proof of x from M ′. In short,
the choice of a formal logic to map models to, depends on exactly

335

Chapter 15. Links to Formal Logic

what you want to use this logic for, which consequently helps choose
that formal logic.

15.5 Summary on Formal Theories

This section briefly mentioned several topics on how models in Re-
quirements Modelling Languages relate to theories in formal logics.
The central idea and motivation is that (parts of) models can be
mapped to theories of formal logic. It should then be possible to
check properties of these theories, such as consistency, to draw con-
clusions which help change the original models. I leave many other
questions outside the scope of this tutorial:

• How does valuation in a language influence the choice of a
formal logic to map its models to?

• Which properties of a language influence one’s decision on
what to map Fragments and relations to, in a formal logic?

• When models can map to inconsistent theories, then which
paraconsistent logic to map the models to, in order to do rea-
soning without repairing consistency first?

336

Bibliography

[1] Jean-Raymond Abrial and Jean-Raymond Abrial. The B-Book: Assigning pro-
grams to meanings. Cambridge University Press, 2005.

[2] Alfred V. Aho, Michael R Garey, and Jeffrey D. Ullman. The transitive reduction
of a directed graph. SIAM Journal on Computing, 1(2):131–137, 1972.

[3] Anonymous. Report of the Inquiry Into The London Ambulance Service. Tech-
nical report, The Communications Directorate, South West Thames Regional
Authority, 1993.

[4] Chimay Anumba, John M Kamara, and Anne-Francoise Cutting-Decelle. Con-
current engineering in construction projects. Routledge, 2006.

[5] Kenneth J Arrow, Amartya Sen, and Kotaro Suzumura. Handbook of Social
Choice & Welfare, volume 2. Elsevier, 2010.

[6] Fahiem Bacchus and Adam Grove. Graphical models for preference and utility.
In Proceedings of the Eleventh conference on Uncertainty in artificial intelligence,
pages 3–10. Morgan Kaufmann Publishers Inc., 1995.

[7] Jorgen Bang-Jensen and Gregory Gutin. Digraphs: Theory, Algorithms and
Applications. Springer, 2002.

[8] H Bekić, Dines Bjørner, Wolfgang Henhapl, Cliff B Jones, and Peter Lucas. A for-
mal definition of a pl/i subset. In Programming Languages and Their Definition,
pages 107–155. Springer, 1984.

[9] Trevor JM Bench-Capon and Paul E Dunne. Argumentation in artificial intelli-
gence. Artificial intelligence, 171(10):619–641, 2007.

[10] William L Benoit and Dale Hample. Readings in argumentation, volume 11.
Walter de Gruyter, 1992.

[11] Patrik Berander and Anneliese Andrews. Requirements prioritization. In Engi-
neering and managing software requirements, pages 69–94. Springer, 2005.

[12] Paul Beynon-Davies. Human error and information systems failure: the case
of the london ambulance service computer-aided despatch system project.
Interacting with Computers, 11(6):699–720, 1999.

[13] Barry Boehm, Prasanta Bose, Ellis Horowitz, and Ming June Lee. Software
requirements negotiation and renegotiation aids: A theory-w based spiral ap-
proach. In Software Engineering, 1995. ICSE 1995. 17th International Conference
on, pages 243–243. IEEE, 1995.

337

Bibliography

[14] Barry W Boehm. Software engineering economics. Software Engineering, IEEE
Transactions on, (1):4–21, 1984.

[15] Barry W. Boehm. A spiral model of software development and enhancement.
Computer, 21(5):61–72, 1988.

[16] Barry W Boehm, John R Brown, and Myron Lipow. Quantitative evaluation of
software quality. In Proceedings of the 2nd international conference on Software
engineering, pages 592–605. IEEE Computer Society Press, 1976.

[17] Barry W Boehm, Ray Madachy, Bert Steece, et al. Software Cost Estimation with
Cocomo II. Prentice Hall PTR, 2000.

[18] Craig Boutilier, Ronen I Brafman, Carmel Domshlak, Holger H Hoos, and David
Poole. Cp-nets: A tool for representing and reasoning with conditional ceteris
paribus preference statements. J. Artif. Intell. Res.(JAIR), 21:135–191, 2004.

[19] Jean-Pierre Brans and Ph Vincke. Note: A preference ranking organisation
method: (the promethee method for multiple criteria decision-making). Man-
agement science, 31(6):647–656, 1985.

[20] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger
Kienle, Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. Engineering
self-adaptive systems through feedback loops. In Software Engineering for
Self-Adaptive Systems, pages 48–70. Springer, 2009.

[21] Russel E Caflisch. Monte carlo and quasi-monte carlo methods. Acta numerica,
7:1–49, 1998.

[22] Colin Camerer and Martin Weber. Recent developments in modeling prefer-
ences: Uncertainty and ambiguity. Journal of risk and uncertainty, 5(4):325–370,
1992.

[23] Jaelson Castro, Manuel Kolp, and John Mylopoulos. Towards requirements-
driven information systems engineering: the tropos project. Information sys-
tems, 27(6):365–389, 2002.

[24] Eugene Charniak. Bayesian networks without tears. AI magazine, 12(4):50,
1991.

[25] Li Chen and Pearl Pu. Survey of preference elicitation methods. In Ecole
Politechnique Federale de Lausanne (EPFL), IC/2004/67, 2004.

[26] Betty HC Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee,
Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, et al.
Software engineering for self-adaptive systems: A research roadmap. Springer,
2009.

[27] Carlos Iván Chesñevar, Ana Gabriela Maguitman, and Ronald Prescott Loui.
Logical models of argument. ACM Computing Surveys (CSUR), 32(4):337–383,
2000.

[28] Yann Chevaleyre, Ulle Endriss, Jérôme Lang, and Nicolas Maudet. A short intro-
duction to computational social choice. In Proceedings of the 33rd conference
on Current Trends in Theory and Practice of Computer Science, pages 51–69.
Springer-Verlag, 2007.

[29] Lawrence Chung and Julio Cesar Sampaio do Prado Leite. On non-functional
requirements in software engineering. In Conceptual modeling: Foundations
and applications, pages 363–379. Springer, 2009.

338

Bibliography

[30] Edmund M Clarke and Jeannette M Wing. Formal methods: State of the art and
future directions. ACM Computing Surveys (CSUR), 28(4):626–643, 1996.

[31] Jane Cleland-Huang, Raffaella Settimi, Chuan Duan, and Xuchang Zou. Uti-
lizing supporting evidence to improve dynamic requirements traceability. In
Requirements Engineering, 2005. Proceedings. 13th IEEE International Confer-
ence on, pages 135–144. IEEE, 2005.

[32] Jeff Conklin and Michael L Begeman. gibis: A hypertext tool for exploratory
policy discussion. ACM Transactions on Information Systems (TOIS), 6(4):303–
331, 1988.

[33] Larissa Conradt and Christian List. Group decisions in humans and animals:
a survey. Philosophical Transactions of the Royal Society B: Biological Sciences,
364(1518):719–742, 2009.

[34] Richard Cox. Representation construction, externalised cognition and individ-
ual differences. Learning and instruction, 9(4):343–363, 1999.

[35] Oliver Creighton, Martin Ott, and Bernd Bruegge. Software cinema-video-based
requirements engineering. In Requirements Engineering, 14th IEEE Interna-
tional Conference, pages 109–118. IEEE, 2006.

[36] Anne Dardenne, Axel Van Lamsweerde, and Stephen Fickas. Goal-directed
requirements acquisition. Science of computer programming, 20(1):3–50, 1993.

[37] Robert Darimont and Axel Van Lamsweerde. Formal refinement patterns for
goal-driven requirements elaboration. ACM SIGSOFT Software Engineering
Notes, 21(6):179–190, 1996.

[38] Alan Davis, Oscar Dieste, Ann Hickey, Natalia Juristo, and Ana María Moreno.
Effectiveness of requirements elicitation techniques: Empirical results derived
from a systematic review. In Requirements Engineering, 14th IEEE International
Conference, pages 179–188. IEEE, 2006.

[39] Victorio A de Carvalho, João Paulo A Almeida, and Giancarlo Guizzardi. Using
reference domain ontologies to define the real-world semantics of domain-
specific languages. In Advanced Information Systems Engineering, pages 488–
502. Springer, 2014.

[40] Willem-Paul de Roever, Kai Engelhardt, and Karl-Heinz Buth. Data refinement:
model-oriented proof methods and their comparison. Number 47. Cambridge
University Press, 1998.

[41] Edsger W Dijkstra. Chapter i: Notes on structured programming. In Structured
programming, pages 1–82. Academic Press Ltd., 1972.

[42] Carmel Domshlak, Eyke Hüllermeier, Souhila Kaci, and Henri Prade. Prefer-
ences in ai: An overview. Artificial Intelligence, 175(7):1037–1052, 2011.

[43] William F Dowling and Jean H Gallier. Linear-time algorithms for testing the
satisfiability of propositional horn formulae. The Journal of Logic Programming,
1(3):267–284, 1984.

[44] Didier Dubois and Henri Prade. Possibility theory as a basis for qualitative
decision theory. In IJCAI, volume 95, pages 1924–1930, 1995.

[45] Phan Minh Dung. On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and< i> n</i>-person games.
Artificial intelligence, 77(2):321–357, 1995.

339

Bibliography

[46] SK Eric. Social modeling for requirements engineering. Mit Press, 2011.

[47] Neil A Ernst, Alexander Borgida, Ivan J Jureta, and John Mylopoulos. Agile
requirements engineering via paraconsistent reasoning. Information Systems,
2013.

[48] José Figueira, Salvatore Greco, and Matthias Ehrgott. Multiple criteria decision
analysis: state of the art surveys, volume 78. Springer, 2005.

[49] Anthony CW Finkelstein, Dov Gabbay, Anthony Hunter, Jeff Kramer, and Bashar
Nuseibeh. Inconsistency handling in multiperspective specifications. Software
Engineering, IEEE Transactions on, 20(8):569–578, 1994.

[50] Janos C Fodor and MR Roubens. Fuzzy preference modelling and multicriteria
decision support, volume 14. Springer, 1994.

[51] Ariel Fuxman, Lin Liu, John Mylopoulos, Marco Pistore, Marco Roveri, and Paolo
Traverso. Specifying and analyzing early requirements in tropos. Requirements
Engineering, 9(2):132–150, 2004.

[52] Dedre Gentner and Susan Goldin-Meadow. Language in mind: Advances in the
study of language and thought. MIT Press, 2003.

[53] Jonathan Ginzburg. Interrogatives: Questions, facts and dialogue. The hand-
book of contemporary semantic theory. Blackwell, Oxford, 1996.

[54] Paolo Giorgini, John Mylopoulos, Eleonora Nicchiarelli, and Roberto Sebastiani.
Reasoning with goal models. In Conceptual ModelingâĂŤER 2002, pages 167–
181. Springer, 2003.

[55] Lila Gleitman and Anna Papafragou. Language and thought. Cambridge hand-
book of thinking and reasoning, pages 633–661, 2005.

[56] Joseph A Goguen and Charlotte Linde. Techniques for requirements elicita-
tion. In Requirements Engineering, 1993., Proceedings of IEEE International
Symposium on, pages 152–164. IEEE, 1993.

[57] Orlena CZ Gotel and CW Finkelstein. An analysis of the requirements trace-
ability problem. In Requirements Engineering, 1994., Proceedings of the First
International Conference on, pages 94–101. IEEE, 1994.

[58] Salvatore Greco, Benedetto Matarazzo, and Roman Slowinski. Rough sets theory
for multicriteria decision analysis. European journal of operational research,
129(1):1–47, 2001.

[59] Sol Greenspan, John Mylopoulos, and Alex Borgida. On formal requirements
modeling languages: Rml revisited. In Proceedings of the 16th international
conference on Software engineering, pages 135–147. IEEE Computer Society
Press, 1994.

[60] Sol J. Greenspan, Alexander Borgida, and John Mylopoulos. A requirements
modeling language and its logic. Inf. Syst., 11(1):9–23, 1986.

[61] Sol J Greenspan, John Mylopoulos, and Alex Borgida. Capturing more world
knowledge in the requirements specification. In Proceedings of the 6th inter-
national conference on Software engineering, pages 225–234. IEEE Computer
Society Press, 1982.

[62] Nicola Guarino. Formal ontology, conceptual analysis and knowledge repre-
sentation. International journal of human-computer studies, 43(5):625–640,
1995.

340

Bibliography

[63] John J Gumperz and Stephen C Levinson. Rethinking linguistic relativity. Cam-
bridge University Press, 1996.

[64] Carl A Gunter, Elsa L Gunter, Michael Jackson, and Pamela Zave. A reference
model for requirements and specifications. In Requirements engineering, 2000.
Proceedings. 4th International Conference on, page 189. IEEE, 2000.

[65] John V Guttag, James J Horning, Stephen J Garland, Kevin D Jones, Andres
Modet, and Jeannette M Wing. Larch: languages and tools for formal specifica-
tion. In Texts and Monographs in Computer Science. Citeseer, 1993.

[66] Sven Ove Hansson. Preference logic. In Handbook of philosophical logic, pages
319–393. Springer, 2002.

[67] Sven Ove Hansson and Till Grüne-Yanoff. Preferences. In Edward N. Zalta,
editor, The Stanford Encyclopedia of Philosophy. Winter 2012 edition, 2012.

[68] David Harel and Bernhard Rumpe. Meaningful modeling: what’s the semantics
of" semantics"? Computer, 37(10):64–72, 2004.

[69] Constance L Heitmeyer, Ralph D Jeffords, and Bruce G Labaw. Automated
consistency checking of requirements specifications. ACM Transactions on
Software Engineering and Methodology (TOSEM), 5(3):231–261, 1996.

[70] Andrea Herrmann and Maya Daneva. Requirements prioritization based on
benefit and cost prediction: An agenda for future research. In International
Requirements Engineering, 2008. RE’08. 16th IEEE, pages 125–134. IEEE, 2008.

[71] Ann M Hickey and Alan M Davis. A unified model of requirements elicitation.
Journal of Management Information Systems, 20(4):65–84, 2004.

[72] David Hitchcock. Informal logic and the concept of argument. Philosophy of
logic, 5:101–129, 2006.

[73] C Hoare. Proof of correctness of data representations. Language Hierarchies
and Interfaces, pages 183–193, 1976.

[74] John E Hopcroft and Robert E Tarjan. Efficient algorithms for graph manipula-
tion. 1971.

[75] Anthony Hunter. Paraconsistent logics. In Reasoning with Actual and Potential
Contradictions, pages 11–36. Springer, 1998.

[76] Anthony Hunter and Bashar Nuseibeh. Managing inconsistent specifications:
reasoning, analysis, and action. ACM Transactions on Software Engineering and
Methodology (TOSEM), 7(4):335–367, 1998.

[77] United Kingdom Hydrograph, United Kingdom Hydrographic Office, and
U S Naval Observatory. 2010 Nautical Almanac: Commercial Edition. Par-
adise Cay Publications, 2009.

[78] Kenneth E Iverson. Notation as a tool of thought. ACM SIGAPL APL Quote Quad,
35(1-2):2–31, 2007.

[79] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 11(2):256–290,
2002.

[80] David Jonassen. Using cognitive tools to represent problems. Journal of research
on Technology in Education, 35(3):362–381, 2003.

341

Bibliography

[81] David Jonassen, Johannes Strobel, and Chwee Beng Lee. Everyday problem solv-
ing in engineering: Lessons for engineering educators. Journal of engineering
education, 95(2):139–151, 2006.

[82] Ivan Jureta, John Mylopoulos, and Stéphane Faulkner. Analysis of multi-party
agreement in requirements validation. In Requirements Engineering Conference,
2009. RE’09. 17th IEEE International, pages 57–66. IEEE, 2009.

[83] Ivan J Jureta, Alexander Borgida, Neil A Ernst, and John Mylopoulos. Techne:
Towards a new generation of requirements modeling languages with goals, pref-
erences, and inconsistency handling. In Requirements Engineering Conference
(RE), 2010 18th IEEE International, pages 115–124. IEEE, 2010.

[84] Ivan J Jureta, Alexander Borgida, Neil A Ernst, and John Mylopoulos. The
requirements problem for adaptive systems. ACM Transactions on Management
Information Systems (TMIS), 5(3):17, 2014.

[85] Ivan J Jureta and Stéphane Faulkner. Clarifying goal models. In Tutorials, posters,
panels and industrial contributions at the 26th international conference on
Conceptual modeling-Volume 83, pages 139–144. Australian Computer Society,
Inc., 2007.

[86] Ivan J Jureta, Stéphane Faulkner, and Pierre-Yves Schobbens. A more expressive
softgoal conceptualization for quality requirements analysis. In Conceptual
Modeling-ER 2006, pages 281–295. Springer, 2006.

[87] Ivan J Jureta, Stéphane Faulkner, and Pierre-Yves Schobbens. Clear justification
of modeling decisions for goal-oriented requirements engineering. Require-
ments Engineering, 13(2):87–115, 2008.

[88] Ivan J Jureta, John Mylopoulos, and Stephane Faulkner. Revisiting the core
ontology and problem in requirements engineering. In International Require-
ments Engineering, 2008. RE’08. 16th IEEE, pages 71–80. IEEE, 2008.

[89] Daniel Kahneman and Amos Tversky. Prospect theory: An analysis of decision
under risk. Econometrica: Journal of the Econometric Society, pages 263–291,
1979.

[90] Nikos Karacapilidis and Dimitris Papadias. Computer supported argumentation
and collaborative decision making: the hermes system. Information systems,
26(4):259–277, 2001.

[91] Joachim Karlsson, Claes Wohlin, and Björn Regnell. An evaluation of methods
for prioritizing software requirements. Information and Software Technology,
39(14):939–947, 1998.

[92] Paul Kay and Willett Kempton. What is the Sapir-Whorf hypothesis? American
Anthropologist, 86(1):65–79, 1984.

[93] John Krogstie, Odd Ivar Lindland, and Guttorm Sindre. Towards a deeper
understanding of quality in requirements engineering. In Advanced Information
Systems Engineering, pages 82–95. Springer, 1995.

[94] Werner Kunz and Horst WJ Rittel. Issues as elements of information systems, vol-
ume 131. Institute of Urban and Regional Development, University of California
Berkeley, California, 1970.

[95] Bryan Lawson. How designers think: the design process demystified. Routledge,
2006.

342

Bibliography

[96] Jintae Lee. Extending the potts and bruns model for recording design rationale.
In Software Engineering, 1991. Proceedings., 13th International Conference on,
pages 114–125. IEEE, 1991.

[97] Jintae Lee and Kum-Yew Lai. What’s in design rationale? Human–Computer
Interaction, 6(3-4):251–280, 1991.

[98] Julio Cesar Sampaio do Prado Leite and Peter A Freeman. Requirements valida-
tion through viewpoint resolution. Software Engineering, IEEE Transactions on,
17(12):1253–1269, 1991.

[99] Emmanuel Letier and Axel Van Lamsweerde. Reasoning about partial goal
satisfaction for requirements and design engineering. In ACM SIGSOFT Software
Engineering Notes, volume 29, pages 53–62. ACM, 2004.

[100] Sotirios Liaskos, Sheila A McIlraith, Shirin Sohrabi, and John Mylopoulos. In-
tegrating preferences into goal models for requirements engineering. In Re-
quirements Engineering Conference (RE), 2010 18th IEEE International, pages
135–144. IEEE, 2010.

[101] Sarah Lichtenstein and Paul Slovic. The construction of preference. Cambridge
University Press, 2006.

[102] Panagiotis Louridas and Pericles Loucopoulos. A generic model for reflective
design. ACM Transactions on Software Engineering and Methodology (TOSEM),
9(2):199–237, 2000.

[103] R Timothy Marler and Jasbir S Arora. Survey of multi-objective optimiza-
tion methods for engineering. Structural and multidisciplinary optimization,
26(6):369–395, 2004.

[104] Matthew McGrath. Propositions. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Spring 2014 edition, 2014.

[105] Sanjay Modgil and Martin Caminada. Proof theories and algorithms for abstract
argumentation frameworks. In Argumentation in artificial intelligence, pages
105–129. Springer, 2009.

[106] Dennis C Mueller. Public choice: an introduction. Springer, 2004.

[107] John Mylopoulos, Alex Borgida, Matthias Jarke, and Manolis Koubarakis. Telos:
Representing knowledge about information systems. ACM Transactions on
Information Systems (TOIS), 8(4):325–362, 1990.

[108] John Mylopoulos, Lawrence Chung, and Brian Nixon. Representing and using
nonfunctional requirements: A process-oriented approach. Software Engineer-
ing, IEEE Transactions on, 18(6):483–497, 1992.

[109] John Neter, William Wasserman, and Michael H Kutner. Applied linear regres-
sion models. 1989.

[110] Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein. A framework for ex-
pressing the relationships between multiple views in requirements specification.
Software Engineering, IEEE Transactions on, 20(10):760–773, 1994.

[111] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible
inference. Morgan Kaufmann, 1988.

[112] Eric Pederson, Eve Danziger, David Wilkins, Stephen Levinson, Sotaro Kita, and
Gunter Senft. Semantic typology and spatial conceptualization. Language,
pages 557–589, 1998.

343

Bibliography

[113] Maria Silvia Pini, Francesca Rossi, Kristen Brent Venable, and Toby Walsh. Ag-
gregating partially ordered preferences. Journal of Logic and Computation,
19(3):475–502, 2009.

[114] John L Pollock. Defeasible reasoning. Cognitive science, 11(4):481–518, 1987.

[115] Frederic Portoraro. Automated reasoning. In Edward N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Winter 2014 edition, 2014.

[116] Henry Prakken and Gerard Vreeswijk. Logics for defeasible argumentation. In
Handbook of philosophical logic, pages 219–318. Springer, 2002.

[117] Balasubramaniam Ramesh and Vasant Dhar. Supporting systems develop-
ment by capturing deliberations during requirements engineering. Software
Engineering, IEEE Transactions on, 18(6):498–510, 1992.

[118] Balasubramaniam Ramesh and Matthias Jarke. Toward reference models for
requirements traceability. Software Engineering, IEEE Transactions on, 27(1):58–
93, 2001.

[119] Nicholas Rescher. The logic of preference. In Topics in Philosophical Logic,
pages 287–320. Springer, 1968.

[120] Filippo Ricca, Giuseppe Scanniello, Marco Torchiano, Gianna Reggio, and
Egidio Astesiano. On the effectiveness of screen mockups in requirements
engineering: results from an internal replication. In Proceedings of the 2010
ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement, page 17. ACM, 2010.

[121] Horst WJ Rittel and Melvin M Webber. Dilemmas in a general theory of planning.
Policy sciences, 4(2):155–169, 1973.

[122] William N Robinson, Suzanne D Pawlowski, and Vecheslav Volkov. Require-
ments interaction management. ACM Computing Surveys (CSUR), 35(2):132–
190, 2003.

[123] Stuart Russell, Peter Norvig, and Artificial Intelligence. A modern approach.
Artificial Intelligence. Prentice-Hall, Egnlewood Cliffs, 25, 1995.

[124] Stewart Shapiro. Classical logic. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Winter 2013 edition, 2013.

[125] Mary Shaw and David Garlan. Software architecture: perspectives on an emerg-
ing discipline, volume 1. Prentice Hall Englewood Cliffs, 1996.

[126] S Buckingham Shum. Design argumentation as design rationale. The encyclo-
pedia of computer science and technology, 35(20):95–128, 1996.

[127] Simon Buckingham Shum and Nick Hammond. Argumentation-based design
rationale: what use at what cost? International Journal of Human-Computer
Studies, 40(4):603–652, 1994.

[128] Guillermo Simari and Iyad Rahwan. Argumentation in artificial intelligence.
2009.

[129] Guillermo R Simari and Ronald P Loui. A mathematical treatment of defeasible
reasoning and its implementation. Artificial intelligence, 53(2):125–157, 1992.

[130] Herbert A Simon. The structure of ill-structured problems. In Models of discov-
ery, pages 304–325. Springer, 1977.

344

Bibliography

[131] Guttorm Sindre and Andreas L Opdahl. Eliciting security requirements with
misuse cases. Requirements Engineering, 10(1):34–44, 2005.

[132] Barry Smith and Christopher Welty. Ontology: Towards a new synthesis. In
Formal Ontology in Information Systems, pages 3–9. ACM Press, USA, pp. iii-x,
2001.

[133] J Michael Spivey and JR Abrial. The Z notation. Prentice Hall Hemel Hempstead,
1992.

[134] Steffen Staab and Rudi Studer. Handbook on ontologies. Springer, 2010.

[135] Mark Staples. Critical rationalism and engineering: ontology. Synthese, pages
1–25, 2014.

[136] Chris Starmer. Developments in non-expected utility theory: The hunt for a
descriptive theory of choice under risk. Journal of economic literature, pages
332–382, 2000.

[137] Masaki Suwa, John Gero, and Terry Purcell. Unexpected discoveries and s-
invention of design requirements: important vehicles for a design process.
Design Studies, 21(6):539–567, 2000.

[138] Barbara G Tabachnick, Linda S Fidell, et al. Using multivariate statistics. 2001.

[139] Alfred Tarski. The semantic conception of truth: and the foundations of seman-
tics. Philosophy and phenomenological research, 4(3):341–376, 1944.

[140] Richard Thaler. Toward a positive theory of consumer choice. Journal of
Economic Behavior & Organization, 1(1):39–60, 1980.

[141] Amos Tversky and Daniel Kahneman. Judgment under uncertainty: Heuristics
and biases. science, 185(4157):1124–1131, 1974.

[142] Amos Tversky, Paul Slovic, and Daniel Kahneman. The causes of preference
reversal. The American Economic Review, pages 204–217, 1990.

[143] JFAK van Benthem and Alice Ter Meulen. Handbook of logic and language.
Elsevier, 1996.

[144] Axel Van Lamsweerde. Goal-oriented requirements engineering: A guided
tour. In Requirements Engineering, 2001. Proceedings. Fifth IEEE International
Symposium on, pages 249–262. IEEE, 2001.

[145] Axel Van Lamsweerde, Robert Darimont, and Emmanuel Letier. Managing
conflicts in goal-driven requirements engineering. Software Engineering, IEEE
Transactions on, 24(11):908–926, 1998.

[146] Axel van Lamsweerde and Emmanuel Letier. Handling obstacles in goal-
oriented requirements engineering. Software Engineering, IEEE Transactions
on, 26(10):978–1005, 2000.

[147] Douglas N Walton. Informal logic: A handbook for critical argumentation.
Cambridge University Press, 1989.

[148] Philippe Weil. Nonexpected utility in macroeconomics. The Quarterly Journal
of Economics, pages 29–42, 1990.

[149] Jon Whittle, Peter Sawyer, Nelly Bencomo, Betty HC Cheng, and J-M Bruel.
Relax: Incorporating uncertainty into the specification of self-adaptive systems.
In Requirements Engineering Conference, 2009. RE’09. 17th IEEE International,
pages 79–88. IEEE, 2009.

345

Bibliography

[150] Jeannette M Wing. A specifier’s introduction to formal methods. Computer,
23(9):8–22, 1990.

[151] Niklaus Wirth. Program development by stepwise refinement. Communications
of the ACM, 14(4):221–227, 1971.

[152] Eric Siu-Kwong Yu. Modelling strategic relationships for process reengineering.
PhD thesis, University of Toronto, 1995.

[153] Eric SK Yu. Modeling organizations for information systems requirements engi-
neering. In Requirements Engineering, 1993., Proceedings of IEEE International
Symposium on, pages 34–41. IEEE, 1993.

[154] Eric SK Yu. Towards modelling and reasoning support for early-phase require-
ments engineering. In Requirements Engineering, 1997., Proceedings of the
Third IEEE International Symposium on, pages 226–235. IEEE, 1997.

[155] Pamela Zave and Michael Jackson. Four dark corners of requirements engineer-
ing. ACM Transactions on Software Engineering and Methodology (TOSEM),
6(1):1–30, 1997.

[156] Milan Zeleny and James L Cochrane. Multiple criteria decision making, vol-
ume 25. McGraw-Hill New York, 1982.

[157] Jiajie Zhang. The nature of external representations in problem solving. Cogni-
tive science, 21(2):179–217, 1997.

346

	Outline
	About the Author
	Acknowledgements
	Copyright
	Requirements Problem Solving
	Motivation
	Problem Situations
	Problem Solving Tasks
	Solution Situations
	Requirements Problem Solving

	Problem Solving Automation
	Automation
	Ill-Structured Problems
	Well-Structured Problems
	Well-Structured Sub-Problems
	Case-Specific and Recurrent Tasks
	Languages and Algorithms
	Artificial Intelligence

	Problem and Solution Concepts
	Requirements Engineering
	Problem and Solution
	Problem
	Solution

	System
	Models
	Default Problem and Solution

	On Requirements Modelling Languages
	Formal Language
	Syntax
	Semantics

	Role in Problem Solving
	Rough Historical Overview
	i-star
	Motivation
	Syntax
	Semantic Domain and Mapping
	Comments

	Techne
	Motivation
	Semantic Domain and Mapping
	Syntax and More Semantic Mapping
	Analysis
	Formalisation
	Comments

	Requirements Problem Solving Cases
	Brussels Law
	Terminology
	Interviews Summary
	Problems

	Copenhagen Sports
	Terminology
	Interview Summary
	Problem

	Dubai Telecom
	Interviews Summary
	Problem

	London Lights
	Terminology
	Interviews Summary
	Problem

	London Ambulance

	Checklists, Templates, and Services
	Problem Solving Services
	Checklists and Templates
	Language and Module Names

	Relations
	Motivation
	Single Relation Language
	Choose a Language Service
	Models over Fragments
	Trivial Modelling Language

	Modular Definitions
	Some Influence Relations
	Presence of Influence
	Direction of Influence
	Relative Strength of Influence
	Summary on Influence Relations

	Arguments in Models
	Support and Defeat
	Accepted or Rejected

	Combinations of Relations
	Independent Relations
	Interacting Relations

	Summary on Relations

	Guidelines
	Motivation
	Guidelines from Arguments
	Composite Guidelines
	Stronger and Weaker Guidelines
	Summary on Guidelines

	Categories
	Motivation
	Independent Categories
	Taxonomy of Categories
	In Meta-Models and Ontologies
	Derived Categories and Relations
	Enforce Category Use
	Summary on Categories

	Valuation
	Motivation
	Propagating Binary Values
	Binary Value Type
	Value Propagation

	Combining Several Binary Value Types
	Independent Value Assignments
	Dependent Value Assignments

	Sets of Values
	Constraints on Assignments
	Real Numbers
	Summary on Valuation

	Uncertainty
	Motivation
	Independent Random Variables
	Dependent Random Variables
	Ignoring Existing Relations
	Using Existing Relations

	Alternatives
	Motivation
	Alternatives over Binary Value Types
	Picks and their Use
	Several Arbitrary Value Types
	Summary on Alternatives

	Constraints
	Representing Constraints
	Constraints in Outcome Search
	Summary on Constraints

	Preferences
	Motivation
	Preferences and Criteria Basics
	Core Preference Relations
	Domains of Preference Relations
	Criteria

	Representing Preferences
	Finding Criteria
	Better and Best Outcomes
	Summary on Preferences

	Links to Formal Logic
	Motivation
	Models to Theories, Approach One
	Models to Theories, Approach Two
	Risks of Mapping to Formal Theories
	Summary on Formal Theories

